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The main statement

Consider the Ising’s Hamiltonian (with free boundary conditions) on a finite
subgraph G of the square lattice Z2 with coupling constants Jxy ≥ 0,

HG (σ)
def
= −

∑
x,y∈G

Jxyσxσy

and the associated measure at inverse-temperature β defined for any f ,

〈f 〉G ,β =

∑
σ∈{±1}G

f (σ) exp[−βHG (σ)]

∑
σ∈{±1}G

exp[−βHG (σ)]
.

Focus on symmetric finite range (i.e. Jxy = 0 for |x − y | ≥ R) Ising model
at the critical inverse temperature βc on the upper half-plane H.

Theorem (Aizenman, Duminil-Copin, Tassion, Warzel (2016))

For x1, . . . , x2n found in this order on the boundary of H,

〈σx1 · · ·σx2n 〉H,βc ∼ Pfaff
[(
〈σxiσxj 〉H,βc

)
1≤i<j≤2n

]
as min |xi − xj | tends to infinity.
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Part I. Planar Case
Rewriting correlations functions in terms of random currents

Rewrite the model in terms of integer-valued functions (called currents)
m = (mxy : x , y ∈ G).

As observed by Griffiths, Hurst and Sherman (1970), the identity

exp[βJxyσxσy ] =
∞∑

mxy =0

(βJxyσxσy )mxy

mxy !

allows us to write for σA =
∏

x∈A σx ,

∑
σ∈{±1}G

σA exp[−βHG (σ)]
switch sums

=
∑
m

w(m)
∑

σ∈{±1}G

∏
x∈G

σ I[x∈A]+∆(m,x)
x

where w(m)
def
=
∏

x∼y
βmxy

mxy !
and ∆(m, x)

def
=
∑

y mxy .

based on the fact that for each fixed x ∈ G , the map flipping σx is an
involution on spin configurations.
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An interpretation of currents in terms of loops

Identify m = (mxy : x , y ∈ G) with a (multi-)graph M with mxy edges
between x and y .
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A current m with sources ∂m = A can be seen as a collection of loops
together with paths pairing the vertices of A together.
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The switching principle and its applications

Lemma (Switching lemma)

For A ⊂ G and x , y ∈ G∑
∂m1=A

∂m2={x,y}

w(m1)w(m2) =
∑

∂m1=A∆{x,y}
∂m2=∅

w(m1)w(m2)I[x M1∪M2←→ y ].

Let F be a function of two currents, then

∑
∂m1=B
∂m2=A

F (m1,m2)w(m1)w(m2) =
∑

∂m=A∆B

w(m)
∑
∂n=B
n≤m

F (n,m− n)

(
m

n

)
.

Simply make the change of variables m = m1 + m2 and n = m1, and observe
that w(m1)w(m2) = w(m)

(
m
n

)
where

(
m
n

)
:=
∏

x,y

(
mxy
nxy

)

is the number of

subgraphs N of M with exactly nxy edges between each x and y .

∑
∂m=A∆{x,y}

w(m)
∑

∂N={x,y}
N⊂M

1
?
=

∑
∂m=A∆{x,y}

w(m)
∑
∂N=∅
N⊂M

I[x M←→ y ]
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Applications of the switching principle

〈σxσy 〉2 =

∑
∂m1=∂m2={x,y} w(m1)w(m2)∑
∂m1=∂m2=∅ w(m1)w(m2)

switching
=

∑
∂m1=∂m2=∅ w(m1)w(m2)I[x M1∪M2←→ y ]∑

∂m1=∂m2=∅ w(m1)w(m2)
= P[x ←→ y ].

The square of spin-spin correlations can be interpreted using connection
probabilities in a (highly dependent) percolation model.

This explains why many bounds obtained for Bernoulli percolation work also
for the square of the spin correlations in Ising (e.g. m∗(β) ≥ c

√
β − βc).

〈σA〉〈σxσy 〉
switching

=

∑
∂m1=A∆{x,y},∂m2=∅ w(m1)w(m2)I[x M1∪M2←→ y ]∑

∂m1=∂m2=∅ w(m1)w(m2)

= 〈σA∆{x,y}〉
∑
∂m1=A∆{x,y},∂m2=∅ w(m1)w(m2)I[x M1∪M2←→ y ]∑

∂m1=A∆{x,y},∂m2=∅ w(m1)w(m2)

〈σA∆{x,y}〉P̃[x ←→ y ].
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= P[x ←→ y ].

The square of spin-spin correlations can be interpreted using connection
probabilities in a (highly dependent) percolation model.
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Proof of the Pfaffian formula for boundary spin correlations

For n = 2, see blackboard.

We prove the result by induction. For n ≥ 3,

Pfaffn(A) =
2n∑
`=2

(−1)`A1,` Pfaffn−1([A]1,`),

so that it is sufficient to prove that

2n∑
`=2

(−1)`〈σx1σx`〉
〈 ∏

1≤j≤2n
j /∈{1,`}

σxj

〉 ?
= 〈σx1 · · ·σx2n 〉.

Using random-currents, we obtain

LHS = 〈σx1 · · ·σx2n 〉 Ẽ
( 2n∑

`=2

(−1)` I[x1 ←→ x`]
)
.

For a fixed percolation configuration, the prescribed source constraints
implies that the sites x` for which x1 ←→ x` have labels of alternating parity
due to the planarity of the graph. Thus

2n∑
`=2

(−1)` I[x1 ←→ x`] = 1 .
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Part II. Finite-range interactions
Heuristic in the case of finite-range interactions

Let us focus on the four-point function. The representation in random-current
still works, so that it would be sufficient to study intersections.

x1 x2 x3 x4

It is no longer true that paths necessarily intersect.

We will use the first current (the one with sources) to locate an avoided
intersection. Then, we use the second current to connect the two clusters of
the first current.

Theorem (Aizenman, Duminil-Copin, Tassion, Warzel (2016))

At βc , the (infinite-volume sourceless) random current contains infinitely many
circuits surrounding the origin almost surely.
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Three models related to Ising on a finite graph G

In this part, let us assume (to simplify), that Jxy = 1 if {x , y} is an edge of G ,
and 0 otherwise.

RC percolation. Model of random subgraph of G obtained by taking the trace
m̂ of a sourceless current m sampled with probability proportional to w(m).

Loop O(1) model. Model of random even subgraph η of G obtained from the
high-temperature expansion of the model (the probability is proportional to
tanh(β)|η|. For G planar, the loops correspond to interfaces of the Ising
model on G∗ by Kramers-Wannier duality.

FK-Ising percolation. Model of random subgraph ω of G , where

φ(ω) :=
1

Z

( p

1− p

)#edges in ω
q#connected components in ω

with p = 1− e−2β and q = 2.
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Coupling between these models

independent sprinking

FK-Ising

RC-perco

Loop O(1)
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Hugo Duminil-Copin, I.H.É.S. Order - disorder operators in planar and almost planar graphs (2)



Coupling between these models

independent sprinking

independent sprinking

uniform even subgraph

FK-Ising

RC-perco

Loop O(1)
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Synergy between models

1. RC percolation. Particularly useful when working with truncated correlation
functions, especially because of the switching lemma.

2. Loop O(1)-model. Rich combinatorial structure due to the constraints on
configurations being even subgraphs. Additional switching principles. Also, in
the planar case interpretation in terms of interfaces.

3. FK-Ising. FKG measure: the model is positively associated. In particular,
one can prove a bunch of general theorems on the critical phase.

Pseudo-Theorem

At criticality, there is no infinite connected component in ω almost surely.

Pseudo-Theorem

There are infinitely many circuits around the origin in ω almost surely.
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Heuristic proof for finite-range interactions

The two previous theorems on FK-Ising show that there are infinitely many
distinct connected components surrounding the origin almost surely.

We now wish to prove that in a uniformly chosen even subgraph, there is
infinitely many circuits surrounding the origin.
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Conclusion

One step towards universality: the behavior at criticality is expected to be
independent of the local definition. It should depend on

The ± symmetry of the spins,

The global geometry of the lattice (planarity, dimension, growth, etc).

The proof is precisely based on these two ingredients:

Random-Current representation relies on the ± symmetry of the spins,

The study of crossings on the planarity.

Further applications to Ising are expected, e.g. to Order/Disorder and
Energy correlations, or to exponents.

The coupling generalizes to Ashkin-Teller models and has new
applications there.
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Hugo Duminil-Copin, I.H.É.S. Order - disorder operators in planar and almost planar graphs (2)



Conclusion

One step towards universality: the behavior at criticality is expected to be
independent of the local definition. It should depend on

The ± symmetry of the spins,

The global geometry of the lattice (planarity, dimension, growth, etc).

The proof is precisely based on these two ingredients:

Random-Current representation relies on the ± symmetry of the spins,

The study of crossings on the planarity.

Further applications to Ising are expected, e.g. to Order/Disorder and
Energy correlations, or to exponents.

The coupling generalizes to Ashkin-Teller models and has new
applications there.
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