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Talk outline

1. Introduction and preliminary remarks
a. A general feature of planar Ising spin systems (at zero mag. field)
b. Pfaffians in Physics

2. The Ising model
a. The spin perspective
b. The model’s Random Current representation
c. The stochastic geometry of correlations

3. Applications for results on the critical behavior beyond the solvable 2D case.

4. a. A key stochastic geometric relation
b. An interesting contrast (between d>4 and d=2)

5. Emergent planarity - statement of the main result

6. ‘Order-disorder’ operators:
a. their definition
b. interpretation in Random-Current terms
c. expression of correlations in terms of Kac-Ward amplitudes

7. Related observations, and questions
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1 a. Intro: A Phenomenon of Emergent Planarity

I. A general feature of planar Ising spin systems (at zero mag. field)

A planar Ising model: G = (V (G), E(G)) a finite planar graph,

Zβ,h=0 =
∑

σ∈{−1,+1}G
eβ

∑
Jx,yσxσy and 〈−−〉 the corresponding

equilibrium state average.

Theorem (∗) For any such system of Ising spins on a planar graph with a connected
boundary segment Γ, and any collection of boundary sites {x1, ...., x2n} ⊂ Γ

X1 X2 X 2n

〈
2n∏

j=1

σxj 〉 =
∑

pairings π

ε(π)
n∏

j=1

〈σxπ(2j−1)
σxπ(2j) 〉 ≡ Pf

(
S2(xj , xk )

)

where ε(π) = ±1 is the pairing’s parity, relative to the boundary’s cyclic order.

∗ Realized in increasing generality – for graphs with a regular transfer matrix: Schultz-Mattis-Lieb ’64,

in the above form: Groeneveld-Boel-Kasteleyn ’78.

II. The above relation is limited to planar models. Our main goal here is to
explain the emergence of such relations in the scaling limits of 2D models with
non-planar interactions, at their critical points (an example of “universality” in critical
behavior).
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1 b. Preliminary remarks - i. Pfaffians in Physics

Pfaffians showed earlier in statistical mechanics in the partition functions in certain
exactly solvable models, on planar graphs (Kasteleyn, Fisher, Temperley ‘61-‘63) :

• Dimer cover: #Dimer Covers (G) = Pf (A) = det (A)1/2

A – the Kasteleyn matrix

• Planar Ising model:

Zβ,h=0 =
∑

σ∈{−1,+1}G
eβ

∑
Jx,yσxσy = det (1− KW )

1/2
E0×E0

K ,W – the Kac-Ward matrices

The dimensions of the matrices (or triangular arrays) appearing in the partition
functions is of the order of the graph. In contrast, in the Pfaffian relations

S2n(x1, ..., x2n) := 〈
2n∏

j=1

σxj 〉 = Pf
(
S2(xj , xk )

)
2n×2n

the matrix dimensions correspond to the number of particles involved in the given
correlation function.

The Pfaffian structure of correlations is a characteristic of non-interacting fermions
(for which it holds in any dimension). As such, it is indicative of the model’s integrability.
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Preliminary remarks - ii.

• The relation

〈
2n∏

j=1

σxj 〉 =
∑

pairings π

ε(π)
n∏

j=1

〈σxπ(2j−1)
σxπ(2j) 〉 ≡ Pf

(
S2(xj , xk )

)

is valid for boundary spin correlation functions on amorphous planar graphs, and
arbitrary sets of pair couplings (not limited to ferromagnetic).

However, for rather simple reasons this relation does not hold for the spin correlation
functions in the bulk, nor for non-planar models (Boel-Kast. ’78)

• The relation does however extend to correlation functions of the order-disorder
operators (which will be presented below).

• Both Pfaffian relations (of boundary spin correlations, and more general of
order-disorder variables) have counterparts in monomer correlation functions of planar
dimer cover models. (Priezzhev- Ruelle 08, Giuliani-Jauslin-Lieb ‘15, A-LainzValcazar-Warzel ‘16)

• Our proof & explanation of the relation (ADTW‘16) utilizes the random current
representation.
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2 a. The Ising model – the spin perspective

Ising spins on a general graph G:

σ : G → {−1,+1}

H(σ) = −
∑

(x,y)∈E
Jx,yσxσy − h

∑

x∈G
σx

Gibb’s equil. measure

PrΛ(σ) = e−βHΛ(σ)/ZΛ

ZΛ =
∑

σ∈{−1,1}
e−βHΛ(σ)

The spontaneous magnetization:

m∗(T ) ≡ M(T , h = 0+) := 〈σx 〉T ,h=0+

is

{
0 T > Tc

> 0 T < Tc

Tc

h

T

y
V

n
.

a

Phase diagram for 〈·〉 = lim
Λ↗G

EΛ[·]

[On transitive graphs the corresponding
critical exponents are bounded by their
mean field values (ABF‘87 ):
γ ≥ 1, β ≤ 1/2, δ ≥ 3 .]
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2 b. The model’s Random Current representation

The (ferr.) Ising spin system on a graph G of edge set E (finite subsets Λ ⊂ G) is:

σ : G 7→ {−1, 1}, PrΛ(σ) = e−βHΛ(σ)

ZΛ

with H(σ) = −∑(x,y)∈E Jx,y σxσy − h
∑

x∈G σx ; Jx,y ≥ 0 (ferromag. interaction)

The Random Current representation (starting from the high temp. exp., as GHS did)

n : E 7→ {0, 1, 2, ...} ∂n := {x ∈ G : (−1)
∑

y nx,y = −1} - the set of sources

weights: w(n) :=
∏

b∈E
(βJb)nb /nb! with “b” an alternative symbol for (x , y) ∈ E

Basics relations (for h = 0):

Z :=
∑

σ

e−βH(σ) =
∑

n: ∂n=∅
w(n)

pictorially:

and for any A ⊂ G:

〈
∏

x∈A

σx 〉 =
∑

n: ∂n=A

w(n)/Z
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3 b. Critical behavior above the upper critical dimension

This yields a suggestive explanation of the phenomenon of upper critical dimension:
in high dimensions (as it turns out d > 4), at large separations:

〈σx1 . . . σx4 〉 ≈[
〈σx1σx2 〉〈σx3σx4 〉+ 〈σx1σx3 〉〈σx2σx4 〉+ 〈σx1σx4 〉〈σx2σx3 〉

]
[1 + o(1)]

Theorem (A 81) For the n.n. Ising models on Zd in d > 4, if for some κ(δ)→∞ the
scaled correlation functions converge (pointwise for x1, ..., x2n ∈ Rd )

S2n(x1, ..., x2n) = lim
δ→0

κ(δ)2n〈
2n∏

j=1

σ[xj/δ] 〉Tc

then the limiting functions satisfy S2n(x1, ..., x2n) =
∑

pairingsπ

n∏

j=1

S2(xπ(2j−1), xπ(2j))

Under the above conditions also (A-Barsky-Fernandez ‘87) :

γ = 1, β = 1/2, δ = 3 .
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4. A key stochastic geometric relation

Defining u4(x1, ..., x4) so that:

〈σx1σx2σx3σx4 〉 =
[
〈σx1σx2 〉 〈σx3σx4 〉+ 〈σx1σx3 〉 〈σx2σx4 〉+ 〈σx1σx4 〉 〈σx2σx3 〉

]
+ u4(x1, ..., x4)

we have:

Lemma: For any Ising model on a finite graph:

u4(x1, ..., x4) = −2 〈σx1σx2 〉 〈σx3σx4 〉 Prob
(

Cn1+n2 (x1) 3 x2, x3, x4 | ∂n1={x1,x2}
∂n2={x3,x4}

)

Note:

i) In situations where |u4(x1, ..., x4)|/〈σx1σx2σx3σx4 〉 → 0 one gets Gaussian limits

ii) If for intertwined pairs: Prob(...)→ 1, then one gets a fermonic expression.

ii) The argument has a simple extension to to all even-n boundary correlation
functions (ADTW).

iv) Important here are not just the statistics, but the apparent “free-ness”
(or integrability) of the model.

X1 X2 X 2n
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An interesting contrast

For d > 4 the critical correlations S2n(x1, ..., x2n) = κ(δ)2n〈∏2n
j=1 σ[xj/δ] 〉Tc

satisfy S2n(x1, ..., x2n) ≈
∑

π

n∏

j=1

S2(xπ(2j−1), xπ(2j)) Gauss-Wick rule (Aiz 81)

with equality in the scaling limit (δ → 0, κ(δ)→∞ adjusted so the limit exists),

In d = 2 dimensions for any ferromag. Ising model on a planar graph, with a
connected boundary segment, the boundary fields satisfy (SML 65, McCoy-Wu‘73, GBK 78):

S2n(x1, ..., x2n) =
∑

π

ε(π)
n∏

j=1

S2(xπ(2j−1), xπ(2j))
Fermi-Wick rule

xj∈[0,∞)×Rd−1

= Pf
(
S2(xj , xk )

)

X1 X2 X 2n

Curiously, both relation have a relatively simple explanation through the
“random current representation”. Using it, the Pfaffian structure of correlations
(on which more can be read in Chelkak-Cimasoni-Kassel ‘15) appears as a consequence of
elementary topological arguments (ADTW).
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5. Emergent planarity

“Almost planar” – finite-range models on planar graphs.

For a class of such models we have the following statement of emergent planarity.

Theorem (ADTW ’16) In any finite range ferromagnetic Ising model in G = Z× Z+

whose couplings J are: i) translation invariant, ii) acyclic, iii) invariant under reflections:
for any cyclicly ordered (x1, . . . , x2n) ∈ ∂G := Z× {0}

〈σx1 · · ·σx2n 〉βc = Pfn
([
〈σxiσxj 〉βc

]
1≤i,j≤2n

) (
1 + o(1)

)
(1)

where o(1) is a quantity tending to zero with the smallest distance in G between any
two xi .

In the stochastic geometric argument the effective planarity emerges due to
the critical random currents’ fractal nature (at βc ).

The analysis will be presented in the next lecture, by Hugo Duminil-Copin.

Related universality results -stability of the law under weak perturbations-
were previously derived using rigorous (perturbative) renormalization arguments by
Pinson-Spencer and Giuliani-Greenblatt-Mastropietro ’12.
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6. Order-disorder operators

A natural question: Does the fermionic structure extend to variables in the bulk?

Our answer: “Yes / but”: a natural extension is found in the order-disorder operators.

`j : dual lines linking sites of {x ′j }
with x∗0 ∈ G∗ (the grand central).

Coupling-reversing transform’s:
(R`J)x,y = −Jx,y

for edges {x , y} crossed by `.
65

2

1

4

3

The “order - disorder” variables τx̂ = σxµx ‘ are defined by:

〈
2n∏

j=1

τx̂j
〉 :=

∑

σ




2n∏

j=1

σxj


 e
−βR`1

...R`j
...H(σ)

/Z

Of particular interest:
τj for neighboring pairs
x̂j = (xj , x ‘j ) ∈ G × G∗.

Theorem 4 (ADTW) In planar Ising models, of pair interaction J with ZG(J ) 6= 0, for any
collection of “order - disorder” variables labeled cyclicly in terms of the disorder lines

〈
2n∏

j=1

τx̂j
〉 =

∑

pairingsπ

ε(π)
n∏

j=1

〈τx̂π(2j−1)
τx̂π(2j)

〉 ≡ Pf
(
〈τx̂j

τx̂k
〉
)

. (2)
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6 b. ‘Order-disorder’ operators’ stochastic geometric interpretation

i) In terms of random currents:

h⌧x̂1
⌧x̂2

i =
X

@n1={x1,x2}
n2=;

w(n1)

Z
w(n2)

Z
(�1)(n1,�1,2)

which in the case of x1, x2, x3 2 @G, x4 2 G reduces to:

ii) In terms of the Kac-Ward (“parafermionic”) amplitudes

h⌧x̂1
⌧x̂2

i = ei\(x̃1,x̃2)hē2| (1� KW )�1 |e1i

= ei\(x̃1,x̃2)
X

�:e1!ē2

�KW (�) ei
R
� dArg(e)/2
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7. Related observations, and questions

1) The order-disorder operators form the Kaufman spinors, and are key elements in the
Kadanoff - Ceva list.

Their product also yields the energy density operator. Through this relation, the above
fermonic rule yields yet another intuitive explanation, a-la Kadanoff, of some of the
(already well known) critical exponents, e.g.:

the energy- energy correlations decay in 2D as 1/r2

(and hence the energy density has, in 2D, a logarithmic cusp at Tc ).
boundary spin correlators decay as 1/r , etc.

Can this structure be understood more robustly (universality, etc)?

2) Emergent planarity: There is still room for a more complete mathematical grasp of
the stochastic geometry of the critical models. This may adds some robust insight on
the emergent planarity at criticality in two dimensional models with non-planar
interactions / weights, supplementing the (perturbative) renormalization group analysis.

3) Among emergent structures/features of physical systems:
fermionic excitations in classical Ising systems
particles as collective excitations (including Majorana fermions, etc.)
topological states of matter
A timid question: could one day also the laws of QM be viewed as an emergent
feature?
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Thank you for your attention.
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