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Using the ray-optics approximation, we analyze the Casimir force in a two-dimensional domain formed by
two metallic blocks adjacent to parallel metallic sidewalls, which are separated from the blocks by a finite
distance h. For h�0, the ray-optics approach is not exact because diffraction effects are neglected. Neverthe-
less, we show that ray optics is able to qualitatively reproduce a surprising effect recently identified in an exact
numerical calculation: the force between the blocks varies nonmonotonically with h. In this sense, the ray-
optics approach captures an essential part of the physics of multibody interactions in this system, unlike
simpler pairwise-interaction approximations such as proximity force approximations �PFA�. Furthermore, by
comparison to the exact numerical results, we are able to quantify the impact of diffraction on Casimir forces
in this geometry.
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I. INTRODUCTION

Casimir forces, which arise from quantum vacuum fluc-
tuations between uncharged surfaces �1–5�, have attracted
increasing interest in recent years due to rapidly improving
experimental capabilities for nanoscale structures �6–10�. At
the same time, theoretical efforts to predict Casimir forces
for geometries very unlike the standard case of parallel plates
have begun to yield fruit, with several promising “exact”
numerical methods �i.e., which can attain arbitrary accuracy
given sufficient computing power� having been demonstrated
for a few strong-curvature structures �11–15�, in addition to
yielding low-order analytical asymptotic solutions
�11,14,15�. On the other hand, exact numerical methods are
slow and difficult for complex geometries, and it is desirable
to form a simple qualitative intuition based on simpler meth-
ods that are quantitatively accurate only in certain limits. In
this paper, we explore the ability of a simple approximate
method, the ray-optics technique �16,17�, to bridge the gap
between analytical calculations for simple geometries and
brute-force numerics for complex structures. Unlike
pairwise-interaction approximations such as the proximity-
force approximation �PFA� �18�, ray optics can capture
multibody interactions and thus has the potential to predict
phenomena that simpler techniques cannot �despite the fact
that both methods are quantitatively accurate only in a low-
curvature limit�. In particular, we show that the ray-optics
approach can qualitatively predict a recently discovered
�12,19� nonmonotonic effect of sidewall separation on the
force between two squares adjacent to parallel walls, as de-
picted in Fig. 1. For a sidewall separation h=0, this is known
as a “Casimir piston,” and in that case has been solved ex-
actly �20,21�. While the ray-optics approach is exact in this
structure only for the piston case, its ability to capture the

essential qualitative features for h�0 suggests a wider utility
as a tool to rapidly evaluate different geometries in order to
seek interesting force phenomena. Furthermore, by compari-
son to an exact brute-force numerical method �19�, we can
evaluate the precise effect of diffraction �which is neglected
by ray optics� on the Casimir force in this geometry.

The ray-optics approximation expresses the Casimir force
in terms of a sum of contributions from all possible classical
ray paths �loops� with the same starting and ending point
�16�. While it is strictly valid only in the limit of low surface
curvature, since it neglects diffraction effects, the rays in-
clude multiple-body interactions because there exist loops
that bounce off multiple objects. In contrast, most other low-
curvature approximations, such as PFA �18� or other pertur-
bative expansions �22,23�, are essentially pairwise-
interaction laws, and can therefore miss interesting physics
that occurs when multiple bodies are brought together �in
addition to the inevitable quantitative errors due to large cur-
vature�. One example occurs in the structure depicted in Fig.
1, where there is a force between two square �s�s� ideal
metallic blocks separated by a distance a that is affected by
the presence of two infinite parallel metallic sidewalls, sepa-
rated from the blocks by a distance h. For perfect metals in
the h=0 limit, this geometry was solved analytically in both
two dimensions �21� for Dirichlet boundary conditions and
in three dimensions �24,25� for electromagnetic fields. �By
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FIG. 1. Schematic of a two-dimensional geometry: two metal
squares s�s separated by a distance a, and separated from two
adjacent metal sidewalls by a distance h.
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“two dimensions,” we mean three-dimensional electromag-
netism restricted to z-invariant fields; equivalently, a combi-
nation of scalar waves with Dirichlet and Neumann bound-
ary conditions, corresponding to the two polarizations.� For
h�0, this geometry was recently solved by an exact compu-
tational method �that is, with no uncontrolled approxima-
tions� based on numerical evaluation of the electromagnetic
stress tensor �12,19�. In this case, an unusual effect was ob-
served: as h is increased from 0, the force between the blocks
varies nonmonotonically with h. The attractive force between
the squares actually decreases with h down to some mini-
mum and then increases toward the asymptotic limit of two
isolated squares h→�. These effects were obtained for both
perfect-metal squares and for more realistic dispersive di-
electrics, but in this paper we focus on the simpler case of
perfect metals �neglecting the nonzero skin depths and short-
wavelength cutoffs of real metals�. In the numerical solution,
this nonmonotonic effect arose as a competition between the
TM polarization �electric field in the z direction, with Dirich-
let boundary conditions� and the TE polarization �magnetic
field in the z direction, with Neumann boundary conditions�,
which have opposite dependence on h. As explained below, it
is unclear how this nonmonotonic effect could arise in PFA
or similar approximations—even if sidewall effects are in-
cluded by restricting the pairwise force due to line-of-sight
interactions, it seems that the effect of the sidewall must
always decrease monotonically with h. When we analyze this
structure in the ray-optics approximation, however, we find
that a similar competition between the loops with an even
and odd number of reflections again gives rise to a nonmono-
tonic h dependence.

Below, we first give a general outline of the ray-optics
approach, explain why pairwise approximations such as PFA
must fail qualitatively in this geometry, and then present our
results for the structure of Fig. 1 in two dimensions. This is
followed by a detailed description of the ray-optics analysis
for this structure, which involves a combination of analytical
results for certain �even-reflection� paths and a numerical
summation for other paths.

II. RAY-OPTICS CASIMIR FORCES

Following the framework of Ref. �16�, we express the
two-dimensional Casimir energy via the ray-optics approxi-
mation. The ray-optics approach recasts the Casimir energy
as the trace of the �scalar� electromagnetic Green’s function
G�x ,x��= ��2+�2��x ,���−1��x−x��, which is in turn ex-
pressed as a sum over contributions from classical “optical”
paths via saddle-point integration of the corresponding path-
integral �this is also referred to as the “classical optical ap-
proximation”�. The optical paths follow straight lines and are
labeled by the number of specular reflections from the sur-
faces of perfectly conducting objects. In particular, the Ca-
simir energy between flat surfaces for Dirichlet ��=−1� or
Neumann ��=1� boundary conditions is given approxi-
mately by �16�

Er = −
	c

4

�

r

�r�
Dr

d2x

�r�x�3 . �1�

Here, the length of a closed geometric path starting and end-
ing at a point x is denoted by �r�x�. Dr is the set of points

that contribute to a closed optical path reflecting r times from
the conducting surfaces. The Casimir energy above is thus
the integral over the whole domain of such points. This prob-
lem reduces to computing a term-by-term contribution from
each possible closed path, as determined by the specific geo-
metrical features of the system under consideration. Because
the Neumann �TE� and Dirichlet �TM� boundary conditions
are given by the sum and difference of the even and odd
paths �paths with even or odd numbers r of reflections�, re-
spectively, it is convenient to compute the contribution of
even and odd paths separately. The Casimir force is then
obtained by the derivative of the energy with respect to the
object separation a.

Equation �1� is exact for objects with zero curvature �flat
surfaces�. In the presence of curved surfaces �or sharp cor-
ners, which in general have measure-zero contribution to the
set of ray paths�, however, the energy will include additional
diffractive effects that are not taken into account by Eq. �1�.
One can include low-order corrections for small curvature
�17�, but this is obviously not applicable to the case of sharp
corners. There is one special exception, the h=0 “piston”: in
this case, the sum over optical paths reduces to the method of
images, which is exact for the interior of rectangular struc-
tures. These limitations are to be expected, however, since
the optical theorem is a stationary-phase approximation.

III. PAIRWISE-INTERACTION APPROXIMATIONS

There are various pairwise-interaction force laws that
were derived from various limits, and have been subse-
quently employed as approximate methods to compute Ca-
simir forces in arbitrary geometries. Although they are con-
trolled approximations only in certain limits �e.g., low
curvature�, it is tempting to use these methods to build a
qualitative intuition in more general structures, in order to
roughly understand Casimir interactions as a simple attrac-
tive force law. The most well known of these is the
proximity-force approximation �PFA�, which treats the force
between two bodies as a pairwise sum of “parallel-plate”
contributions �18�. PFA is exact for parallel plates, and may
have low-order corrections for small curvature �15�, but is an
uncontrolled approximation for strong curvature where it can
sometimes give qualitatively incorrect results �12,26–30�.
Another pairwise interaction is the Casimir-Polder 1 /r7 po-
tential, valid in the limit of dilute media, which has recently
been proposed as a simple �uncontrolled� approximation for
arbitrary geometries by renormalizing it for the parallel-plate
case �22,31�. In this section, we briefly argue why no such
pairwise-interaction approximation can give rise to the non-
monotonic dependence on h that we observe in the structure
of Fig. 1.

Of course, if one considers the pairwise interaction as a
true two-body force, for each pair of bodies in isolation, then
the sidewalls in the structure can have no effect whatsoever:
the force from one sidewall on one square will be exactly
vertical �and cancelled by the force from the other sidewall�.
However, a “lateral force” from the sidewalls, or equiva-
lently an h-dependent change in the attractive force between
the two squares, can be obtained by restricting the pairwise
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interactions to “line-of-sight” forces. For example, when
considering the force on one vertical edge of a square from
one of the sidewalls, one would include contributions only
from the portion of the sidewall that is “visible” from that
edge �connected in a straight line from a point on the edge to
the point on the sidewall without passing through either
square� �33�. For a fixed h, the line-of-sight force on the left
edge of a square will be different from the force on the right
edge, since one edge will have a portion of the sidewall
blocked by the other square, and hence there will be an h
dependence of the horizontal attractive force.

In particular, since the outside edges of the squares “see”
�and are attracted to� a greater portion of the sidewalls than
the inside edges, the net force from the sidewalls will always
reduce the attractive force between the squares. Already, this
contradicts the exact numerical calculations, in which both
the Neumann force and the total force are greater at h=0
than for h→�.

Moreover, the effect of the sidewalls in a pairwise ap-
proximation must always decrease with h, again contradict-
ing our results and making nonmonotonic effects impossible.
As h increases, two things happen: first, the inner edges of
the square “see” a larger portion of the sidewalls, with area
proportional to h; second, the distance from the sidewalls to
the squares increases proportional to h. The latter contribu-
tion must always dominate, however, because any pairwise
force must decrease at least as fast as 1 /h3 in two dimensions
in order to reproduce the parallel-plate result. Therefore, the
sidewall contribution must decrease monotonically at least as
fast as 1 /h2 in any pairwise-interaction approximation.

Unlike pairwise-interaction approximations, we show be-
low that the ray-optics approximation correctly reproduces
both qualitative behaviors: the total force is larger for h=0
than for h→�, and the total force is nonmonotonic in h.

IV. RESULTS

Here, we present the results of our calculations for the
general h�0 structure shown in Fig. 1, and compare with
the numerical results from the stress-tensor method �12,19�.
It turns out that the ray-optics technique indeed captures the
nonmonotonic dependence of the force with h, although, of
course, the quantitative predictions differ from the exact cal-
culations. By definition of ray optics, these quantitative cor-
rections can be attributed to diffraction from the corners.
Because we wish to emphasize the results of the ray-optics
approach, rather than the details of the calculation of the
different loop-lengths �r in Eq. �1�, we defer those calcula-
tional details until Sec. V and here discuss the results.

Figures 2 and 3 show two different plots of the force vs
distance from the metal sidewalls h, computed via both Eq.
�1� �solids� and the numerical stress-tensor method �dashed�.
All results are normalized by the PFA force between isolated
squares �see captions�, which are independent of h. The bot-
tom panel shows the contributions from Neumann bound-
aries �TE polarization� and Dirichlet boundaries �TM polar-
ization�, along with the total Neumann+Dirichlet force.
Recall that, in the ray-optics approximation, the Neumann
and Dirichlet forces are given in terms of the even- and odd-

path contributions by �even±odd� /2, respectively, and thus
the total Neumann+Dirichlet force is equal to the contribu-
tion of the even paths alone. Because the even-odd decom-
position is more natural, in the ray-optics approximation,
than Neumann and/or Dirichlet, the top panel shows the even
and odd contributions from the same calculations. �Although
the stress-tensor calculation does not decompose naturally
into even and odd “reflection” contributions, here we
simply define the even and odd components as
�Neumann±Dirichlet� /2, respectively.�

As h goes to zero, the ray-optics results become exact.
The numerical computation of the stress-tensor force be-
comes difficult for small h due to our implementation’s uni-
form grid, but nevertheless the linear extrapolation of the
numerical calculations to h=0 agree with ray optics to within
a few percent. For h�0, the total force for both the ray-
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FIG. 2. �Color online� Casimir even �red, upper curves� and odd
�blue, lower curves� forces vs sidewall separation h normalized by
the PFA force FPFA=−	c��3�s /8
a3 �dashed black�, computed us-
ing the ray-optics �solid� and stress-tensor �dashed� methods. Note
that the ray-optics results become exact as h→0.
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FIG. 3. �Color online� Casimir force vs sidewall separation h
normalized by the PFA force FPFA=−	c��3�s /8
a3, computed us-
ing the ray-optics �solid� and stress-tensor �dashed� methods. The
Neumann �green�, Dirichlet �orange�, and total �black� forces are all
normalized by the total Neumann+Dirichlet PFA force.
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optics and stress-tensor results displays a minimum in the
range h�0.2–0.3. In particular, the extrema lie at h�0.3
and h�0.25, respectively. Not only is this striking nonmono-
tonic behavior captured by the ray-optics approximation, but
the agreement in the location of the extremum is also excel-
lent.

Thus far, Figs. 2 and 3 reveal two significant differences
between the ray-optics and stress-tensor results. First, the
forces when h is not small differ quantitatively by about 30%
as h→�. Since the ray-optics approximation is essentially
obtained by dropping terms due to diffraction �from curved
surfaces and corners�, we can attribute this quantitative dif-
ference to the diffractive contribution to the Casimir force
from the finite size. In the large-h limit, where the sidewalls
become irrelevant and the ray-optics result approaches PFA,
the differences compared to the exact solution are sometimes
called edge effects �12,13,19�. Second, although the exact
and ray-optics results match in the h=0 limit as discussed
above, the functional forms for small h are quite different, at
least for Dirichlet boundaries. In the ray optics expressions,
the odd contributions have a logarithmic singularity at h=0,
which lead to corresponding singularities in the Neumann
and Dirichlet forces. However, in the exact stress-tensor cal-
culation, only the Neumann force seems to display a sharp
upturn in slope as h=0 is approached �although it is impos-
sible to tell whether it is truly singular�; the stress-tensor
Dirichlet force seems to be approaching a constant slope
�which is why we were able to linearly extrapolate it to h
=0 with good accuracy�.

Another qualitative difference appears if we look at the
even and odd contributions in Fig. 2: whereas ray optics and
the stress-tensor method give a similar nonmonotonic shape
for the even force, the odd forces are quite different. �The
stress-tensor odd force is monotonic while the ray-optics odd
force is not, while the latter goes to zero for large h and the
former does not.� Again, we attribute this to a greater sensi-
tivity to diffraction effects, this time for the odd forces com-
pared to the even forces. As will be argued in Sec. V A, the
domain of integration and the length of even ray-optics paths

have a weaker dependence on the corners of the squares than
the odd paths, and thus should be less sensitive to corner-
based diffractive effects. Fortunately, the total force depends
solely on the even path contributions, which helps to explain
why ray-optics ultimately does effectively capture the non-
monotonic behavior and the location of the extremum.

Having explored the h-dependence of the force using both
ray-optics and numerical stress-tensor methods, we now turn
to Fig. 4 to study the behavior of the force as a function of
the square separation a. Figure 4 shows the Casimir force vs
square separation a at constant h /s=0.25, normalized by the
PFA force between isolated squares �top panel� or by the
exact force at h=0 �bottom panel�. Note that in both cases
the normalization is a dependent, unlike in Figs. 2 and 3, and
any nonmonotonicity in Fig. 4 is only an artifact of this
normalization. The normalization by the PFA force allows us
to gauge both the sidewall and/or edge effects �which disap-
pear for a→0� and whether there is a difference in scaling
from PFA’s 1 /a3 dependence. For the bottom panel, we nor-
malize against the exact h=0 force, which tells us whether
the finite sidewall separation makes a difference for the
large-a scaling. In both cases, we show a few points of the
stress-tensor calculation �which became very expensive for
small or large a�, to obtain a sense of the accuracy of the
ray-optics method at different a.

We should expect that as a→0, both the PFA and the
ray-optics solution should approach the exact solution, be-
cause the sidewall contribution becomes negligible. This
agreement, as compared to the extrapolated numerical stress-
tensor results, can be observed in Fig. 4 �top�. In contrast, for
the large-a limit the ray-optics force appears to decay as 1 /a2

instead of 1 /a3 for PFA, leading to the apparent linear
growth in the top panel of Fig. 4. If we compare to the h
=0 dependence in Fig. 4 �bottom�, it appears to be asymp-
toting to a constant for large a, indicating that the power
laws for h=0 and h�0 may be identical. However, even if
we had more data it would be difficult to distinguish the
presence of, for example, logarithmic factors in this depen-
dence. For the h=0 case, we have analytical results for even-
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FIG. 4. �Color online� Casimir force vs separation between squares a with constant sidewall separation h=0.25, normalized by the
FPFA=−	c��3�s /8
a3 �left� and the corresponding h=0 force �right�. The force is computed for both even �red, left curves� and odd �blue,
right curves� contributions, separately. Inset: Schematic of geometry consisting of two isolated squares with adjacent sidewalls.
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and odd-path forces in Sec. V C: from the analytical expres-
sions, the odd-path h=0 force clearly goes as 1 /a2, and the
even-path h=0 force also turns out to have the same 1 /a2

dependence �34�. The exact stress-tensor computation ap-
pears to be quite different from both the PFA and the ray-
optics force as a function of a, but we were not able to go to
large enough computational cells to estimate the asymptotic
power law. It is striking that h /s as small as 0.25 is already
large enough to yield substantial diffraction effects in the
force.

V. DETAILS OF THE RAY-OPTICS COMPUTATION

In this section, we describe the computation of the ray-
optics approximation for the h�0 squares+sidewalls struc-
ture, according to Eq. �1�. This involves systematically iden-
tifying all of the possible closed ray loops, integrating them
for a given number of reflections over the spatial domain,
and then summing over the number of reflections. It turns out
that the contributions of any even reflection order can be
integrated analytically as shown below, although the final
summation over reflection order is still numerical. On the
other hand, the integrals from the odd reflection orders be-
come increasingly difficult as the reflection order is in-
creased, and so we resorted to numerical integration for odd
orders r�5.

A. Even paths

Because we are dealing with perfect metals, and because
the geometry has reflection symmetry about the x and y axes,
it is helpful to represent the optical paths using an infinite
periodic lattice, shown in Fig. 5, similar to the construction
in Ref. �24�. The reason for this construction is that, because
of the equal-angle law for specular reflections in geometric

optics, a reflected ray is equivalent to a linearly extended ray
in a mirror-image structure. This allows us to visualize and
count the set of possible closed paths in a straightforward
fashion. Specifically, a closed path which starts at a point x
and ends on itself is fully determined by the set of lines that
start at x and end in the corresponding set of image points on
the extended lattice. The unit cell of this periodic construc-
tion is just two vertical black lines �of length s and separation
a� that represent the parallel walls of the two squares. These
are repeated with a horizontal period a and a vertical period
s+2h. Any path that passes through the gap between one of
these lines and the horizontal sidewalls escapes from be-
tween the two squares and therefore is not counted among
the closed loops.

In order to construct all of the closed loops that originate
at a given point x in the unit cell, we proceed as follows.
First, we construct the mirror reflections of this point through
the vertical lines �the boundaries of the squares� and the hori-
zontal lines �the sidewalls�, corresponding to reflections from
these metallic walls. This gives us a set of points in the
nearest-neighbor cells. Then, we construct the reflections of
the nearest-neighbor points through their sidewalls, and so
on, corresponding to reflections of higher and higher order. A
closed loop is simply a line segment from the original x to
one of the reflected points, as long as it does not escape
through one of the gaps between the squares and sidewalls as
explained above. Figure 5 was generated from a unit cell
with h /a�0.2 and s /a�1, and shows both even-reflection
�solid red� and odd-reflection �dashed blue� paths, where in
this case the odd path shown escapes and therefore would
not be counted. In the figure, the points are labeled according
to the number of reflections that generate them from the
original point: solid circles when the numbers of horizontal
and vertical reflections are both even, open squares when the
numbers are both odd, and open circles otherwise. It follows
that lines connecting solid circles to solid circles are even
paths, and lines connecting solid to open circles are odd
paths; the rays connecting solid circles and squares always
escape and therefore do not contribute.

To compute the Casimir energy from these paths, the key
quantity in Eq. �1� is the length � of the path. Let us label
each unit cell by �n ,m� according to its horizontal �n� and
vertical �m� offset from the cell �0,0� where the original
point x resides. For an even path, x must be connected to an
even-indexed image �2n ,2m�, for which the length of the
path is

�n,m = 	�2na�2 + �2m�2h + s��2 �2�

and the angle of the path, determined by m /n, is

tan 
n,m =
m

n

2h + s

a
. �3�

The only things left to figure out are the domain of integra-
tion of x and the allowed �n ,m� for nonescaping paths. If
h=0, it is obvious that our expression reduces to the expres-
sion of Ref. �24�, since both the whole spatial domain within
the unit cell and all �n ,m� are allowed. However, when h
�0, each �n ,m� will be nonescaping only for x in a subset of

FIG. 5. �Color online� Schematic of general 2d squares
+sidewalls lattice. Lines extending from solid circles unto solid
circles represent even reflection paths. Lines extending from open
solid circles unto open circles represent odd reflection paths. �Here,
h /a�0.2 and s /a�1.� A possible even �red� and forbidden odd
�blue� path is shown.
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the unit cell. To determine these subsets, the domains of
integration, we take advantage of the closed-loop nature of
the paths to cast Eq. �1� in a different light. For a given
�n ,m�, instead of integrating over x and y, it is convenient to
change variables to integrate over y and a coordinate �
=x /cos 
n,m measuring displacement along the path �along
the 
n,m direction�. It might seem that one should integrate �
along the whole line from �0,0� to �n ,m�, but this may in-
volve counting the same point x in the unit cell multiple
times. Instead, to avoid overcounting loops that wrap around
on themselves, one instead integrates from �0,0� to �ñ , m̃�
where ñ=n /gcd�n ,m� and m̃=m /gcd�n ,m� are reduced to
lowest terms. One then obtains the following equation for the
energy:

Eeven = −
	c

4

�
n,m

� dy�
��0,0�

��ñm̃�

d� cos 
ñ,m̃�
1

�n,m
3 . �4�

Although not so obvious from looking at Eq. �4�, the in-
tegral in the y direction simply counts the number of �ñ , m̃�
paths that exist in the unit cell. Because the length and angle
of such paths are independent of y, we can integrate over d�
to obtain

Eeven = −
	c

4

�
n,m

� dy
2ña

�n,m
3 , �5�

where we used 
d�=�ñ,m̃ and cos 
ñ,m̃=2ña /�ñ,m̃, between
which the �ñ,m̃, cancels. All that is left to figure out is the
integral in the y direction.

To carry the integral in the y direction, we must determine
the limits of integration, or equivalently, the range over
which we can displace the path so that it does not escape. We
go back to Fig. 5 for reference. Again, as outlined above, we
extend a line from a solid circle in the �0,0� cell to another
solid circle in the �2n ,2m� cell. For the path to be allowed, it
must intercept all of the vertical black line segments that lie
between the two points, i.e., at each horizontal reflection
from the squares. Because each interception �horizontal re-
flection� occurs at periodic intervals, these end up partition-
ing the unit cell in the y direction into ñ sets of length �2h
+s� / ñ. Note that we divide by ñ, rather than n, because as
explained above the topologically distinct paths are uniquely
specified by �n ,m� reduced to lowest terms. From this simple
argument, we obtain that the vertical displacement is �2h
+s� / ñ−2h, provided that �2h+s� / ñ−2h�0. To help visual-
ize this result, it is best to think of the problem on a circle.
That is, consider a circle of length 2h+s and partition it into
ñ sets of length �2h+s� / ñ, as well as into two regions of
length s and 2h. If the path is to exist, each of the �2h
+s� / ñ points on the circle must not intercept the region
marked as belonging to 2h �the air gaps between the
squares�. The result follows directly by considering the dis-
tance that one can displace the points before any of them
intercepts the 2h region.

Thus, the final expression for the even path energies is left
as a sum over n and m,

Eeven = −
	c

4

�

n,m�0
��2h + s

ñ
− 2h�

��2h + s

ñ
− 2h� 4ña


�2na�2 + �2m�2h + s��2�3/2 . �6�

An extra factor of 2 was included in the numerator since the
contributions of the �−n ,−m� paths are identical to those of
the �n ,m� paths by symmetry. In the limit h=0, we recover
the even energy expression of Ref. �20�, given in Sec. V C.

Although we are almost done with the even reflection
paths, we are missing a very important contribution to the
energy: the PFA terms, i.e., the �n ,0� and �0,m� paths. The
PFA energy between two parallel finite metal regions is a
well-known result, and we include here only �n ,0� for com-
pleteness,

EPFA = −
	csa

16

�
n�0

1

�na�3 = −
	cs��3�
16
a2 . �7�

The final expression, Eq. �6�, must still be summed nu-
merically over �n ,m� up to some upper cutoff, but this is a
simple computation and its convergence with the cutoff is
discussed in Sec. V D.

B. Odd paths

Unlike even reflections, odd reflection paths are quite te-
dious to compute because they have less symmetry. For one
thing, the length of a path depends not only on �n ,m� �the
offset of the unit cells being connected�, but also on the
position x of the starting point. More importantly, the iden-
tification of the domain of x for nonescaping paths depends
in a much more complicated way on �n ,m�, making it diffi-
cult to write down a single expression that works for all
�n ,m�. Therefore, we analytically solved for the odd-path
contributions only up to five-reflection paths, where each or-
der requires a separate analysis, and treated higher-order
paths by a purely numerical approach. Below, the analytical
solution for the third-order paths is given, both to illustrate
the types of computations that are involved and also to dem-
onstrate the logarithmic singularity in the force as h→0.

The results of Ref. �24� give an upper limit for the number
of odd paths r�3 that exist in this geometry for h=0 �No.
paths=2�r+3�/2�. The same upper limit holds for h�0, but in
this case the number of paths is actually reduced because
some of the h=0 paths now escape. An analytical solution
for any particular order must begin by drawing all paths for
h=0 and then perturbing them for h�0 to eliminate any
impossible paths. At least for low-order paths, simple geo-
metrical arguments can then determine the domain of inte-
gration.

The coordinate dependence of odd paths arises from the
fact that any path that reflects an odd number of times from
the planar surfaces will be nonperiodic: if we extend the path
beyond its end point �=starting point�, it will not repeat. This
greatly complicates the analysis. For example, Fig. 5 shows
one such escaping odd path. It turns out that as h grows, the
domain of integration for odd paths shrinks and becomes
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harder to visualize. Moreover, if we vary h, we notice that
paths for some �n ,m�, regardless of their origin x, always
escape. The problem of determining the domain of integra-
tion and the allowed �n ,m� seems difficult and does not seem
to have a general closed-form solution.

1. Three-reflection paths

From Fig. 5 we verify that there are eight possible three
reflection paths, �±2, ±1� and �±1, ±2�, according to the no-
tation of Sec. V A, shown in Fig. 6. The only two nonequiva-
lent cases are �2,1� and �1,2�, which have different domains
of x integration.

Inspection of Fig. 6 and Fig. 5 yields the length of these
paths �2,1=2	a2+ �2h+s−y�2. Moreover, we see that �2,1 is
invariant along the x axis. For this particular path, the maxi-
mum displacement in the vertical direction ymax occurs when
�1 sin 
=�2 sin 
=h, while the minimum xmin and maximum
xmax horizontal displacements occur when �2 sin 
=h and
�1 sin 
=h, respectively. Therefore, the range of integration
is

0 � y � s , �8�

� ah

2h + s − y
� � x �

a�h + s − y�
2h + s − y

, �9�

giving us the following expression for the energy:

E2,1 = −
	c

32
a2� sa
	a2 + �2h + s�2

− 2h ln��2h + s

2h
� 1 +	1 + �2h

a
�2

1 +	1 + �2h + s

a
�2�� . �10�

In order to compute E1,2, we apply similar geometrical
considerations. Once again, from Fig. 5 we obtain the length
to be �1,2=2	�a−x�2+ �2h+s�2. Similarly, we see that �1,2 is
invariant along the y axis, and approaches a minimum when
x=a. Therefore, the range of integration is

h � y � h + s , �11�

0 � x � a , �12�

giving us the following expression for the energy:

E1,2 = −
	cas

32
�2h + s�2

1
	a2 + �2h + s�2

. �13�

Adding Eq. �10� to Eq. �13�, and multiplying by four to
account for the different ±sign possibilities in �n ,m� yields
the total three-reflection contribution to the energy. This con-
tribution has two types of terms: a polynomial term from Eq.
�13� and the first term of Eq. �10�, and a logarithmic term
from the second term of Eq. �10�. The polynomial term re-
mains at h=0. The more intriguing component of this result
is the logarithmic term, which falls as O�h ln h�for small h,
vanishing completely at h=0. This �and similar terms for
higher-order reflections� is the source of the logarithmic sin-
gularity in slope of the ray-optics odd-path Casimir force at
h=0 observed in Fig. 2.

2. Five-reflection paths

The analytical solution of the five-reflection contribution
is rather complicated and is not reproduced here. However, it
has a few interesting features that we summarize here. First,
just as for the three-reflection paths, the five-reflection con-
tribution has an O�h ln h�term that contributes to the singu-
larity we observe in the ray-optics odd-path Casimir force at
h=0. Second, one also obtains O�ln h�terms, which should
seem to unphysically diverge as h→0. It turns out, however,
that for a path that gives a �ln h�contribution at small h there
exists another path with a −�ln h�contribution, resulting in
exact cancellation of any divergences.

C. Casimir piston

The h=0 limit is the well-known “Casimir piston” geom-
etry. In this limit, all of the optical paths contribute to the
Casimir energy, making it possible to compute Eq. �1� ana-
lytically. Reference �24� performs this calculation in three
dimensions, and a similar unpublished result was obtained in
two dimensions �20�. The two-dimensional geometry was
also solved analytically for Dirichlet boundaries by another
method �21�. Here, we reproduce this calculation as a check
on both the even- �Eq. �6�� and odd-path �Eqs. �13� and �10��
contributions to the energy, and also because the Neumann
result is useful and previously unpublished.

We begin by computing the h=0 even-path contributions.
The expression for the even energy, Eq. �6�, is much simpler
than for h�0, because the � function disappears and all that
is left is a polynomial function in terms of n ,m. The even-
path energy, not including the PFA contribution �terms where
n=0 or m=0, but not both�, is given by

Eeven = −
	c

8

�

n,m�0
as��na�2 + �ms�2�−3/2 �14�

=−
	c

8

asZ2�a,s;3� . �15�

We have identified the summation above as the second-order
Epstein Zeta function Z2,

�2

�1

�2

�1

FIG. 6. �Color online� Schematic of three-reflection paths. Blue
�dashed� and/or red represent �1,2� and/or �2,1� paths, and the
lengths �i shown are used the calculation of the energy.
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Z2�a,b;p� = �
n,m�0

��na�2 + �mb�2�−p/2. �16�

The same simplification occurs in the case of odd paths, the
lengths of which can be found, again, by inspection of the
lattice in Fig. 5. Again, as described in Sec. V A, given a
point on the unit cell x, one can determine all possible odd-
reflection paths by drawing straight lines from the solid
circles �x� to the open circles in the lattice.

There are two types of open circles, each of which denote
two different types of paths: those that reflect across the x
axis and have y-invariant length, as well as those that reflect
across the y axis and have x-invariant length. Whichever
coordinate is the invariant one gives a constant integral over
the unit cell, so the double integral is reduced to a single
integral. For example, consider those that reflect across the x
axis and have y-invariant length: for these paths, we need to
integrate over x in the unit cell and perform a double sum
over �n ,m�. However, the double sum can be reduced to a
single sum by eliminating the sum over n in favor of inte-
grating x along the whole real line instead of just the unit
cell. Thus, we are left with a single integral and a single
summation. Similarly paths that reflect across the y axis re-
duce to a single integral over y and a single sum over n. As
a result of all this manipulation, the odd integral becomes

Eodd = −
	cs

32

�

m�0
�

−�

� dx

��ms�2 + x2�3/2

−
	ca

32

�
n�0

�
−�

� dy

��na�2 + y2�3/2 . �17�

Again, we restrict the sum to n,m�0, because horizontal and
vertical paths are divergent terms that contribute only to the
self-energy of the metallic walls �17�. Carrying out the above
integrals yields the following expression for the odd-path
energy:

Eodd = −
	c


48
�1

s
+

1

a
� . �18�

The odd-path contribution to the force is therefore �1 /a2 for
large a.

D. Numerics

To evaluate Eq. �1� numerically, we used an adaptive two-
dimensional quadrature �cubature� algorithm �32� to perform
the x= �x ,y� integration for each �n ,m�. For each x and
�n ,m� it is easy to numerically check whether the path is
allowed, and set the integrand to zero otherwise. Unfortu-
nately, this makes the integrand discontinuous and greatly
reduces the efficiency of high-order quadrature schemes; an
adaptive trapezoidal rule might have worked just as well. For
very small h, this requires some care because the energy
depends on a tiny remainder between two diverging terms, as
we saw in Sec. V B 2, but for most h there was no difficulty.

We repeat this calculation for increasing reflection order r
until the total energy Er converges to the desired accuracy.
From general considerations, one expects the error �E−Er� for

the energy from a finite r to decrease as O�1 /r�. In particular,
the path lengths � increase proportional to r �the radius in the
extended lattice�, and the number of paths with a given
length also increase proportional to r �the circumference in
the extended lattice�, so the �1 /�3 a given r goes as O�1 /r2�.
The error in the energy is the sum over all paths of order �r,
and this therefore goes as O�1 /r�. This scaling is verified in
Fig. 7, which plots the relative error �Er+1−Er� /Er between
the order-r and the order-�r+1� energy computations for the
particular case of a=s=1. In general, if the energy converged
as O�1 /rn� for some power n, one would expect this differ-
ence to converge as O�1 /rn+1�, and so we expect Fig. 7 to
asymptotically go as O�1 /r2�. This is precisely what is ob-
served, for both even and odd paths, and for both h=0 and
h�0: all of the curves asymptotically approach straight lines
�on a log-log scale� with slope −2.

An interesting though unfortunate result is that the odd-
path energy requires larger r in order to obtain the same
accuracy as the even-path energy. Though this may not be
obvious from looking at the convergence error, it is clear
from the inset of Fig. 7, where we plot the absolute error
�Eexact−Er� /Eexact instead �at h=0�. The constant offset ob-
served in the absolute errors imply that, given a desired ac-
curacy constrain on the even and odd energy calculations,
one would have to compute roughly twice the number of odd
paths in order to obtain equivalent accuracy.

VI. CONCLUDING REMARKS

By comparing the ray-optics approximation with an exact
brute-force calculation, we have been able to study both the
successes and limitations of the ray-optics approximation.
On the positive side, the ray-optics approximation is capable
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FIG. 7. �Color online� Log-log plot of convergence error
ln��Er+1−Er� /Er� in the even �solid� and odd �dashed� path contri-
butions vs reflection order lnr for values of h=0 �red�, h=0.01
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of capturing surprising behaviors that arise in closed geom-
etries involving multiple bodies, qualitatively matching phe-
nomena identified in exact brute-force calculations. In par-
ticular, the ray-optics approximation captures the
nonmonotonic sidewall effects observed for metallic squares
between parallel sidewalls, generalized from the Casimir pis-
ton geometry. This effect is clearly a manifestation of the
multibody character of the interaction, since it does not arise
in simple two-body force laws such as PFA. Ray optics ap-
pears to be unique among the current simple approximations
for Casimir force in that it can capture such multibody ef-
fects, even though it cannot be quantitatively accurate in ge-
ometries with strong curvature. On the negative side, diffrac-
tive effects set in rather quickly when h is increased from
zero, marking the agreement between ray optics and the ex-
act results only qualitative.

This makes the ray-optics approximation a promising ap-
proach to quickly search for unusual Casimir phenomena in
complicated geometries. However, since it is an uncontrolled
approximation in the presence of strong curvature, nor does
it include material dispersion, any prediction by ray optics in
such circumstances must naturally be checked against more
expensive exact calculations. There will undoubtedly be

complex structures in the future where ray optics fails quali-
tatively as well as quantitatively. For instance, ray optics has
more difficulty with open geometries—e.g., for two squares
with only one sidewall, only PFA paths are present. On the
other hand, the reach of the ray optics technique seems in
some sense to be larger than that of simpler approximations
such as PFA. Even qualitative failures of such methods, how-
ever, can reveal interesting things about the physics of Ca-
simir interactions, such as highlighting situations where
multibody interactions or diffraction effects are central.
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