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We develop an analytical framework to derive upper bounds to light-matter interactions in the optical
near field, where applications ranging from spontaneous-emission amplification to greater-than-blackbody
heat transfer show transformative potential. Our framework connects the classic complex-analytic
properties of causal fields with newly developed energy-conservation principles, resulting in a new class
of power-bandwidth limits. These limits demonstrate the possibility of orders-of-magnitude enhancement
in near-field optical response with the right combination of material and geometry. At specific frequency
and bandwidth combinations, the bounds can be closely approached by canonical plasmonic geometries,
with the opportunity for new designs to emerge away from those frequency ranges. Embedded in the
bounds is a material “figure of merit,” which determines the maximum response of any material (metal,
dielectric, bulk, 2D, etc.), for any frequency and bandwidth. Our bounds on local density of states represent
maximal spontaneous-emission enhancements, our bounds on cross density of states limit electromagnetic-
field correlations, and our bounds on radiative heat transfer (RHT) represent the first such analytical rule,
revealing fundamental limits relative to the classical Stefan-Boltzmann law.
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I. INTRODUCTION

The electromagnetic near field comprises large-
amplitude evanescent fields that can be harnessed to
amplify spontaneous-emission rates [1–6], Casimir forces
[7–11], Raman scattering [12–17], and greater-than-
blackbody transfer of thermal energy [18–24]. Yet, little
is known about maximal response—how large can such
enhancements be? In this article, we derive fundamental
limits for local density of states (LDOS), the prototypical
near-field optical response, for any bandwidth of interest
and for any material platform. We use these bounds to then
derive fundamental limits for emerging quantities of
interest—cross density of states (CDOS, a useful field-
correlation measure), and radiative heat transfer (RHT),
where our bounds depend only on the temperatures,
materials, and separation distance of the bodies involved.

Conceptually, the bounds arise because LDOS and related
near-field quantities are given by the real (or imaginary)
parts of causal linear-response functions. We use the
complex-analytic properties of such functions to transform
bandwidth-averaged response to that at a single, complex-
valued frequency, where we develop generalized energy-
conservation constraints, ultimately leading to bounds over
arbitrary bandwidths. A distinctive feature of our arbitrary-
bandwidth approach is that it predicts a simple material
figure of merit (FOM) that determines the maximum
possible response of any material (metal, dielectric, 2D,
3D, etc.), for any frequency and bandwidth. In the case of
RHT, this FOM provides insight into which materials can
facilitate optimal heat transfer for any temperature. There is
significant ongoing debate about whether a plasmonic or an
all-dielectric approach is better and in which scenarios 2D
materials might be better than conventional bulk materials.
Unlike all previous bounds and sum rules [24–43], the
material figure of merit we derive here enables general
quantitative answers to these questions. In a frequency-
bandwidth phase space, we map out which materials are
optimal and where the critical thresholds, from dielectric to
plasmonic and bulk to 2D, occur. The techniques developed
herein for LDOS, CDOS, and radiative heat transfer should
be extensible to other near-field effects ranging from
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engineered Lamb shifts [44,45] and Förster resonance
energy transfer [46,47] to nonlinear (Raman) or fluc-
tuation-induced (Casimir) phenomena.
Near-field electromagnetism, in which localized sources

interact with scatterers separated by less than an optical
wavelength, offers transformative potential for wide-
ranging applications. Quantum emitters that only weakly
couple to the radiation continuum can be dramatically
amplified by near-field engineering: Optical antennas offer
prospects for imaging single molecules [13,14,48,49] or
for designing nanoscale light-emitting diodes that are
faster than lasers [50]. Nonlinear emitters such as
Raman-active molecules [51,52] experience even more
dramatic enhancements: Surface-enhanced Raman scatter-
ing (SERS) [12–14], for example, scales with the square of
the spontaneous-emission enhancement rate. Thermal
emission can be accessed and controlled for the productive
transfer of heat energy, at rates many orders of magnitude
beyond classical blackbodies [18–24]. The emission can be
stimulated by the vacuum itself: The field of Casimir
physics is probing a vast expanse of materials and struc-
tures to explore how vacuum forces can be controlled and
manipulated [7–9,53–58].
For such a broad scope of applications, there is a

fundamental theoretical question that remains unanswered:
For a given bandwidth of interest, what is the maximum
near-field response that is possible? Sum rules enable at least
a partial answer. Relying on the analytic properties
embedded within particular response functions—such as
susceptibilities and cross sections—sum rules relate inte-
grated response over all frequencies to behavior at a single
frequency, and they have been derived in a variety of
classical and quantum frameworks [25–33]. In the near
field, there is a well-known sum rule for spontaneous
emission [34] that suggests spontaneous-emission enhance-
ments average out to zero over all frequencies. Yet, this sum
rule neglects the longitudinal component of the Green’s
function, thus neglecting the near-to-far-field coupling that is
crucial for spontaneous-emission engineering (and hence
recovering a far-field refractive-index sum rule). Very
recently, a near-field sum rule for electric LDOS was derived
[35], which represents a specialized version of a sum rule
that we derive in Eq. (4). However, sum rules make no
predictions as to how a finite available bandwidth affects
maximal response. The difference between infinite and finite
bandwidth is stark for “dielectric” (Re ϵ > 0) materials
because infinite-bandwidth sum rules include technologi-
cally irrelevant high-frequency contributions that dominate
the integrated response. For example, when applied to
Silicon, the sum rule for plane-wave scattering is dominated
by contributions at energies on the order of 100 eV [59], thus
providing little insight into maximal response over typical
bandwidths of interest (infrared, visible, etc.).
At the other extreme, single-frequency limits to power

extinction and other physical observables have been dis-
covered in both the near field [24,36,37,43] and far field

[38–42,60] based on energy-conservation principles, but
they necessarily fail to account for the effects of nonzero
bandwidth. (As an example, they predict infinite maximal
response for any lossless material. Such a prediction is in
fact correct—it is possible to make LDOS arbitrarily large
[61]. But the bounds developed herein show that the
average response over any nonzero bandwidth has a finite
upper bound). Thus, previous approaches do not provide
any meaningful metric for lossless dielectrics at optical
frequencies, either for quantitative comparisons amongst
each other or to plasmonic and other metallic systems.
The key idea of our work is that two seemingly

independent ideas—causality for sum rules and energy-
conservation principles for single-frequency bounds—can
be unified into a single framework that yield bounds for any
bandwidth, as illustrated in Fig. 1. In this framework,
single-frequency bounds and all-frequency sum rules
emerge as asymptotic limits of a more general arbitrary-
bandwidth approach. Our bounds over arbitrary band-
widths, which we term “power-bandwidth limits,” arise
by connecting the properties that enable sum rules to those
that enable energy-conservation principles. Sum rules for
power quantities (such as optical cross section) require one
to be able to compute the quantity by taking the imaginary
(or real) part of some amplitude—for extinction, the optical
theorem [33,62–64] guarantees such a form in terms of the
scattering amplitude. The amplitude is a causal linear-
response function and thus analytic in the upper-half of the
complex-frequency plane [65]. With suitable boundary
conditions, a Hilbert transform (i.e., a Kramers-Kronig-
like transform) then enables a sum rule, relating integrated
response over all frequencies to that of a single frequency.
Conversely, energy-conservation bounds—recognized pri-
marily within the past decade [24,36–43,60]—exploit the
power-quantity-by-amplitude form in a different way. In
writing a power quantity as the imaginary part of an
amplitude, the amplitude itself is linear in the electromag-
netic fields and/or currents (holding the incident field
fixed). By contrast, many power quantities—absorption,
scattering, radiation, etc.—are explicitly quadratic func-
tionals of the fields and/or currents. If it can be shown that
the linear quantity must be larger than the quadratic one,
then an upper bound can be derived. Remarkably, it is the
same optical theorem that provides such a constraint. Thus,
we see that sum rules and single-frequency bounds both
start with particular response functions that can be written
as the imaginary part of an amplitude, but they diverge in
their approaches thereafter. (For response functions that do
not admit such expressions, the power-bandwidth limits
established above can be applied by transformation to the
real or imaginary part of a causal linear-response function.)
We connect the sum-rule and single-frequency

approaches through the use of a “window function,” an
averaging function over a prescribed bandwidth. In general,
such a function will have one (or multiple) poles in the
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upper-half plane (UHP), and thus the typical contour-
integral analysis of a given power quantity requires the
computation of residues not at a single real frequency (as in
sum rules) but at a discrete set of complex frequencies. At
this juncture, we identify the energy-conservation con-
straints at those complex frequencies, deriving bounds on
how large they can be. This multistep procedure (fleshed
out in detail below) thus provides perhaps the first approach
to arbitrary-bandwidth bounds. For maximal clarity, we
start with local density of states—the prototypical optical
response—in Sec. II. We first derive near-field sum rules
for LDOS (Sec. II A), showing that near-field response
integrated over all frequencies must equal a new electro-
static constant, αLDOS. Then, we use geometric perturbation
theory to prove a monotonicity theorem that enables
us to bound the electrostatic constant itself in terms of
only the material permittivity and near-field separation
distance (Sec. II B). We introduce the window function in
Sec. II C, combining it with the complex-frequency energy-
conservation idea to develop arbitrary-bandwidth bounds
and show how closely they can be approached for specific
choices of frequency and bandwidth by canonical struc-
tures. Having established the theoretical bound framework,
we derive general bounds for cross density of states
(Sec. III) and near-field radiative heat transfer (Sec. IV).
Emerging within all these bounds is a common material
figure of merit, and in Sec. V, we discuss the physical
intuition of the FOMand compare awidevariety ofmaterials
across frequency and bandwidth. Finally, in Sec. VI, we
discuss extensions of our formulation to near-field phenom-
ena such as Lamb shifts, Raman scattering, Casimir forces,
and more.

II. LOCAL DENSITY OF STATES

In this section, we develop a theoretical framework for
upper bounds to near-field optical-response functions.
The prototypical near-field interaction is the alteration—
and potentially dramatic enhancement—of spontaneous
emission from a two-level dipolar transition in a quantum
emitter by an inhomogeneous environment. The power
radiated by such an emitter, and thus the spontaneous-
emission rate enhancement, is proportional to the LDOS
[5,61,66–70]. It has long been recognized that changing
the electromagnetic environment of an emitter alters its
spontaneous-emission rate [71–73]; applications where
such enhancements play an important role include single-
molecule imaging [13,14], micro-LED design [74], and
photovoltaics [75]. Mathematically, the spontaneous-
emission rate is determined by the imaginary part of
the total Green’s function [70,76,77]. To avoid unwieldy
expressions and derivations, we use six-vector notation
for fields and currents, treating the electric and magnetic
fields, and electric and magnetic dipolar transitions, on
equal footing. (We take the background to be vacuum
throughout this paper and work in dimensionless units
such that ε0 ¼ μ0 ¼ 1, with generalization to nonvacuum
background in the Supplemental Material (SM) [78].) We
denote the fields ψ , the polarization currents ϕ, and dipolar
sources ξ:

ψ ¼
!
E

H

"
; ϕ ¼

!
P

M

"
; and ξ¼

!
p

m

"
: ð1Þ

Then, the spontaneous-emission rate of randomly oriented
electric (p) and magnetic (m) dipoles at a point x0 is

FIG. 1. Near-field optics exhibits phenomena ranging from spontaneous-emission enhancements through LDOS engineering, field-
correlation phenomena as measured by CDOS, RHT, Casimir effects, Smith-Purcell radiation, and Raman scattering. Our theoretical
framework, connecting causality principles with energy-conservation constraints, yields bounds over any arbitrary bandwidth. In the
limit of zero bandwidth, we obtain recently discovered single-frequency bounds [36,37]; in the infinite-bandwidth limit, we arrive at a
sum rule for integrated all-frequency response.
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modified relative to its free-space rate by the scattered-field
contribution to the LDOS:

ρðx0;ωÞ ¼ Im
X

j

#
1

πω
(p̄j · Es;jðx0Þ þ m̄j ·Hs;jðx0Þ)

$

¼ Im
X

j

#
1

πω
ξ†jðx0Þψ s;jðx0Þ

$

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
sðωÞ

¼ Im Tr
#
1

πω
Γsðx0;x0;ωÞ

$
; ð2Þ

where Γ denotes the 6 × 6 dyadic Green’s function, the
“s” subscripts denote scattered-field contributions (thus,
Γs is the total Green’s function minus the free-space
Green’s function), and we use the convention [68] that
LDOS is the sum of electric-dipole and magnetic-dipole
contributions. It is important to subtract the free-space
rate and consider only the scattered-field contribution, to
ensure sufficiently fast decay at high frequency and thus
convergence of integrals over frequency. The random
dipole orientation (for dipoles of unit amplitude, i.e.,
ξ†ξ¼ 1) is encoded in the summation over directions j ¼
fx; y; zg and, ultimately, the trace of the Green’s function.
In Eq. (2), we denote a term sðωÞ (suppressing the
implicit position dependence), which we identify as a
near-field scattering amplitude, as measured at the loca-
tion of the emitter. It is this term that enables the sum rule
and the power-bandwidth limits.
Maxwell’s equations do not prevent us from taking the

frequency to be complex. In the complex-ω plane, we can
define the complex extension of the near-field scattering
amplitude as

sðωÞ ¼
X

j

1

πω
ξTj ðx0Þψ s;jðx0Þ; ω ∈ C; ð3Þ

where we have made the typical assumption that the dipole
amplitudes are real valued, such that ξ† ¼ ξT . (For complex
dipole amplitudes, a few additional steps in the derivations
below are needed, but the results remain unchanged.) Since
ξ is constant (analytic everywhere), and the scattered field
ψ s is a causal linear-response function [65], the amplitude
sðωÞ is analytic in the upper half of the complex-ω plane.
This is analogous to the classical result that quantities such
as refractive index and far-field scattering amplitudes are
analytic in the upper half plane (UHP) [65]. On the real
line, sðωÞ has a pole at the origin due to the singularity in
the 1=πω prefactor and the fact that ξTψ s (usually) has a
nonzero value in the zero-frequency limit.

A. Sum rules

Thus, a sum rule can be derived for ρðx0;ωÞ through
contour integration of the scattering amplitude sðωÞ in the
UHP. If we enclose the UHP in a typical contour that is
semicircular going to infinity and follows the real line with a
“bump” at the origin [see Fig. 2(a)], then analyticity ensures
that the total integral is zero. For local, linear susceptibilities,
sðωÞ falls off sufficiently rapidly as ω → ∞ (because the
free-space contribution was subtracted out), such that the
real-line integral is well defined and the contour at infinity
does not contribute (shown explicitly in the SM [78]). Thus,
there are two contributions to the integral: the (principal
value of the) integral over the real line and the residue of the
simple pole at zero. Because negative-real-frequency fields
are conjugates of their positive counterparts [79], ρð−ωÞ ¼
ρðωÞ, such that the real-line integral can be reduced to
only positive frequencies, after which a few algebraic steps

FIG. 2. (a) Contour of integration in the complex-ω plane used to obtain the sum rule for LDOS, which has a simple pole at the origin
and is analytic everywhere on the upper half plane. For high-symmetry geometries such as a half-space or planar sheet, the sum-rule
constant is known analytically. (b) Electric and (c) magnetic LDOS for Ag, Al, Au (half-spaces), and graphene (planar sheet). Although
they all have resonant peaks at different frequencies with varying amplitudes and widths, their integrated response converges to the same
constant, 1=16πd3, as shown in the inset. The emitter-scatterer distance d is set to 10 nm, and the Fermi level for graphene is
set to 0.6 eV.
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(SM [78]) yield a general expression for the value of
ρðx0;ωÞ integrated over all frequencies:

Z
∞

0
ρðωÞdω ¼ αLDOS; ð4Þ

where αLDOS ¼ 1
2Re½TrΓsðx0;x0Þjω¼0&. The electrostatic

constant αLDOS measures the scattered field at the position
of the dipole source and is shown in the SM [78] to always
be positive. Equation (4) marks our first result: Over all
frequencies, integrated LDOS must equal an electrostatic
constant. [An electric-only specialization of Eq. (4) was
very recently discovered [35], albeit without the analytical
bounds to follow.] For materials with an electrical con-
ductivity (e.g., metals), αLDOS is independent of the value
of the conductivity, for any geometry. More generally,
Eq. (4) applies to any material (whose susceptibility
decays in the limit ω → ∞), including the wide array
of newly emerging 2D materials.
Some care is required with Eq. (4) in singular situations.

At high-symmetry points near high-symmetry scatterers,
e.g., at the center of a hemispherical bowl, LDOS may
appear to not decay at frequencies going to infinity because
the optical rays reflect off the perfect spherical interface and
constructively interfere at the origin. However, any random
deviation from a hemisphere, no matter how small, would
destroy such interference at high enough frequencies,
restoring the natural, sufficiently rapid decay. Hence, the
correct approach to regularizing such singularities is to
compute the sum rule for a hemisphere with imperfections
and then take the limit as the imperfections go to zero, such
that Eq. (4) still applies. (Such a procedure is a geometrical
analog of the limiting absorption principle [80], defining
“lossless” materials in the limit as loss goes to zero from
above.)
For any scatterer, the constant αLDOS can be found from

an electrostatic calculation. In high-symmetry geometries,
the calculation may be analytically tractable. Consider a
half-space of permittivity ε and permeability μ. (In this
paper, we consider materials that have scalar material
susceptibilities, with tensor-valued generalizations in the
SM [78].) The value of αLDOS at a separation d can be
computed via the image charge within the half-space,
leading to an expression (derived in the SM [78]) for
αLDOS, and thus of the frequency-integrated LDOS, of

Z
∞

0
ρðωÞdω ¼ 1

16πd3

#
εð0Þ − 1

εð0Þ þ 1
þ μð0Þ − 1

μð0Þ þ 1

$
; ð5Þ

where εð0Þ and μð0Þ are the zero-frequency (electrostatic or
magnetostatic) permittivities and permeabilities, respec-
tively. For metals and any material with a conductivity,
the permittivity and/or permeability diverges in the zero-
frequency limit, such that the corresponding term in square
brackets in Eq. (5) simplifies to 1. This result is also the

case for any 2D conductive sheet, which at zero frequency
represents the same perfect-conductor boundary condition
as a conductive 3D half-space. In the SM [78], we also
derive the simple αLDOS expression for conductive spheres.
An interesting feature of the LDOS sum rule is that it

depends only on zero-frequency behavior, where electric
and magnetic fields decouple. For the nonmagnetic materi-
als that are ubiquitous at optical frequencies, this implies
very different behavior for electric-dipole sources (i.e.,
electric-dipole transitions) as compared to magnetic-dipole
sources (magnetic-dipole transitions). To illustrate the
difference, one can separately define electric LDOS ρE

as the component arising from the electric sources only,
and magnetic LDOS ρH as arising from the magnetic sources
only:

ρðωÞ ¼ ρEðωÞ þ ρMðωÞ

¼ Im
#
1

πω
ðTr GEE þ Tr GHHÞ

$
;

where GEE and GHH are the electric and magnetic dyadic
Green’s functions, respectively. The two terms in the square
brackets in Eq. (5) correspond to these individual LDOS
constituents. For a nonmagnetic half-space (which we take
as conductive just for simplicity), the electric and magnetic
LDOS sum rules are

Z
∞

0
ρEðωÞdω ¼ 1

16πd3
;

Z
∞

0
ρHðωÞdω ¼ 0: ð6Þ

Themagnetic LDOSmust average out to zero because, in the
zero-frequency limit, a magnetic dipole does not interact
with a nonmagnetic medium.
Figures 2(b) and 2(c) illustrate the generality of the

electric and magnetic LDOS sum rules for bulk metals
(Ag, Al, Au) [81] as well as 2D materials such as graphene
(material model from Refs. [82,83]). In our figures, we
normalize electric and magnetic LDOS by the free-space
electric (or magnetic) LDOS, ρ0 ¼ ω2=ð2π2c3Þ which is
half that from Ref. [68] as they consider total free-space
LDOS. Each of these materials supports surface plasmon-
polaritons [84], which are excited by near-field sources.
These materials exhibit very different resonant frequencies
and line widths, as seen in Figs. 2(b) and 2(c). In terms of
electric LDOS in Fig. 2(b), graphene exhibits a very large
and narrow-band response at infrared frequencies, whereas
metals exhibit varying levels of maximum response, with
inversely proportional bandwidths, at visible or ultraviolet
energies. In contrast to the large order-of-magnitude
enhancements for electric LDOS, the magnetic LDOS in
Fig. 2(c) shows only limited response—note the scale of
the y axis in Fig. 2(c) relative to Fig. 2(b). The modest,
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fluctuating magnetic LDOS arises because of the small
electric field generated by the magnetic source or, equiv-
alently, because the magnetic source cannot induce any
magnetization in nonmagnetic media. Across the wide
variations of response seen for both electric and magnetic
LDOS, for systems with different materials and dimension-
ality, the all-frequency response must converge to the sum
rules of Eqs. (4)–(6), as shown in the insets of Figs. 2(b)
and 2(c).

B. All-frequency bounds

Equation (4) is an equality for any geometry. For
structures without a high degree of symmetry, the electro-
static constant αLDOS would typically require an electro-
static computation. In this section, we use perturbation
theory to derive a “monotonicity theorem,” showing that if
one material body (with static permittivity and permeability
greater than 1) encloses a second body of the same material,
the electrostatic constant αLDOS must be larger for the first
than for the second. With this result, we can bound the all-
frequency integrated response for any geometry in terms of
the analytically known αLDOS for high-symmetry enclo-
sures, yielding general analytical bounds.
Any outward deformation can be broken down into a

sequence of outward perturbations. Thus, if one can show
that any outward perturbation of a geometry must increase
some response function, a “mononicity theorem” has been
proved, guaranteeing that such a function increases for
any outward deformation. Such theorems are known for
electrostatic polarizability under plane-wave excitations
[31,85,86]. To understand how αLDOS changes under
geometrical perturbations, we use a variational-calculus
approach applicable to any frequency and then isolate the
electrostatic behavior. Within the variational-calculus
approach, quantities incorporating the displacement fields
D and B as well as the scalar permittivity and permeability
will be necessary, for which we define the six-vector fieldΨ
and tensor ν:

Ψ ¼
!
D

B

"
; ν ¼

!
εI

μI

"
; ð7Þ

where I is the 3 × 3 identity matrix (and as discussed
above, generalizations to anisotropic materials are included
in the SM [78]).
Consider a scattering FOM such as LDOS. Under

geometrical perturbations, the variation in the FOM can
be written as an overlap integral between two fields: (1) a
“direct” field, which is the response of the unperturbed
geometry to the original source (e.g., a nearby dipolar
emitter), and (2) an “adjoint” field, which is the response
of the same unperturbed geometry to a source whose phase,
amplitude, and position depend on the precise FOM [87,88].
For any FOM, if we write the displacement of the boundary
in the normal direction asΔhnðxÞ, the variation in the FOM

can generally be written as an overlap integral of the direct
and adjoint fields over the geometrical boundary [88]:

ΔαLDOS¼ 2Re
Z

Δhn½ΔεEk ·E
ðadjÞ
k −Δðε−1ÞD⊥ ·DðadjÞ

⊥

þΔμHk ·H
ðadjÞ
k −Δðμ−1ÞB⊥ ·BðadjÞ

⊥ &

¼ 2Re
Z

Δhn½ψT
kΔνψ

ðadjÞ
k þΨT

⊥ν
−1
1 Δνν−10 ΨðadjÞ

⊥ &;

ð8Þ

where Δε ¼ ε1 − ε0, Δðε−1Þ ¼ ε−11 − ε−10 (similarly for μ),
Δν ¼ ν1 − ν0, and ν1 and ν0 represent the material proper-
ties of the scatterer and its surroundings, respectively, while
the “adj” superscript denotes adjoint field solutions. Implied
in the above integral over the boundary ismultiplicationwith
an area element dA along the boundary, where ψk and ψ⊥
denote the field components parallel and perpendicular to
the locally flat boundary, respectively. We have explicitly
used the electrostatic constant αLDOS for the figure of merit
since it is that constant for which monotonicity will apply.
For any figure ofmeritf, the adjoint fields are a solutionwith
source currents given by the functional derivatives ∂f=∂ψT .
From Eq. (3) and the discussion following Eq. (4), we know
that αLDOS is given by

αLDOS ¼
1

2
Re

X

j

ξTj ðx0Þψ s;jðx0Þ; ð9Þ

which means that for any given dipole orientation j, the
adjoint source field is given by ∂f=∂ψT

j ¼ 1
2ξjðx0Þ. This

shows a unique circumstance: The dipolar sources for
the adjoint field are exactly half of ξjðx0Þ, which were
the original LDOS dipolar excitations, such thatψ ðadjÞ ¼ 1

2ψ
and ΨðadjÞ ¼ 1

2Ψ. Moreover, at zero frequency, without any
material or radiative losses, the fields can be chosen to be real
valued. Thus, for materials with positive static permittivities
and permeabilities that are greater than those of their
surroundings at zero frequency (ν0, ν1, and Δν positive-
definite), Eq. (8) can be written as the integral of a positive
quantity,

ΔαLDOS ¼ Re
Z
Δhn½ψTðΔνÞψ þ ΨT

⊥ðν−11 Δνν−10 ÞΨ⊥& > 0:

ð10Þ

Equation (10) ensures that ΔαLDOS is positive for any
outward deformation (Δhn > 0 everywhere on the boun-
dary). Regardless of the size and shape of a given scatterer
Ω1 with constant α

ð1Þ
LDOS, we can always enclose it by another

objectΩ2, whose constant α
ð2Þ
LDOS must be larger than αð1ÞLDOS,

proving our monotonicity theorem:
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αð2ÞLDOS > αð1ÞLDOS for Ω2 ⊃Ω1: ð11Þ

By connecting this monotonicity theorem to the sum rule in
Eq. (4), one can see that the integrated LDOS near a scatterer
must increase with the size or shape of that scatterer.
Note that although our derivation does not strictly apply
to the limiting case of a conductive material with Δν → ∞
(because ε → ∞ or μ → ∞) in the zero-frequency limit,
it does apply for any arbitrarily large but finite material
susceptibility, and in the SM [78], we provide an alternative
proof that confirms the validity of Eq. (11) for conductive
materials.
The use of Eq. (8) assumes a smooth perturbation of the

boundary. In the case of a region with “kinks,” or sharp
corners, such a boundary represents the limit of smooth
deformations. Since the fields are finite and the disconti-
nuity is a region of zero measure, it would not contribute to
first order [87], and monotonicity would hold. (It is not
clear whether monotonicity would hold for fractal surfa-
ces.) Although not covered explicitly by our derivation,
monotonicity would also hold for a gradient-index (at zero
frequency) medium, if the increase in index is non-negative
everywhere (and positive over some region) across the
medium.
A simple application of the monotonicity theorem is to

enclose the scatterer within some larger half-space, which
is possible as long as there is a separating plane between the
emitter and the scatterer. The electrostatic constant of any
half-space is given in Eq. (5), involving only the separation
distance and the zero-frequency material parameters. Since
the material factors ðε − 1Þ=ðεþ 1Þ and ðμ − 1Þ=ðμþ 1Þ
are bounded above by 1 (for static material constants larger
than 1), we can replace them with 1 in the upper bounds. By
the monotonicity theorem, the all-frequency integrated
LDOS for any structure enclosed by a half-space (which
is separated from the emitter by a minimum distance d)
must obey the general bounds for any material:

Z
∞

0
ρðωÞdω ¼

Z
∞

0
½ρEðωÞ þ ρHðωÞ& ≤ 1

8πd3
; ð12Þ

and, for nonmagnetic materials:
Z

∞

0
ρEðωÞdω ≤

1

16πd3
;

Z
∞

0
ρHðωÞdω ¼ 0: ð13Þ

If the scatterer in question can be more tightly enclosed by
another shape, such as a sphere or two half-spaces, one can
replace the rhs of Eqs. (12) and (13) with the respective
electrostatic constants to obtain a tighter bound on αLDOS.
Figure 3 shows the electric LDOS for an emitter at the

center of an aluminum double cone (similar to a bowtie
antenna [89]), computed with an open-source software

implementation [90,91] of the boundary element method
(BEM) [92]. Figure 3(a) shows that for an emitter-antenna
separation of d ¼ 10 nm (a cone-cone separation of
20 nm), thousandfold enhancements in electric LDOS
are possible, at resonant frequencies determined by the
geometry and the opening angle θ. Enlarging the opening
angle represents a way to increase the size of the scatterer,
and Fig. 3(b) demonstrates a monotonic increase in inte-
grated electric LDOS, as expected from the monotonicity
theorem. In conjunction, the sum rule, Eq. (4), and the
monotonicity theorem, Eq. (11), suggest a critical takeaway:
Isolated sharp tips do not occupy enough of the near field to
maximize electric LDOS; instead, large-area structured
surfaces offer significantly greater potential.
Our identification of the causal linear-response function

sðωÞ defined in Eq. (2) as the underpinning of near-field
sum rules ultimately yields a relation between all-frequency
response and the single pole at the origin. Such relations
form the crux of all sum rules [65], where the pole is almost
always chosen at the origin or in the limit ω → ∞ (on the
real line) because the response at those two particular
frequencies can often be simplified: ω ¼ 0 is the regime of
electrostatics, while electromagnetism in the ω → ∞ limit
is perturbative, as material susceptibilities converge to zero.
From a theoretical viewpoint, of course, a pole can be
introduced anywhere on the real line (not justω → 0;∞), or
even anywhere in the UHP. Typically, however, one cannot
make general statements about the response at arbitrary
frequencies. In the next section, we show how to employ
recently developed energy-conservation techniques to

FIG. 3. (a) Electric LDOS for a double cone made of Al with
d ¼ 10 nm (L ¼ 15, 25, 35 nm for θ ¼ 30°, 45°, 60°, respec-
tively). (b) As the opening angle increases, the all-frequency
integrated electric LDOS increases in confirmation of the
monotonicity theorem. (c) Average electric LDOS centered at
their peaks (ω0 ¼ 4.8, 6.2, 7.8 eV=ℏ for θ ¼ 30°, 45°, 60°,
respectively) for each angle are shown along with their respective
bounds. The double cones approach, within almost a factor of 2,
their upper bounds, over a large range of bandwidths.
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derive general bounds at such frequencies, moving beyond
the single-frequency or all-frequency dichotomy to a frame-
work that works for any bandwidth.

C. Power-bandwidth limits

In this section, we introduce two ideas that transform the
sum-rule approach of Sec. II A to an approach that bounds
the response over any bandwidth: (1) We use the notion of a
window function to connect the average response over
some bandwidth to discrete frequencies in the upper half
plane (at the window function’s poles), and (2) we show
how energy-conservation and passivity constraints can be
applied at those complex frequencies, yielding analytical
bounds on the bandwidth-averaged response.
Bandwidth plays a key role in any electromagnetic

scattering problem, whether arising from the intrinsic line
width of a source or as a primary technological constraint.
For example, enhancements in LDOS over a broad spectrum
could enable simultaneous imaging of multiple molecular
species. Also, broadband LDOS enhancements provide a
key criterion in designing optimal photovoltaic structures
capable of maximal absorption enhancements [93].
There are many ways in which one might want to

average the response over bandwidth (equal weighting,
Lorentzian weighting, etc.), and one can accommodate
almost any by prescribing a window function Hω0;ΔωðωÞ
that serves as a weighting function—it is concentrated
around a center frequency ω0, defined by a frequency width
Δω, and normalized (

R∞
−∞ Hω0;ΔωðωÞdω ¼ 1). Then, the

average LDOS over that range of frequencies, which we
denote hρi, can be defined by

hρi≡
Z

∞

−∞
ρðωÞHω0;ΔωðωÞdω: ð14Þ

For the remainder of this section, we choose a Lorentzian
function for Hω0;Δω:

Hω0;ΔωðωÞ ¼
Δω=π

ðω − ω0Þ2 þ ðΔωÞ2
; ð15Þ

where Δω is the half width at half maximum. We use a
Lorentzian for simplicity:Hω0;ΔωðωÞ extended into theUHP
has only a single pole at ω ¼ ω0 þ iΔω. Other window
functions can be used with the simple addition of extra (or
higher-order [61]) poles. For example, one can approximate
a rect function (whereHω0;Δω is constant over the bandwidth
of interest and zero elsewhere) by the generalization
Hω0;ΔωðωÞ¼ ½cðΔωÞ2n−1&=½ðω−ω0Þ2nþðΔωÞ2n&, which
has n poles in the UHP. The bounds below at a single pole
would then become a linear combination of the bounds at the
new poles, with slightly modified numerical factors but
the same physical ramifications for material and structural
design.
Inserting the Lorentzian of Eq. (15) into the average

LDOS [Eq. (14)] and writing the LDOS in terms of the
near-field scattering amplitude, ρ ¼ Im sðωÞ, the product
ρðωÞHðωÞ in the averaging integrand is given by
Im½sðωÞHðωÞ&. Outside of the lower-half plane, the func-
tion sðωÞHðωÞ has two simple poles: one at the origin,
which was responsible for the sum rule from Sec. II A,
and another at ω0 þ iΔω, from the Lorentzian, as shown in
Fig. 4(a). One can integrate over the contour in Fig. 4(a)
and use Cauchy’s residue theorem to equate the all-
frequency integral of Eq. (14) to the evaluation of two
complex-frequency quantities:

hρi ¼ Im sðω0 þ iΔωÞ þ 2Hω0;Δωð0ÞαLDOS; ð16Þ

(a) (b) (c)

FIG. 4. (a) Contour of integration in the complex-ω plane used to obtain the average LDOS, which contains singularities at the origin
(“LDOS pole”) that is intrinsic to LDOS and at a complex frequency (“Lorentzian pole”) determined by the parameters chosen for the
Lorentzian window function Hω0;Δω. Apart from these two poles, the product ρHω0;Δω is analytic everywhere on the upper half plane.
(b) Average electric and (c) magnetic LDOS near a Ag half-space centered at different frequencies around its peak (3.65 eV), compared
to their respective bounds. Taking the bandwidth to zero gives the single-frequency limit found in earlier works [36,37]. In the opposite
limit of infinitely large bandwidth that includes the entire LDOS spectrum, our bounds reproduce the electric and magnetic sum rules in
Sec. II A. The emitter-scatterer distance d is set to 10 nm.
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where sðω0 þ iΔωÞ is the near-field scattering amplitude
evaluated at the single complex frequency ω0 þ iΔω, and
αLDOS is the electrostatic constant appearing in the sum rule
defined in Eq. (4). In the limit of zero bandwidth,Hω0;Δωð0Þ
equals zero, and Eq. (16) comprises only the first term,
which represents single-frequency LDOS: ρ ¼ Im sðωÞ;
conversely, as the bandwidth goes to infinity, Im sðω0 þ
iΔωÞ decays rapidly (as we show below) and the second
term converges to the sum rule [Eq. (4)]. Between these
extremes, the two terms comprising hρi combine to re-
present a bandwidth-averaged response.
At the complex frequency ω0 þ iΔω, the positive imagi-

nary part of the wave number k means that the incident
field emanating from the dipolar source is exponentially
decaying, as can be understood from the outward-
going wave eikr=r → eiω0r=ce−Δωr=c. The decaying source
is mathematically equivalent to a scattering problem in
which the frequency is real valued but material loss is
increased in both the scatterer and the background [94].
Through either viewpoint, one can see that large broad-
bandwidth response is inherently more difficult to achieve
than large single-frequency response due to an inherent
bandwidth-induced dissipation.
By expressing the weighted integral of LDOS in terms of

residues evaluated at single complex frequencies, Eq. (16)
is now conceptually similar to single-frequency response
functions at real frequencies for which we have developed
an energy-conservation or passivity-based approach to
upper bounds [36,37]. The key idea as applied here is
that Eq. (16) is the imaginary part of a function that is linear
in the scattering amplitude sðω0 þ iΔωÞ, while represent-
ing the total (bandwidth-averaged) power lost by the
dipolar source, to either far-field radiation or near-field
absorption. By contrast, absorption itself is dissipation in
the medium, computed with the imaginary part of the
susceptibility and the field intensity jEj2, a function that is
quadratic in the fields. Since absorption must be smaller
than total LDOS (absorptionþ radiation), this implies that
the quadratic functional must be smaller than the linear
functional, a convex optimization constraint that neces-
sarily bounds how large the fields and induced currents can
be. We defer to Ref. [36] for a more detailed discussion of
such single-frequency optimization, and we emphasize
below the new developments in the case of a complex
frequency.
To bound the first term, sðω0 þ iΔωÞ, in Eq. (16) (the

second term is the known electrostatic constant), it is
helpful to rewrite the near-field scattering amplitude not
in terms of the field at the source location but instead in
terms of the fields within the scatterer, at the complex
frequency ω ¼ ω0 þ iΔω. The amplitude can be written
most succinctly in terms of the material susceptibility χðωÞ,
which is the difference between the scatterer permittivity or
permeability and that of the background:

χðωÞ ¼ νðωÞ − ν0ðωÞ ¼
! ðε − 1ÞI

ðμ − 1ÞI

"
: ð17Þ

(In the SM [78], we treat the most general scenario in which
the susceptibility is a 6 × 6 tensor that can be magnetic,
anisotropic, nonreciprocal, and spatially inhomogeneous.)
If we consider the LDOS for a single dipole orientation j and
momentarily drop the j notation for simplicity, the scattering
amplitude is, per Eq. (3), sðωÞ ¼ ð1=πωÞξTðx0Þψ sðx0Þ.
The scattered field at the dipole location, ψ sðx0Þ, is given
by the convolution of the free-space Green’s function Γ
with the polarization currents ϕ ¼ χψ in the scatterer;
then, reciprocity [95] can connect the free-space Green’s
function to the incident field from the dipole itself (a
procedure we followed at real frequencies in Ref. [36]).
After defining a modified incident field, ψ̃ inc¼
ðEinc−HincÞT , the near-field scattering amplitude can be
written as sðωÞ ¼ ð1=πωÞ

R
V ψ̃

T
incχψ .

Finding a convex constraint that encodes energy
conservation—requiring absorbed power (properly normal-
ized) to be smaller than total power expended—requires
some care at complex frequencies. One cannot analytically
continue the absorbed and scattered powers into the UHP,
as they are not analytic everywhere (originating from their
quadratic field dependence). To recover the notion of an
energy-conservation constraint, we start with passivity,
which states that everywhere in the UHP, the product
ImðωχÞ must be positive-definite [96]:

Im½ωχðωÞ& > 0 for Imω > 0; ð18Þ

where ImðωχÞ ¼ ½ωχ − ðωχÞ†&=2i, and Eq. (18) extends
into the complex plane the notion that passivity implies
positive(-definite) imaginary susceptibilities. From passiv-
ity, we define two positive functionals: an integral of the
(positive) quantity Im½ψ†ðωχÞψ & within the scatterer vol-
ume, and an integral of the (positive) quantity Im½ψ†

sðωχÞψ s&
outside the scatterer volume. Through repeated application
of the divergence theorem and the complex-frequency
Maxwell equations, we can define two new functionals,
φAðωÞ and φEðωÞ. At real frequencies, the functionals
equal absorption and extinction, but we define them here
in the UHP:

φAðωÞ ¼
1

2
Im

Z

V
ψ†ðωνÞψ ;

φEðωÞ ¼
1

2
Im

Z

V
ψ†
inc½ðων − ðων0Þ†Þψ − ων0ψ inc&: ð19Þ

In the SM [78], we show that these functionals indeed satisfy
absorption and extinction-like constraints everywhere in
the UHP: φAðωÞ < φEðωÞ for Im ω > 0. This constraint
is precisely the type of convex constraint needed for a
bound, providing a mechanism to derive one at complex
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frequencies. Given the expression above for sðωÞ, and
the constraint φA < φE, we formulate the upper bound as
the solution of a (convex) optimization problem at ω ¼
ω0 þ iΔω:

maximize
ψðx;ωÞ

ImsðωÞ ¼ Im
#
1

πω

Z

V
ψ̃T
incðωÞχðωÞψðωÞ

$
;

subject to φAðωÞ ≤φEðωÞ: ð20Þ

Equation (20) has a unique, globally optimal solution. The
optimal field distribution ψðωÞ and scattering amplitude
sðωÞ can be found through variational calculus, following
a similar procedure to that developed in Ref. [36] and
detailed in the SM [78]. A crucial term that emerges is a
material-dependent material figure of merit, fðωÞ. For bulk
(non-2D), nonmagnetic materials with scalar electric sus-
ceptibilities χðωÞ, the material FOM is given by

fðω ¼ ω0 þ iΔωÞ ¼ jωχj2 þ jωχjΔω
jωj ImðωεÞ

: ð21Þ

The optimal field is proportional to this material function,
as well as to the conjugate of the incident field. Now,
reintroducing the average over dipole orientation j, the
optimal field yields a frequency-averagedLDOSbound (SM
[78]):

hρi≤fðωÞ
πjωj

X

j

Z

V
ψ†
inc;jðωÞψ inc;jðωÞdVþ2Hω0;Δωð0ÞαLDOS;

ð22Þ

where the complex frequency ω ¼ ω0 þ iΔω encodes the
center frequency and bandwidth of interest.
Equation (22) shows that a near-field LDOS, averaged in

a half-width-at-half-max bandwidth Δω around a center
frequency ω0, is fundamentally limited by the field of
a dipole in free space and by the frequency-dependent
material composition of the scatterer(s). The volume
integral of the incident field can be further simplified by
enclosing the scatterer within some bounding shape of high
symmetry over which the integral can be calculated
analytically. A typical example is that of an emitter above
a structured (or randomly textured [97,98]) surface, in
which case the scatterer can be enclosed in a half-space that
is a separation distance d from the emitter. Near-field
interactions (jωjd=c ≪ 1) are dominated by the rapidly
decaying evanescent fields emanating from the sources,
which implies that the overall shape of the scatterer, aside
from its dimensionality, has little effect on the volume
integral in Eq. (22). Enclosing any structure by a half-space
and keeping only the dominant near-field term in the integral
inEq. (22),weobtain a simple, shape-independent, analytical
expression. (All remaining terms, which are nondivergent
and typically small, are included in the SM [78].) The bound

scaling is very differentwhen the incident field is generatedby
a magnetic dipole rather than an electric one, and thus we
can separately derive for total LDOS ρ, electric LDOS ρE,
and magnetic LDOS ρH, the general bandwidth-averaged
bounds (SM [78]):

hρi
ρ0ðjωjÞ

;
hρEi

ρ0ðjωjÞ
≤

1

8jkj3d3

!
fðωÞe−2dΔω=c þ 2

Δω
jωj

"
;

hρHi
ρ0ðjωjÞ

≤ 1

4jkjd
fðωÞe−2dΔω=c; ð23Þ

where we have defined a complex-valued wave number
k ¼ ω=c, the function fðωÞ is the material FOM from
Eq. (21), and for the second term on the first line, we have
inserted the half-space bounds for αLDOS from Eq. (13).
Equations. (22) and (23) are foundational results of our

paper. No geometrical engineering of resonances or cou-
pling can overcome their limits. For any structure and
bandwidth, the bound of Eq. (23) depends only on the
frequency range of interest, the material properties at those
frequencies, and the emitter-scatterer separation.
Figure 4 compares the LDOS near a silver half-space to

the bounds of Eq. (23). Center frequencies ranging from
ω0 ¼ 3.65 eV=ℏ to ω0 ¼ 4.2 eV=ℏ (with corresponding
wavelengths from 340 nm to 295 nm) are considered near
the surface-plasmon frequency of silver. One can show
analytically that in the zero-bandwidth, near-field (kd ≪ 1)
limit, the electric LDOS above a nonmagnetic, surface-
plasmon-resonant interface should approach the bound
of Eq. (23), while the magnetic LDOS above the same
interface should approach its respective bound within
a factor of 2. (This can be shown starting from asymptotic
expressions in Ref. [68].) Such close approaches in
the zero-bandwidth limit are visible in both Figs. 4(b)
and 4(c). In the large-bandwidth limit, the bounds converge
to the sum rules of Sec. II A, ensuring that they are “tight”
(i.e., there is no smaller upper bound) in that regime as
well. To simplify the ultrahigh-bandwidth computations
(Δω≳ 100 eV=ℏ), we use a five-pole Drude-Lorentz
multi-oscillator model for silver that closely approximates
tabulated susceptibility data [81] (a comparison is included
in the SM [78]). There is an interesting peak in the bound at
moderate bandwidths that arises due to the large, lossy
permittivity of silver at about 5 eV; standard quasistatic
theory [99] would predict that a half-space is nonoptimal
for such a bandwidth but that perhaps another structure is
optimal. A key question prompted by these bounds is
whether nonplanar, designed structures—or perhaps even
randomly corrugated structures—can approach the bounds
at frequencies away from the surface-plasmon resonance.
In Fig. 3(c), it was observed that double cones approach
within almost of factor of 2 of their upper bounds [using
Eq. (22) for their specific geometry] over a large range of
bandwidths, further suggesting that such structural design
should be possible.
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The convergence of the electric-magnetic LDOS
bounds to their respective sum rules, in the infinite-
bandwidth limit, can be verified directly from Eq. (23).
The first term in the ρE bound goes to zero as Δω → ∞ due
to the e−2dΔω=c factor, in which case one can rewrite the
bound as hρEi ≤1=ð8π2Δωd3Þ ¼ ð2=πΔωÞð1=16πd3Þ ¼
ð2=πΔωÞ

R∞
0 ρEdω, where the last term is precisely the

average electric LDOS in the large-bandwidth limit
[since HðΔω → ∞Þ ¼ 1=πΔω]. Similarly, the ρH bound
only contains the e−2dΔω=c factor for nonmagnetic materi-
als, and hence the bound tends to hρHi ≤0, in agreement
with the sum rule. By construction, the bounds agree with
their respective sum rules for large bandwidths.
The power-bandwidth limit of Eq. (22) applies equally

well to 2D materials characterized by a spatial conductivity
σðωÞ, with the substitution ωχðωÞ → iδSðxÞσðωÞ, where
δSðxÞ is a delta function on the surface of the (not
necessarily planar [83]) 2D material. In doing so, the delta
function transforms the volume integral in Eq. (22) to a
surface integral over the incident field. We can enclose the
2D scatterer in a high-symmetry enclosure: For a 2D plane
enclosure, and keeping only the highest-order terms in the
near-field limit (jωjd=c ≪ 1), we find that the LDOS above
the 2D material is bounded above by (SM [78])

hρi
ρ0ðjωjÞ

;
hρEi

ρ0ðjωjÞ
≤

3

8jkj4d4
fðωÞe−2dΔω=c þ 1

4jkj3d3
Δω
jωj

;

hρHi
ρ0ðjωjÞ

≤
1

4jkj2d2
fðωÞe−2dΔω=c; ð24Þ

where for 2D materials the material FOM is

fðωÞ ¼ jσðωÞj2

Re σðωÞ
: ð25Þ

(In SI units, there would be an additional factor of the free-
space impedance Z0 multiplying jσj2=Re σ.) There are two
distinct features that emerge for 2D materials: The material
FOM is jσðωÞj2=Re σðωÞ, and the electric- and magnetic-
LDOS bounds have terms that scale as 1=d4 and 1=d2,
instead of 1=d3 and 1=d in the bulk-material bounds. The
different distance scaling is a natural consequence of
integrating the norm of the Green’s function over an area
instead of a volume. Yet, there is an interesting contrast
embedded within the bounds for hρi and hρEi: Their first
term, dominant over narrow bandwidths, scales as 1=d4,
whereas the second term, dominant over wider bandwidths
and corresponding to the sum rule, scales as 1=d3. The faster
scaling with 1=d of the first term suggests a scenario in
which the average LDOS over a narrow bandwidth may be
larger than the sum rulewould seem to allow.One possibility
is that the bound is “loose” and that the 1=d4 scaling is
artificial, but in multiple previous studies [37,100] of single-
frequency behavior, 1=d4 scaling has been observed in the

LDOS near 2D materials. Another possibility is that such
large response is only possible over a narrow bandwidth,
though the connection of broadband response to single-
complex-frequency response would seem to suggest that
large response is likely not restricted to single frequencies.
Finally, perhaps the most likely possibility is that such a
bound is achievable and simply requires negative (scattered)
LDOS at frequencies outside the range of interest. There is
no requirement that scattered LDOS be positive at all
frequencies since a scatterer can suppress all modes and
reduce the total LDOS to nearly zero. The idea of exploiting
such suppression to achieve anomalously large response
over some desired bandwidth is intriguing.
Our derivations provide general insight into optimal

structures that would reach the bounds. First, as noted
above, it is critical to have as much material as possible in
the near-field region of the source—that material enables
the polarization currents that ultimately drive the large
response. Sharp tips, though potentially exhibiting strong
resonances, are not ideal. Second, the convexity-based
optimization provides not only the maximal bandwidth-
averaged response but also the optimal fields ψ that would
generate such response. In all cases, those optimal fields,
throughout the volume of the scatterer, are proportional to
the incident fields. Hence, one would want to generate,
perhaps via computational design [61,101–103], resonan-
ces with the same phase and amplitude profile as the fields
emanating from the dipolar sources. Finally, through a
volume-integral-equation (VIE) framework [36], one can
reinterpret our bounds as upper limits that occur when the
incident field couples only to a single VIE mode at the
optimal resonance location. Thus, if one can completely
avoid exciting other modes, then the upper bound is in fact
guaranteed to be achieved.

III. CROSS DENSITY OF STATES

The previous section developed the theoretical frame-
work for power-bandwidth limits in the context of LDOS.
We translate that framework to other near-field optical
response functions, starting with CDOS [104], which
measures field correlations between two points of a
structured environment. In addition to fundamental interest
as a correlation function, CDOS is also the critical term in
the frequency integrand for resonant near-field dipolar
energy transfer, as in Förster energy transfer [46,47,105],
as well as for quantum entanglement and super-radiative
coupling between qubits [106–110]. Whereas LDOS is
given by the Green’s function for identical source and
measurement points, CDOS is given by the Green’s
function between different source and measurement points,
x0 and x, respectively [104]:

ρijðx;x0;ωÞ ¼ Im
#
1

πω
Γs;ijðx;x0;ωÞ

$
; ð26Þ
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where i and j are the measurement and source polar-
izations, respectively, and we again use the “s” subscript to
denote the scattered-field contribution (subtracting off the
known free-space contribution). By analogy to Eq. (4),
there is a sum-rule constant for CDOS, which we denote
αCDOS (defined as 1

2Re½Γs;ijðx;x0Þjω¼0&); by the similarity
to LDOS, one can follow a similar procedure to derive
power-bandwidth limits. The key new feature is that instead
of the single separation distance between the emitter and
scatterer controlling the bound, now there are two relevant
separation distances: the distance between the emitter and
the scatterer, denoted d1, and the distance between the
scatterer and the measurement point, d2.
To bound Eq. (26) averaged over any bandwidth, we first

rewrite the Green’s function in terms of the polarization
currents of the scatterer(s). This leads to an overlap integral
between the polarization currents induced by the field
incident from the source position with a (parity-reversed)
secondary field incident from the measurement position.
Ideally, the polarization response is maximally aligned to
both fields (SM [78]), in which case the maximal response
is proportional to the square root of the energy of each
“incident” field, ψ inc;1 and ψ inc;2. Applying the band-
averaged bound approach modified as described above,
we arrive at the following bound on average CDOS for
bulk, nonmagnetic materials (SM [78]):

hρiji ≤
fðωÞ
πjωj

&!Z

V
ψ†
inc;1;iðωÞψ inc;1;iðωÞdV

"

×
!Z

V
ψ†
inc;2;jðωÞψ inc;2;jðωÞdV

"'
1=2

þ 2Hω0;Δωð0ÞαCDOS; ð27Þ

where the complex frequency ω ¼ ω0 þ iΔω encodes the
center frequency and bandwidth of interest. In the near-
field regime, (jωjd=c ≪ 1), Eq. (27) further simplifies (SM
[78], neglecting αCDOS for small to moderate bandwidths):

hρiji
ρ0ðjωjÞ

;
hρEiji

ρ0ðjωjÞ
≤

1

12jkj3
ffiffiffiffiffiffiffiffiffiffi
d31d

3
2

p fðωÞe−ðd1þd2ÞΔω=c;

hρHiji
ρ0ðjωjÞ

≤
1

6jkj
ffiffiffiffiffiffiffiffiffiffi
d1d2

p fðωÞe−ðd1þd2ÞΔω=c; ð28Þ

where we separate the electric- and magnetic-source con-
tributions to the CDOS. Now, the electric bounds depend
on the source-scatterer and measurement-scatterer separa-
tion distances to the three-halves power, instead of the
cubic dependence for LDOS when the source and meas-
urement points are identical. Note that the material
dependence of the bound is encoded in the same material
figure of merit, fðωÞ, as defined in Eq. (21), suggesting the
universal role it may play in determining the maximal
broadband response of any material.

IV. RADIATIVE HEAT TRANSFER

Near-field radiative heat transfer (NFRHT) can be sub-
stantially larger than far-field radiative heat transfer, via
photon-tunneling evanescent-wave energy transfer, and has
generated much interest for applications such as thermo-
photovoltaics [11,111–114]. In RHT, there are two bodies at
temperatures T1 and T2, withminimal separation distance d.
The net radiative heat flux between the two bodies [115] is
given by H1→2ðωÞ ¼ ΦðωÞ½Θðω; T1Þ − Θðω; T2Þ&, where
Θðω; TÞ denotes the mean energy of the harmonic oscillator
(without the zero-point energy ℏω=2) and Φ is a temper-
ature-independent flux rate from incoherent sources in body
1 radiating to body 2.
Since Θ is positive for all frequencies, we can bound the

difference ΘðT1Þ − ΘðT2Þ by its maximum value, which is
simply ΘðT1Þ (taking T1 > T2), i.e., (Φ is non-negative at
all frequencies for passive media):

H1→2 ¼
Z

∞

0
ΦðωÞ½Θðω; T1Þ − Θðω; T2Þ&dω ð29Þ

≤
Z

∞

0
ΦðωÞΘðω; TÞdω; ð30Þ

where T ¼ T1 and the equality holds if body 2 is at
absolute zero.
In order to apply contour-integration techniques

(described in Sec. II C) to bound Eq. (30), one would
need to extend the mean energy Θ to negative frequencies,
and Θ has to decay fast enough such that the integral
in Eq. (30) is finite for all real frequencies. While it is
bounded and decays for large positive frequencies, it
diverges when extended to negative frequencies. To avoid
such asymmetry, one could add the vacuum energy ℏω=2
and work with Θv ¼ 1

2ℏω cothðℏω=2kBTÞ [115] (kB
denotes the Boltzmann constant), which is symmetric about
the origin. However, Θv diverges linearly for large frequen-
cies and would enforce dramatic restrictions on the flux rate
Φ to fall rapidly at high frequencies. Even if convergence
were not an issue, Θv contains infinitely many singularities
along the imaginary axis. This would reduce a contour
integral evaluation of Eq. (30) (albeit with Θv instead of Θ)
to a sum of infinitely many residues (at the “Matsubara
frequencies” [116]), which is cumbersome to handle. We
can avoid all of these issues (asymmetry, nonconvergence,
and the Matsubara sum) in a single stroke by virtue of the
following fact: For any temperature T, the mean-energy
spectrum Θðω; TÞ is simultaneously bounded above and
closely approximated (at frequencies with non-negligible
contributions) by a Lorentzian function centered at zero
with bandwidth

ffiffiffi
2

p
kBT=ℏ, H0;

ffiffi
2

p
kBT=ℏ

ðωÞ, properly scaled
such that it coincides with Θ at zero frequency:

Θðω; TÞ ≤
ffiffiffi
2

p
πℏ

!
kBT
ℏ

"
2

H0;
ffiffi
2

p
kBT=ℏ

ðωÞ; ð31Þ
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where, for this line, H again denotes the Lorentzian
window function defined in Eq. (15). There is close
agreement between H0;

ffiffi
2

p
kBT=ℏ

ðωÞ and Θðω; TÞ, with the
total energy as measured by the integral

R∞
0 dω larger for

the Lorentzian by only 3
ffiffiffi
2

p
=π ≈1.35 for all temperatures

(cf. SM [78]). [Note that unlike the spectrum of a black-
body, whose peak wavelength is nonzero and scales
inversely with temperature, the mean-energy spectrum
ΘðωÞ peaks at zero frequency.]
Since the integral in Eq. (31) is the Lorentzian-averaged

flux rate, it might be tempting to close the contour in the
UHP to relate the integral to a sum of residues, in the spirit
of Sec. II C. However, unlike LDOS, the flux rate Φ is not
directly given by the real or imaginary part of a scattering
amplitude. But we can transform the problem by general-
ized reciprocity [117], recasting the flux rate from a surface
integral of fields generated by volume sources to a volume
integral of fields generated by sources along a surface,
revealing a surprising similarity to LDOS and ultimately
leading to NFRHT bounds.
The heat flux between the two bodies is given by the

power flow through a separating surface S:

H1→2ðωÞ ¼
1

2
Re

Z

S
ðE × H̄Þ · n̂

¼ 1

4

Z

S
ψ†Λψ ; ð32Þ

where Λ ¼ ðn̂×
−n̂×Þ is a real symmetric matrix. The fields

can be expressed [118] as convolutions of the system
Green’s function Γðx;x0Þ with the thermal sources ϕðx0Þ:
ψðxÞ ¼

R
V Γðx;x0Þϕðx0Þdx0. The incoherence of the ther-

mal sources can be incorporated via the fluctuation-
dissipation theorem in a standard substitution [115]. The
key step is that we then use generalized reciprocity [117]
(cf. SM [78]) to interchange the source positions in body 1
with the measurement position on the surface S separating
the bodies. This transforms the problem to sources over a
surface in free space (or a homogeneous background)
radiating into one of the bodies, and the net flux rate is
an energylike quadratic form evaluated in the body, for a
specific linear combination of electric and magnetic
dipoles (cf. SM [78]). In the ideal scenario, the dipoles
are only emitted into body 1; in any case, the radiation into
body 1 is bounded above by the total radiation. In the near
field, the total radiation is essentially exactly equal to the
scattered-field LDOS, such that we can directly bound (via
Cauchy-Schwarz arguments) the flux rate at any frequency
by the product of the electric andmagnetic LDOS (SM[78]):
ΦðωÞ ≤4c

R
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρEðωÞρHðωÞ

p
. To bound the bandwidth-

averaged flux rate hΦi, the product of the electric and
magnetic LDOS prevents direct identification of a complex-
analytic quantity, but we can again use Cauchy-Schwarz for
a bound in terms of the individually bandwidth-averaged

ρE and ρH (ideally, theywould exhibit the same line shape, in
which case the Cauchy-Schwarz substitution would be an
equality), such that we can write (SM [78])

hΦi ≤4c
Z

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hρEihρHi

q
: ð33Þ

In the case of near-field RHT, the center frequency and
bandwidth are fixed by the temperature as discussed above.
Using Eq. (33), we can bound NFRHT in Eq. (31):

H1→2 ≤2
ffiffiffi
2

p
πℏc

!
kBT
ℏ

"
2
Z

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hρEihρHi

q

0;
ffiffi
2

p
kBT=ℏ

: ð34Þ

Equation (34) is the culmination of our transformations:
The product of flux and oscillator energy in the integrand of
Eq. (30), which is not easily extensible to negative frequen-
cies nor analytic over the upper-half plane, is bounded above
by (and, for optimal designs, equal to) an integral over a
bounding surface between the bodies of the geometric mean
of the bandwidth-averaged electric and magnetic LDOS.
Then, for bulk, nonmagneticmaterials, we can directly insert
the LDOS bounds, Eq. (23) (with the second term slightly
modified to allow for a two half-spaces enclosure), into
Eq. (34) to obtain a near-field bound on net radiative power
transfer (with suitable generalizations for magnetic and/or
2Dmaterials). The material figure of merit of Eq. (21) again
plays a key role; in the case of near-field RHT, the temper-
ature determines the bandwidth. Moreover, because the
center frequency is zero, the material figure of merit is
evaluated at the purely imaginary frequency i

ffiffiffi
2

p
kBT=ℏ;

since susceptibilities are real and positive for imaginary
frequencies in the UHP [79], thematerial FOM (nowwritten
as a function of temperature) can be greatly simplified:

fðTÞ ¼ χði
ffiffiffi
2

p
kBT=ℏÞ: ð35Þ

If we denote r1 and r2 as the distances from a surface point to
bodies 1 and 2, respectively, and f1ðTÞ and f2ðTÞ as the
corresponding material figures of merit, then the bound for
an arbitrary separating surface S is

H1→2 ≤
ρ0ð

ffiffiffi
2

p
kBT=ℏÞℏc3

2

Z

S

&!
f1ðTÞe−

2
ffiffi
2

p
kBTr1
ℏc þ 4.21…
r31

ð36Þ

þ f2ðTÞe−
2
ffiffi
2

p
kBTr2
ℏc þ 4.21…
r32

"

×
!
f1ðTÞe−

2
ffiffi
2

p
kBTr1
ℏc

r1
þ f2ðTÞe−

2
ffiffi
2

p
kBTr2
ℏc

r2

"'
1=2

; ð37Þ

where the constant terms proportional to 4.21 arise from the
LDOS constant αLDOS for two half-spaces (SM [78]). For a
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planar bounding surface halfway between the two bodies at
d=2 for aminimal separationd, the integral inEq. (37) can be
done analytically, simplifying the bound to maximum heat
transfer per unit surface area A:

H1→2

A
≤

2

π2ℏ

!
kBT
d

"
2

e−
ffiffi
2

p
kBTd
ℏc ½f1ðTÞ þ f2ðTÞ&; ð38Þ

where we have dropped constant terms (which are small
relative to f1 and f2 for all practical materials and temper-
atures of interest). Equation (38) represents the first general
bound to near-field radiative heat transfer.
We can more easily interpret Eq. (38) by recasting the

expression as a product of dimensionless enhancement
factors with the far-field blackbody limit, HBB ¼ σT4,
where σ is the Stefan-Boltzmann constant. Using the
thermal de Broglie wavelength, λT ¼ π2=3ℏc=kBT, alge-
braic manipulations yield an equivalent alternative,

H1→2

A
≤σT4

&
βe−ð

ffiffi
2

p
kBTdÞ=ℏc

!
λT
d

"
2

½f1ðTÞ þ f2ðTÞ&
'
;

ð39Þ

where β ¼ 120=π16=3 ≈0.268 is of order 1. Equation (39)
succinctly identifies two maximum possible enhancements
beyond the blackbody limit. First, a distance-dependent
enhancement ðλT=dÞ2 emerges, which accounts for the
increased amplitudes of evanescent waves at shorter sepa-
rations. This enhancement factor is intermediate between
that appearing in the bounds for electric andmagnetic LDOS
(1=d3 and 1=d, respectively), as RHT is equivalent to a
combination of electric and magnetic dipolar radiation in
free space. The thermal wavelength λT (which is about
10 μm at room temperature) sets the threshold for the near-
field regime, highly sensible since the blackbody radiation
limit holds only when the length scales involved are greater
than λT . The second enhancement factor is a material-
dependent factor f1ðTÞ þ f2ðTÞ, which accounts for
material-based resonant enhancements. Per the material
FOM of Eq. (35), the larger the susceptibility is at the
complex frequency set by the temperature of the emitter, the
larger the possible response is. The bounds of Eqs. (38), and
(39) cannot be overcome by any metamaterial, metasurface,
or other design approaches.

V. OPTIMAL MATERIALS

Embedded throughout the LDOS, CDOS, and near-field
RHT bounds is a material metric fðωÞ, defined in Eqs. (21)
and (25), that indicates the intrinsic capability of any
material to exhibit large optical response over a frequency
bandwidth Δω around a center frequency ω0. This material
metric enables comparison of any material—dielectric and
metal, 2D and 3D, lossless and lossy—many of whose
capabilities cannot be understood through single-frequency
bounds or sum rules.

Sum rules, such as Eq. (5), typically have little-to-no
dependence on material parameters, suggesting that differ-
ent materials only alter resonant bandwidths, without
impacting total optical response. Yet, this is misleading
on two fronts: (1) It only applies over infinite bandwidth;
over any finite bandwidth, material properties play an
important role in maximal response, and (2) sum rules
require susceptibilities that satisfy Kramers-Kronig rela-
tions, diminishing to zero at high frequencies. The decay-to-
zero requirement, though physically reasonable, means that
even “dielectric” media (semiconductors, insulators, etc.)
have a plasmalike response at large enough frequencies.
Such response contributes to sum rules, often in a large way
due to the negative susceptibility. This contribution obscures
the behavior of, for example, a transparent dielectric at
optical frequencies, by accounting for transitions that occur
at UV and x-ray frequencies. Thus, sum rules miss finite-
bandwidth effects and dramatically overestimate dielectric-
material interactions. At the other end of the continuum,
single-frequency bounds [24,36,37,42,43] apply at any
given frequency, but they use material loss as the intrinsic
system limitation and thereby diverge for materials with
vanishingly small imaginary susceptibilities (such as dielec-
trics). Thematerial FOMembedded in the power-bandwidth
limits does not have any of these limitations: It can account
for finite bandwidths, it does not require susceptibilities
that asymptotically approach zero at large frequencies,
and it provides a finite bound for lossless materials for
any nonzero bandwidth. Hence, fðωÞ is a simple expression
that enables comparison among the multitude of possible
optical materials.
To gain intuition about the material FOM, we consider

the small-bandwidth limit in whichΔω ≪ ω0. We delineate
two types of (bulk, 3D) materials: lossy materials, with a
nonzero Im χðωÞ in the small-bandwidth limit, and lossless
materials, with Im χðωÞ ≈0 [and Im χðωÞ ≪ Δω=ω0

even in the small-bandwidth limit], as would characterize
many transparent materials at optical frequencies. In the
small-bandwidth limit, the material FOM is approximately
given by

fðωÞ ≈

8
>>>>>>>><

>>>>>>>>:

jχðωÞj2

Im χðωÞ
lossy ðe:g:;metalsÞ

ω0

Δω
½χðωÞ&2

χðωÞ þ 1
lossless ðdielectricsÞ

jσðωÞj2

Re σðωÞ
2D materials

; ð40Þ

where we have retained the full material FOM for 2D
materials since it is already simple. For high-index lossless
materials, the expression would simplify even further:

fðωÞ≈ω0

Δω
χðωÞ lossless; high-index: ð41Þ

For small to moderate bandwidths, a natural dichotomy
emerges: Lossy materials are inherently restricted by
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material loss in Im χðωÞ, whereas lossless materials are
inherently limited by the relative bandwidth Δω=ω0.
Intuitively, in simple single-mode interactions, one could
interpret the figures of merit as dictating that lossy materials
have maximum responses proportional to jχðωÞj, over a
bandwidth proportional to jχðωÞj=Im χðωÞ, whereas loss-
less materials have maximum responses proportional to
χðωÞ, over bandwidths proportional toω0=Δω. The intuitive
interpretation about lossy-material bandwidths is supported

by previous results in quasistatic plasmonic frameworks
[119,120]. Of course, we make no assumption of single-
mode or quasistatic behavior, and our scattering framework
is valid for any number of resonances as well as more
complex phenomena such as Fano interactions [121] and
exceptional points [122,123]. And perhaps more impor-
tantly, it enables consideration of lossless and lossymedia on
equal footing. As discussed in the Introduction, the maxi-
mum response of lossless media has been impossible to

(a)

(d)

(g)

(h) (i)

(e) (f)

(b)
(c)Metal

Dielectric

2D Conductor

FIG. 5. (a,d,g) Isocurves of material FOM for a Drude metal (with material loss rate γ ¼ 0.1ωp), a lossless dielectric (of susceptibility
χ ¼ 9), and a Drude 2D material (with γ ¼ 0.01ωp). The arrows indicate increasing material FOM in each case. (b) Comparison of
material FOM for various bulk metals and polaritonic materials or dielectrics, keeping the bandwidth-to-center-frequency ratio Δω=ω0

fixed to 0.1. For the modestly large 10% relative bandwidth, the large susceptibilities of metals compensates for their material loss,
generally resulting in greater maximum response. Part (c) compares surface-phonon-polariton-supporting materials at mid-IR
wavelengths. (e,f) Comparison of material FOM for varying bandwidths relative to the center wavelengths of 1.55 and 10 μm. At
very narrow bandwidths, dielectrics offer a greater possible response than metals. (h,i) Comparison of material FOM for 2Dmaterials for
different choices of center wavelength and Δω=ω0 (2D Al, Ag, and Au properties derived from their bulk counterparts).
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accurately capture with either the sum-rule or the single-
frequency-bound approaches known today. In the complex-
frequency approach, bandwidth naturally adds a form of
“loss” to the system, yielding finite bounds that vary
smoothly with bandwidth.
Figure 5 compares the material FOM for a large variety

of materials at optical frequencies. To evaluate the material
susceptibilities and conductivities at complex frequencies,
we use analytic models (e.g., Lorentz-Drude oscillators)
that can be continued into the complex plane, and we
ensure that they are accurate over the range of bandwidths
considered. On the left side of the figure, we model the
material FOM for canonical material types: (a) a Drude
metal, χðωÞ ¼ −ω2

p=ðω2 þ iγωÞ, for plasma frequency ωp
and loss rate γ, (d) a lossless, constant-susceptibility
[χðωÞ ¼ 9] material, and (g) a Drude 2D material, with
conductivity σðωÞ ¼ iωp=ðωþ iγÞ. One can see that these
three material types show very different characteristic
dependencies of their FOM on frequency and bandwidth.
The Drude-metal FOM is nearly independent of small-to-
moderate bandwidths, as expected from Eq. (40)—for
metals, intrinsic loss is the limiting factor. The FOM of
a Drude metal increases with the center wavelength (of the
frequency band of interest) λ0 since the increasing wave-
length increases the magnitude of the susceptibility. By
contrast, a constant-permittivity “dielectric” has nearly
opposite dependencies. The figure of merit is independent
of center wavelength and highly dependent on the band-
width. Because the bandwidth is the source of loss, there is
a trade-off between the average response and bandwidth.
Finally, 2D Drude conductors are somewhere in between.

Loss originates from both the material parameter γ and the
bandwidth, with increasing FOM towards the lower-right-
hand corner of Fig. 5(g): small bandwidth and large
wavelength (for a large conductivity). These simplified
metal, dielectric, and 2D conductor profiles capture well the
key dependencies of the FOM for real materials: The plots
in Figs. 5(b), 5(c), and 5(h) follow the same trends as those
in Figs. 5(a), 5(d), and 5(g): Metal [81] FOM increases with
wavelength, whereas dielectrics (Si [124,125] and SiC
[126,127]) and polaritonic materials (SiO2 [128–130] and
TiO2 [131,132]) that support surface phonon-polaritons at
mid-IR frequencies [84] do not depend appreciably on
wavelength. Conversely, the plots in Figs. 5(e), 5(f), 5(i)
show the effects of increasing bandwidth, with metal
material FOMs nearly unchanged but those of the dielec-
trics and polaritonic materials decreasing nearly linearly.
The material FOM of 2D conductors increases with both
wavelength and smaller bandwidths. We consider the 2D
conductivities of graphene for various Fermi levels [82],
magnetic biasing [133], and AA-type bilayer stacking
(BLG) [134], hBN [135], and metals Ag, Al, and Au,
with conductivities set by a combination [136] of bulk
properties and interlayer atomic spacing.
An intriguing prediction that emerges from the LDOS

and CDOS power-bandwidth limits is that the 2D-material
bounds increase more rapidly for smaller separations
(∼1=d4) than for bulk materials (∼1=d3), suggesting that
2D materials should overtake bulk materials as optimal,
with the precise transition depending on the bound pre-
factors and, crucially, the relative 2D and bulk material
figures of merit. In Fig. 6, we consider Drude models for

(a) (b)

FIG. 6. Comparison of average LDOS bounds for Drude-like 3D and 2D materials with identical decay constants ωp and material loss
rates γ ¼ 0.01ωp. (a) Isocurves of the average LDOS bound, which increase as both center frequency and distance decrease. (b) For a
small enough emitter-scatterer distance d, 2D materials are clearly superior, whereas for modest center frequencies and larger distances,
3D materials exhibit a larger maximum response. Such behavior arises from the fact that the bounds for 2D materials scale as 1=d4,
in contrast to 1=d3 scaling for bulk materials. The dotted curve delineates the regions within which 3D or 2D materials are superior.
The bandwidth-to-center-frequency ratio Δω=ω0 is set to 0.1.
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both a 2D conductivity [σ ¼ iωp=ðωþ iγÞ] and a bulk-
material susceptibility [χ ¼ −ω2

p=ðω2 þ iγωÞ] and plot
isocontours for the material FOMs of each in panel (a).
In Fig. 6(b), we trace out the region of frequency and
bandwidth for which the bulk 3D material has a larger
maximal response and the region for which the 2D material
offers larger maximal response. This line will be different
for every 2D/bulk-material pair, and it is determined by
Eqs. (23) and (24) and their CDOS analogs.
The above discussion about the material FOM as a

function of bandwidth is particularly relevant for LDOS
and CDOS, where different source configurations lead to
different center frequencies and bandwidths. For near-field
RHT, as shown in Sec. IV, the center frequency is fixed (at
zero), the bandwidth is uniquely determined by the temper-
ature, and the material FOM takes a particularly simple
form, fðTÞ ¼ χði

ffiffiffi
2

p
kBT=ℏÞ. At practical temperatures of

interest, the material FOM is determined by the suscep-
tibility at an infrared frequency, except along the imaginary
frequency axis instead of the real line. Dielectrics have
near-constant susceptibilities over this range; surprisingly,
polar dielectrics, which have resonant transitions in the
infrared, corresponding to surface-phonon-polariton modes,
have no resonant peaks along the imaginary axis, and exhibit
dielectriclike permittivities and material FOMs. For plas-
monic materials, we can use a Drude model to describe the
material FOM since kBT=ℏ is typically an infrared fre-
quency. For a Drude model with plasma frequency ωp and
loss rate γ, the material FOM is

fðTÞ ¼
ℏ2ω2

pffiffiffi
2

p
kBTðℏγ þ

ffiffiffi
2

p
kBTÞ

: ð42Þ

Materials with large plasma frequency and small γ are ideal
for maximum heat transfer.
Figure 7 shows the material FOM for common plas-

monic materials, all exhibiting a decreasewith temperature.
Although this may appear counterintuitive, it does not
imply that maximal NFRHT decreases with temperature, as
Eq. (39) has a separate T4 multiplicative factor. Instead,
such behavior reflects the fact that increasing temperature
has the same effect as increasing material loss due to the
larger bandwidth over which NFRHT occurs. We can
understand this through two alternative vantage points:
The larger bandwidth increases the imaginary part of the
complex frequency at which the equivalent scattering
problem occurs, and moving higher into the UHP increases
loss; alternatively, in Sec. II A, we showed that LDOS
quantities are subject to sum rules, and thus increasing
bandwidth necessarily reduces the average response. For
nondispersive dielectrics, the material FOM does not
depend on temperature, and it takes on small values relative
to metals (which usually have large susceptibilities at small
frequencies), as shown in the inset of Fig. 7.

We can derive a particularly simple form of the NFRHT
bound, Eq. (39), for plasmonic materials with f given by
Eq. (42). For many such materials, at practical temperatures
of interest, the material loss rate γ for many materials is
much larger than γ ≫ kBT=ℏ. In the near field, the
separation distance d is much smaller than λT , such that
the exponential factor in Eq. (39) is approximately 1.
Assuming that both bodies consist of the same material, we
can plug Eq. (42) into Eq. (39) to arrive at the following
bound:

H1→2

A
≤
2

ffiffiffi
2

p

π2
ω2
pkBT
γd2

¼ σT4

& ffiffiffi
2

p
β

!
λT
d

"
2 ωp

γ

ωp

kBT=ℏ

'
:

ð43Þ

Thus, we see that there are three enhancements relative to
a blackbody: the near-field distance enhancement, an
enhancement from the ratio of the plasma frequency to
the loss rate, and an enhancement from the ratio of the
plasma frequency to an effective thermal frequency.
Thematerial FOMextends in a natural way to anisotropic,

magnetic, and even spatially inhomogeneous media, as
shown in the SM [78]. Nonlocality, wherein the polarization

FIG. 7. Comparison of material FOM fðTÞ in the context of
NFRHT for a variety of conventional metals. The left inset shows
the orders-of-magnitude difference between silver and SiC, a
polar dielectric that supports surface-phonon polaritons at infra-
red frequencies yet has a small material FOM due to its non-
Drude-like permittivity. The right inset shows the mean energy
spectrum Θ (normalized to its maximum value) at different
temperatures. The decaying FOM reflects increasing loss from
bandwidth, which broadens with temperature. For a practical
range of temperatures as shown here, metals are superior under
this metric compared to dielectrics. Generally, fðTÞ favors
materials with large plasma frequency ωp and small material
loss rate γ.
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field at a position x depends on the electromagnetic field at
another x0, can also be incorporated for certain hydrody-
namic models [137–139]. An intriguing open question is
whether density functional theory models can be bounded in
a similar fashion. Such bounds couldmotivate and clarify the
search for new “quantum materials.”

VI. EXTENSIONS AND SUMMARY

We have established a framework for identifying upper
bounds to near-field optical response over any frequency
bandwidth of interest, with an emergent material FOM
that enables quantitative comparisons of any material. We
derived bounds for three optical-response functions: the
LDOS, a measure of the spontaneous-emission enhance-
ment for any electric or magnetic dipole (or atomic dipolar
transition), CDOS, a field-correlation function, and radia-
tive heat transfer, a measure of energy transfer from thermal
fluctuations. The property of these response functions that
is critical to our framework is the fact that they can be
related to the imaginary part of a function that is analytic
in the upper half of the complex-frequency plane. Here, we
explore how our complex-analytic framework can be
extended to other optical response functions.
There are a few near-field quantities that map closely to

LDOS. First, atomic Lamb shifts due to inhomogeneous
electromagnetic environments [44,45] are given by fre-
quency integrals of

Im Γijðx;x;ωÞ; ð44Þ

multiplied by frequency-dependent prefactors that include
the atomic frequencies and position matrix elements.
Hence, the sum rules and power-bandwidth limits derived
here can be directly extended to the emitter-environment
coupling rate in the Lamb shift. Second, Raman scattering
[140] is a process in which a pump wave interacts with a
molecular transition and subsequent emission that is
potentially enhanced by the electromagnetic environment.
It appears possible to bound this interaction above by the
product of the LDOS at the separate pump and emission
frequencies, in which case the framework herein can be
applied for sum rules and bounds. We discuss the derivation
and bounds to this process in a separate publication [141].
A more complex case is that of free-electron radiation

(e.g., Smith-Purcell, Cherenkov, etc.), in which a free
electron at high speed (of order c) interacts with a
structured medium to generate electromagnetic radiation.
The incident electromagnetic field of a free electron is
proportional to a modified Bessel function. One difficulty
that arises in considering sum rules and power-bandwidth
limits in this case is that the modified Bessel function has a
logarithmic frequency dependence at the origin, rendering
it difficult to apply standard contour-integral techniques as
we have done here. In two dimensions, a constant-velocity
free electron emits (evanescent) plane waves, and sum rules

and bounds appear to emerge in a straightforward way. The
three-dimensional case may be more difficult, however.
Another complication emerges when the dipolar sources

are embedded within the scatterers of interest. This is typical
of theCasimir force,which is amomentum-transport quantity
arising from vacuum-induced fluctuations. It appears pos-
sible to derive sum rules for such a quantity by exploiting the
samegeneralized reciprocity [117] that we used for near-field
radiative heat transfer. We will consider sum rules, power-
bandwidth limits, and interesting physical consequences for
Casimir physics in an upcoming publication [142].
Finally, we consider extensions of this framework to

cases when the incident field is not generated by a localized
dipolar or free-electron source but instead by a plane wave.
At first glance, it would appear that the conventional optical
theorem [33,62–64] provides a simple analytic quantity to
serve as the basis for the contour-integral and energy-
conservation approaches developed here. Yet, the bounds
derived by such an approach yield a term that grows
exponentially with bandwidth [the opposite of the expo-
nential decay seen in Eq. (22)]. Such a dependence is not
physical—known sum rules [25] would contradict it—and
is instead an indication that the energy constraints devel-
oped herein, based on the positive-definite quantities in
Eq. (19), may not be optimal for plane-wave sources.
Modified constraints may be required to develop power-
bandwidth limits for plane-wave scattering.
The bounds derived here, and those suggested above,

suggest a tremendous design opportunity in near-field nano-
photonics. For various canonical structures, there are fre-
quency ranges at which they come close to reaching the
bounds, but there are also wide frequency ranges at which
there is a sizable gap. Newdesigns, and new approaches such
as large-scale computational “inverse design” [61,101–103],
offer the prospect for overcoming the gap and revealing the
physical principles underlying optimal operation.
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2

I. SUM RULES AND POWER–BANDWIDTH LIMITS FOR NON-VACUUM BACKGROUND

If the emitter and scatterer are embedded in a background material with a scalar, non-dispersive permittivity "b
and permeability µb, LDOS is modified as follows:

⇢(!) = Im
X

j


1

⇡!

�
"bpj

·Es,j(x0) + µbmj ·Hs,j(x0)
��

= ImTr


1

⇡!
⌫b�s(x0,x0,!)

�
, (S1)

where ⌫b is a diagonal 6⇥ 6 matrix:

⌫b =

✓
"bI

µbI

◆
. (S2)

Then, to update the sum rules and power–bandwidth limits throughout the paper, ⌫b (or "b and µb individually) is
directly inserted into Eqs. (3, 5, 9, 17, 21) and the expression for ↵LDOS after Eq. (4) of the main text.

II. HIGH-FREQUENCY SCALING BEHAVIOR OF LDOS

This section analyzes the high-frequency asymptotic behavior of the frequency-resolved LDOS, to show that its all-
frequency integral converges to a finite value. In order to do so, we need to rewrite LDOS in terms of the polarization
currents induced in the scatterer V by a point dipole source in its vicinity. By encoding the material properties of the
scatterer in the induced polarization P instead of the scattered field Es, we can better understand the high-frequency
scaling behavior of LDOS and hence the validity of its sum rule as will be demonstrated here. Starting from Eq. (2) of
the main text, LDOS can be expressed in terms of the free-space Green’s function GEE , omitting the subscript in this
section for clarity (we only consider electric LDOS in the presence of a nonmagnetic material for simplicity, but the
high-frequency asymptotics are unchanged even if we include magnetic LDOS and/or consider magnetic materials):

⇢E(!) =
1

⇡!
Im
X

j

pj(x0) ·Es,j(x0)

=
1

⇡!
Im
X

j

ˆ
V

p
T

j
(x0)G(x0,x)P(x)

=
1

⇡!
Im
X

j

ˆ
V

P
T (x)GT (x0,x)pj(x0)

=
1

⇡!
Im
X

j

ˆ
V

P
T (x)G(x,x0)pj(x0)

=
1

⇡!
Im

ˆ
V

E
T

inc
(x)P(x) (S3)

where G(x,x0)pj(x0) is the electric field incident on x from an electric dipole oriented along pj at x0. In the
derivation, we have also taken the transpose of the integrand (which does not a↵ect ⇢, a scalar) and then used
the relation G

T (x0,x) = G(x,x0), which follows from reciprocity [1]. Note that Eq. (S3) represents the electric
component of the expression in Eq. (20) in the main text, and the steps leading to Eq. (S3) show explicitly how the
expression in Eq. (20) is derived as well.

In the high-frequency limit, the polarization field must decay towards zero (the bound charges cannot respond to
such high frequencies), and on physical grounds [2] the decay must occur in proportion to 1/!2. Conventionally,
the decay constant is chosen to be a “plasma frequency” !p that is physically meaningful for metals but applies to
dielectrics as well. Because the scatterer becomes transparent at high frequencies, the Born approximation applies
and the polarization field will be directly proportional to the incident field:

P(! ! 1) = �"0
!2
p

!2
Einc. (S4)

Inserting Eq. (S4) into Eq. (S3) results in a term of the form Im
´
V
E

2

inc
, which can be solved using the free-space

Green’s function G by noticing that the conventional definition for LDOS averages over all dipole orientations:

Im

ˆ
V

|Einc|2 ! Im
X

ij

ˆ
V

|Gij |2. (S5)
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~1/ω

FIG. S1: High-frequency behavior of electric LDOS for a Drude metal with loss rate � = 0.1!p and distance
d = 0.1c/! from halfspace. For frequencies much larger than the plasma frequency !p, it falls o↵ as 1/! (in an
oscillatory manner).

The incident field is given by Green’s function multiplied by the dipole polarization (with unit magnitude). The
Green’s function is [3]:

Gij =
k2eikr

4⇡r

✓
1 +

i

a
� 1

a2

◆
�ij +

✓
�1� 3i

a
+

3

a2

◆
xixj

r2

�
(S6)

where a = kr, k = !/c. As a side remark, s(!) (the complex extension of LDOS) decays exponentially in the upper
half complex-! plane due to the term eikr, leaving us to only worry about real frequencies to confirm the validity of
LDOS sum rule. In the limit as ! ! 1, we can keep only the highest order term in ! for G2

ij
, resulting in the following

asymptotic expansion (dropping uninteresting numerical prefactors — we only care about the scaling behavior of !):

⇢E(! ! 1) ⇠ !

ˆ
V

sin(2!r/c). (S7)

An interesting remark about the sin(2!r/c) term is that it arises from taking the square of individual components of
G instead of its Frobenius norm [4], which would get rid of the oscillatory term eikr and hence sin(2!r/c) in Eq. (S7).
This is closely related to the fact that we take our dipole source to be real (p = p), as it allows us to rewrite LDOS
as a volume-integral expression in terms of Einc in Eq. (S3). For various computations, it appears that

´
V
sin(2!r/c)

tends to scale as sin(!)/!2, rendering ⇢E(! ! 1) ⇠ sin(!)/!.
While the high-frequency scaling behavior of LDOS depends on the scatterer geometry, we can still investigate under

what conditions ⇢(! ! 1) falls o↵ “su�ciently rapidly” for
´1
0
⇢(!) d! to be finite. Recalling that

´1
0

sin(x)/xp dx
is convergent for p > 0, our requirement for a valid sum rule is as follows (assuming an oscillatory term):

⇢(! ! 1) ⇠ O(1/!"), " > 0. (S8)

What Eq. (S8) says is that
´
V
sin(2!r/c) should fall o↵ as sin(!)/! or faster for LDOS to decay at large enough

frequencies. As a prototypical example, Fig. S1 shows that electric LDOS falls o↵ as 1/! for a halfspace. In fact,
our sum rule for LDOS appears to hold for all geometries (subject to the limiting procedure for singular geometries
discussed in the main text).

III. SUM RULE DERIVATION

In this section, we lay out in detail how the sum rule in Eq (4) can be derived starting from Eq (2) and Eq (3) of
the main text. Eq (3) defines s(!) as a complex-valued function that is analytic in the upper half of the complex-!
plane. Our goal is to construct a closed contour C that includes the real line and is analytic inside C, so that we
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can apply Cauchy’s integral theorem to conclude that the integral over C vanishes. However, s(!) has a simple pole
at ! = 0, which forces us to avoid the origin and instead integrate over the infinitesimally small upper semicircle
(“bump” at the origin as shown in Fig. 2(a) of the main text). Since the scattered fields decay exponentially at positive
imaginary frequencies, the integral over the infinite semicircle vanishes. This leaves us with the integral over the real
line (except at the singularity at ! = 0) and that over the “bump.” The latter can be straightforwardly evaluated in
polar coordinates, resulting in the following (principal value of the) integral of s(!) over all real frequencies (assuming
real-valued dipole amplitudes as in the main text):ˆ 1

�1
s(!) d! = lim

!!0

⇡i
X

j

1

⇡
⇠T
j
(x0) s,j(x0)

= i
X

j

[⇠T
j
(x0) s,j(x0)]|!=0. (S9)

The zero-frequency limit follows from the fact that our “bump” can be chosen arbitrarily small in radius. Recalling
from Eq. (2) that ⇢(!) = Im s(!) on the real axis and that ⇢(!) = ⇢(�!), we obtain the sum rule for LDOS after
taking the imaginary part on both sides of Eq. (S9):ˆ 1

0

⇢(!) d! =
1

2
Re
X

j

[⇠T
j
(x0) s,j(x0)]|!=0. (S10)

Equation (S10) is our sum rule for LDOS, identical to Eq. (4) in the main text since
P

j
⇠T
j
(x0) s,j(x0) =

Tr�s(x0,x0,!) for summation over j = {x, y, z}.
In the main text, we have assumed a scalar permittivity " as it reduces ↵LDOS = 1

2
Re
P

j
[⇠T

j
(x0) s,j(x0)]|!=0 to

simple analytical form for certain geometries. However, we did not make such an assumption in deriving Eq. (S10),
and so the definition of ↵LDOS is valid for tensor permittivities as well.

IV. POSITIVITY OF ↵LDOS

While not immediately obvious, the sum-rule constant ↵LDOS is a positive quantity for arbitrary geometries and
materials. For simplicity, we only consider electric fields—the result presented here carries over to magnetic LDOS
after appropriate replacements (" ! µ, E ! H). To prove the positivity of ↵LDOS, it is useful to express it in terms
of the polarization currents induced, and hence the field, in the scatterer V (following the procedure in Eq. (S3)):

↵LDOS =
1

2
Re
X

j

[pT

j
(x0)Es,j(x0)]|!=0 =

1

2
Re

ˆ
V

E
T

inc
(x)P(x)|!=0. (S11)

In what follows, the fields are all evaluated in the electrostatic regime.
Expressing E as a sum of the incident and scattered components Einc and Es respectively, where V + denotes the

entire volume outside the scatterer (where the susceptibility is zero):ˆ
V

E
T

inc
P =

ˆ
V

E
T

inc
�E =

ˆ
V

E
T

inc
�Einc +

ˆ
V

E
T

inc
�Es (S12)

=

ˆ
V

E
T

inc
�Einc + 2

ˆ
V

E
T

inc
�Es +

ˆ
V+V +

E
T

s
"Es. (S13)

In going from the first to the second line, we have used the following relation, which can be derived by expressing
the integral over V +,

´
V + E

T

s
"Es, in terms of the fields inside the scatterer V through repeated use of the divergence

theorem: ˆ
V

E
T

inc
�Es = �

ˆ
V+V +

E
T

s
"Es. (S14)

Rewriting Eq. (S13) in a more suggestive form,ˆ
V

E
T

inc
�E =

ˆ
V

�
Es + �"�1

Einc

�T
"
�
Es + �"�1

Einc

�
+

ˆ
V

E
T

inc

�
�� �2"�1

�
Einc +

ˆ
V +

E
T

s
"Es (S15)

=

ˆ
V

�
Es + �"�1

Einc

�T
"
�
Es + �"�1

Einc

�
+

ˆ
V

E
T

inc
"0�"

�1
Einc +

ˆ
V +

E
T

s
"Es (S16)

> 0 (S17)



5

since � and " are assumed to be hermitian and positive-definite (they also commute, since �" = ("� "0I) " =
" ("� "0I) = "� and similarly for their inverses and squares). In going from the first to the second line, we used the
fact that �� �2"�1 = �

⇥
I � ("� "0I) "�1

⇤
= "0�"�1. Equation (S17) thus shows that ↵LDOS > 0.

An intuitive way of seeing that ↵LDOS is positive is to consider an infinitesimally small volume of a scatterer. Since
we know that ↵LDOS is by definition zero in free space, the presence of an arbitrarily small scatterer should also have
↵LDOS arbitrarily close to zero and positive (and hence positive for any nonzero volume). Otherwise, the presence of
a scatterer with negative ↵LDOS would imply from our monotonicity theorem that further shrinking its volume (until
it becomes negligible in spatial extent) will cause ↵LDOS to become more and more negative—in contradiction with
the fact that ↵LDOS = 0 in the absence of a scatterer.

V. DERIVATION OF ↵LDOS FOR CANONICAL GEOMETRIES

If the scattered fields are known at zero frequency, we can use the expression from Eq. (S10) to directly evaluate
↵LDOS:

↵LDOS =
1

2
Re
X

j

[⇠T
j
(x0) s,j(x0)]|!=0 (S18)

where the dipole source is at x0 and  s,j , here evaluated at zero frequency, denotes the scattered field due to ⇠j ,

a unit dipole polarized along ĵ. In what follows, we use the image charge method to exactly determine the elec-
tro/magnetostatic scattered field for canonical geometries. Except for a halfspace, these geometries do not admit
closed-form expressions for ↵LDOS for finite ", and so for non-halfspace geometries we assume conductive materials
(that are perfect conductors at zero frequency). For simplicity, we focus on the electric LDOS in this section. Duality
simplifies the corresponding computations for magnetic LDOS.

A. Halfspace

Consider a plane interface separating the two semi-infinite half spaces—vacuum with permittivity "0 = 1 at z > 0
and a dielectric with (electrostatic) permittivity " at z < 0. In the electrostatic regime, a dipole pj a distance d above
the interface will create an image dipole with some orientation at a distance d below the interface. Since the LDOS
due to randomly oriented dipoles equals that for dipoles each along one of the x, y, z-axis,

1

2

X

j

pj ·Es,j(x0) =
1

8⇡(2d)3

X

j

pj · [3(p0
j
· r̂)r̂� p

0
j
]

=
1

16⇡d3
"� 1

"+ 1
(S19)

where p
0
j
is the image dipole due to pj and r̂ the unit vector pointing from p

0
j
to pj (r̂ = ẑ here). The e↵ect of the

dielectric medium with permittivity " at z < 0 is to introduce the prefactor "�1

"+1
(which simplifies to 1 for perfect

conductors, as expected) in the image charges [5] in order to satisfy the requirement of continuous tangential fields
at z = 0. From p

0
x
= � "�1

"+1
px, p0

y
= � "�1

"+1
py, p0

z
= "�1

"+1
pz, we obtain the final result in Eq. (S19). Adding the

corresponding term for magnetic LDOS, we arrive at ↵LDOS for a halfspace in Eq. (5) of the main text.

B. Sphere

A dipole pj is placed at a distance h from the center of a perfectly conducting sphere of radius R such that it is
outside of the sphere (h > R). For simplicity, assume that the dipole lies along the z-axis with the origin coinciding
with the center of the sphere. For vanishing tangential fields on the spherical surface, the image dipole p0

j
will be at a

distance R
2

h
from the center of sphere (also along z-axis) such that p0

x
= �

�
R

h

�3
px, p0

y
= �

�
R

h

�3
py, p0

z
=
�
R

h

�3
pz.



6

Denoting the distance between the source and image dipoles as r = h
h
1�

�
R

h

�2i
,

1

2

X

j

pj ·Es,j(x0) =
1

8⇡r3

X

j

pj · [3(p0
j
· ẑ)ẑ� p

0
j
]

=
1

2⇡h3

h
1�

�
R

h

�2i3

✓
R

h

◆3

. (S20)

Since h = R+d where d is the distance from the dipole to the nearest surface of the sphere, we arrive at the following
result:

↵LDOS =
R3

2⇡(R+ d)6
✓
1�

⇣
R

R+d

⌘2◆3
. (S21)

While we assumed the dipole to be on the z-axis, Eq. (S21) holds for any dipole a distance d away from the surface
(as long as we sum over random orientations) from spherical symmetry.

C. Two halfspaces

The derivation of ↵LDOS for two perfectly conducting halfspaces closely mimics the halfspace case, but now there
are two boundary conditions to safisfy—the tangential fields must vanish at both interfaces. Taking the two halfspaces
to be at z < 0 and z > d (and vacuum with permittivity "0 in between the two halfspaces), consider a dipole pj

placed in between the two halfspaces at z = d

2
. This will create image dipoles on each halfspace a distance d from the

dipole source. However, the image dipole in one halfspace will cause a non-vanishing tangential field at the interface
of the other halfspace, so that these image charges leads to another set of image charges (now a distance 2d from the
dipole source on both sides). Iterating this procedure, we obtain the following expressions for the parallel (z-axis)
and perpendicular (x, y-axis) components:

1

2

X

j

pj ·Es,j(x0) =
1

4⇡d3

(
2
�
1 + 1

23
+ 1

33
+ ...

�
j = z

1� 1

23
+ 1

33
� ... j = x, y

(S22)

where the alternating/constant sign for the perpendicular fields follow from the fact that the image dipole par-
allel/orthogonal to the interfaces is opposite/same in sign to the dipole that created it (which itself is an image
dipole until one arrives at the original dipole source). As expected on physical grounds, the infinite summations

corresponding to infinite number of image charges converge to finite values given by ⇣(3) =
1P

n=1

1

n3 = 1.20... and

⌘(3) =
1P

n=1

(�1)
n�1

n3 = 0.90... (where ⇣ and ⌘ are Riemann zeta and Dirichlet eta functions respectively [6]). Using

these relations in Eq. (S22) gives us ↵LDOS for two halfspaces separated by d:

↵LDOS =
2.10...

2⇡d3
(S23)

where the prefactor 2.10... is equivalent to ⇣(3) + ⌘(3).

VI. GENERALIZATION OF MONOTONICITY THEOREM FOR ANISOTROPIC MATERIALS

In deriving the monotonicity theorem in Sec. IB of the main text, we have taken the permittivity and permeability
to be isotropic. In this section, we generalize Eq. (8) of the main text for the case of anisotropic media, following
the prescription given in [7]. For simplicity, we consider electric fields only—extension to the magnetic case is
straightforward after appropriate replacements (" ! µ, E ! H, D ! B). Working in a local coordinate system
for each point on the geometrical boundary dividing regions of permittivity "1 (scatterer) from "0 (background), we
define F = (D1, E2, E3) such that F1 = D? and F2,3 = Ek. We can then write �↵LDOS under outward deformation
of the scatterer: ˆ

�hnF · [⌧ ("1)� ⌧ ("0)] · FdA, (S24)
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where ⌧ is a 3⇥ 3 matrix given by:

⌧ (") =

0

@
� 1

"11

"12
"11

"13
"11

"21
"11

"22 � "21"12
"11

"23 � "21"13
"11

"31
"11

"32 � "31"12
"11

"33 � "31"13
"11

1

A . (S25)

For scalar, isotropic permittivities "1 and "0, Eq. (S24) reduces to Eq. (8) of the main text. Thus, a monotonicity
theorem holds in the tensor-material case if the matrix ⌧ ("1)� ⌧ ("0) is positive-definite.

VII. MONOTONICITY THEOREM FOR CONDUCTIVE MATERIALS

The monotonicity theorem derived in the main text applies for any finite ", and the fact that it works for arbitrarily
large " suggests that such a theorem may apply in the perfect-conductor (at zero frequency case). In this section,
we provide an alternative derivation of the monotonicity theorem for the perfect-conductor case. From Sec. IB of
the main text, we wish to show that �↵LDOS = [ 1

2
⇠(x0) ·� s(x0)]|!=0 > 0. Working at zero frequency throughout

this section, imagine a small change in the geometry of the scatterer such that the LDOS dipole source induces a
polarization current Pind in a volume �V = �xndA small compared to V , where �xn indicates the size of deformation
normal to the scatterer boundary. Under this condition, Pind = �n̂ = "0E where n̂ denotes the normal to the
conducting surface and � the surface charge density. This follows from the fact that for electric conductors, the
electric field is normal to the conducting surface such that E = �

"0
n̂. Likewise, Mind = µ0H for magnetic conductors.

Based on these relations, we arrive at the following expression (absorbing "0 and µ0 in the definition of G, which
represents the Green’s function in the presence of scatterer V ):

� s(x0) =
1

2

ˆ
�hn�(x0,x)�ind(x)dA

=
1

2

ˆ
�hn�(x0,x) (x)dA. (S26)

Using Eq. (S26) and taking transpose on both sides (to exploit reciprocity [1]), we can derive �F as follows:

�↵LDOS =
1

2

ˆ
�hn⇠

T (x0)�(x0,x) (x)dA

=
1

2

ˆ
�hn 

T (x)�(x,x0)⇠(x0)dA

=
1

2

ˆ
�hn| (x)|2dA > 0. (S27)

Equation (S27) proves our monotonicity theorem for perfect conductors. Notice that the derivation presented here
closely mirrors that of Eq. (S3) in that we take the transpose of the integrand, use reciprocity (at zero frequency, the
“o↵-diagonal” 3 ⇥ 3 matrices GEH and GHE vanish and we do not have to worry about sign issues associated with
them in taking the transpose of �), and the relation  (x) = �(x,x0)⇠(x0) (but now � is not the free-space Green’s
function, but one in the presence of scatterer V before shape deformation).

VIII. CONVEX CONSTRAINTS IN THE UHP

In this section, motivate our definition of 'A and 'E in Eq. (19) of the main text, the complex extensions of the
non-radiative and total power respectively. To this end, we start from the complex-frequency Maxwell’s equations:

✓
r⇥

�r⇥

◆

| {z }
⇥

✓
E

H

◆

| {z }
 

+i!

✓
"

µ

◆

| {z }
⌫

✓
E

H

◆
=

✓
Je

Jm

◆

| {z }
J

(S28)

where ⇥ is Hermitian and complex-symmetric. If we separate the fields into incident and scattered components,  inc

and  s respectively, with the incident field as the solution of ⇥ inc + i!⌫ = J (⌫0 is the background medium), then
the scattered field is the solution to

⇥ s + i!" s = �i!� inc (S29)
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where � = ⌫ � ⌫0.
At complex frequencies, passivity requires

Im (!�) > 0, (S30)

and, consequently, Im (!") > 0 as well. We can use this simple fact to show that two quantities (identical to the
absorbed and scattered powers at real frequencies) are positive-definite. We partition the space into two regions, the
scatterer occupying the volume V , and the external region Vout. We assume the outer region is finite, which can
be accomplished using perfectly matched layers [8, 9]. Then by the passivity condition, two quantities that must be
greater than zero are:

'A =
1

2
Im

ˆ
V

 † (!�) 

's =
1

2
Im

ˆ
Vout

 †
s
(!⌫) s (S31)

where 'A and 's are complex extensions of absorbed (non-radiative) and scattered power in that they reduce to the
corresponding real-valued powers at real frequencies.

Through two applications of the divergence theorem we can rewrite 's in terms of quantities over the interior
volume V ,

's =
1

2
Im

ˆ
Vout

 †
s
[�i⇥ s]

= �1

2
Re

ˆ
S

n̂in ·Es ⇥Hs

=
1

2
Re

ˆ
S

n̂ ·Es ⇥Hs

= �1

2
Re

ˆ
V

 †
s
⇥ s

= �1

2
Im

ˆ
V

 †
s
(!⌫ s + !� inc) (S32)

where the overline denotes complex conjugation and n̂ a unit normal pointing outwards from the volume V. Note that
in the first line we used the fact that � = 0 in the exterior volume. This is the key to the derivation: the scattered
power is the power radiated to the exterior by currents in the interior volume, and this separation of sources and
power flow ensures positivity.

If we define 'E = 'A + 's (motivated by extinction), then we have:

'E =
1

2
Im

ˆ
V

 †!� �  †
s
(!⌫ s + !� inc)

=
1

2
Im

ˆ
V

 †!� �  †!⌫ �  †
inc
!⌫ inc +  †!⌫ inc +  †

inc
!⌫ �  †!� inc +  †

inc
!� inc

=
1

2
Im

ˆ
V

 †!⌫0 inc +  †
inc
!⌫ �  †!⌫0 �  †

inc
!⌫0 inc

=
1

2
Im

ˆ
V

 †
⇣
!⌫0 � (!⌫0)

†
⌘
 inc +  †

inc
!� �  †!⌫0 �  †

inc
!⌫0 inc (S33)

Finally, with some notational simplification (using double prime to denote the imaginary part of a matrix), we have

'E =
1

2
Im

ˆ
V

 †
inc

(!�) +Re

ˆ
V

 † (!⌫0)
00  inc �

1

2

ˆ
V

 † (!⌫0)
00  +  †

inc
(!⌫0)

00  inc (S34)

We can see that when the frequency is real and the background is lossless (⌫00
0
= 0), the last three terms are zero

and we are left with the first term, which is identical to the extinction at real frequencies. Again, this motivates the
interpretation of 'E as representing a complex extension of total power.

Combining Eq. (S31) and Eq. (S34) ,We can write the constraint 'A  'E as

1

2

ˆ
V

 † (!⌫)00   1

2
Im

ˆ
V

 †
inc

(!�) +Re

ˆ
V

 † (!⌫0)
00  inc �

1

2

ˆ
V

 †
inc

(!⌫0)
00  inc (S35)
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or, equivalently,

'A =
1

2

ˆ
V

 † (!⌫)00   1

2
Im

ˆ
V

 †
inc

h
!⌫ � (!⌫0)

†
i
 � 1

2

ˆ
V

 †
inc

(!⌫0)
00  inc = 'E (S36)

In the main text, 'A and 'E are defined as the left- and right-hand sides of Eq. (S36). While this di↵ers slightly
from the definition given in Eq. (S31) (where 'E = 'A + 's) , such di↵erence does not matter — complex extension
of power need not be uniquely defined as long as the di↵erent extensions agree at real frequencies. In fact, the two
ways of defining 'A and 'E give the same constraint in Eq. (S36).

IX. FORMULATION OF POWER–BANDWIDTH BOUNDS

Returning to the optimization problem of Im s(!0+i�!) appearing in average LDOS (see Eq. (16) of the main text),
we wish to formulate it in terms of a quantity linear in (total) field, which is then amenable to convex optimization. To

this end, we follow the procedure in Eq. (S3) and define a modified incident field e inc =
�
Einc �Hinc

�T
(the minus sign

in front of Hinc appears from using reciprocity to the magnetic Green’s function). After using the following relation
between polarization currents � and fields  , � = � , we obtain the following expression (where ! = !0 + i�!):

Im s(!) = Im


1

⇡!

ˆ
V

e T

inc
(!)�(!) (!)

�
. (S37)

In light of Eq. (S37), maximizing Im s(!0 + i�!) subject to energy-conservation constraints in the UHP reduces to
the following optimization problem (evaluated at a complex frequency):

maximize
 

Im
⇥
fT (!�) 

⇤

subject to  † (!⌫)00   Im
h
 †
inc

⇣
!⌫ � (!⌫0)

†
⌘
 
i
�  †

inc
(!⌫0)

00  inc

(S38)

where the volume integrals are implicit in the vector-vector multiplications and f = 1

⇡!2
e inc. For electric LDOS, e inc

only contains electric fields, which greatly simplifies the problem. But, we keep the term as it is for sake of generality,
simplifying only after the optimal solution is derived. Before solving the optimization problem, it is helpful to rewrite
it in terms of generic variables:

maximize
 

Im
⇥
aT 

⇤

subject to  †b  Re
⇥
c† 
⇤
� d

(S39)

where

a = (!�)T f

b = (!⌫)00

c = i
h
(!⌫)† � !⌫0

i
 inc

d =  †
inc

(!⌫0)
00  inc

and b = b† (guaranteeing that  †b is real). A straightforward Lagrange multiplier approach yields the optimal
current  in terms of a Lagrange multiplier �:

 =
b�1

2

✓
c� i

�
a

◆
. (S40)

Enforcing the constraint in Eq. (6), per the KKT conditions [10], requires the Lagrange multiplier to satisfy

�2 =
aT b�1a

c†b�1c� 4d
(S41)
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from which we can obtain the figure of merit:

Im
⇥
aT 

⇤
= Im


1

2
aT b�1c� i

2�
aT b�1a

�
(S42)

=
1

2
Im


aT b�1c± i

q
(aT b�1a⇤) (c†b�1c� 4d)

�
(S43)

where we have inserted the expression for � from Eq. (S41) in going from the first to the second line. In the common
case where ⌫00 is a homogeneous, scalar quantity, we can simplify the above expression:

Im
⇥
aT 

⇤
=

1

2b
Im


aT c± i

q
a†a (c†c� 4bd)

�
. (S44)

Since we want to maximize Im
⇥
aT 

⇤
, we want to choose the positive sign in Eq. (S44). Also, after some algebraic

manipulation,

c†c� 4bd = |!�|2  †
inc
 inc (S45)

when the material values are scalar constants (in general, |!|2 †
inc
�†� inc). Rewriting in terms of physical parameters,

Im s(!)  1

2

⇣���(!�)
�
(!⌫)00

��1

(!�)†
���+

���(!�)†
�
(!⌫)00

��1

(!�)
���+ 2

���(!�)
�
(!⌫)00

��1

(!⌫0)
00
���
⌘q

f†f †
inc
 inc.

(S46)

Notice that Eq. (S46) applies to general 6⇥ 6 susceptibility tensor that can be magnetic, anisotropic, nonreciprocal,
and even spatially inhomogeneous. For the case of scalar, homogeneous materials that we are considering, Eq. (S44)
can be further simplified as:

Im s(!) 
 
|!�|2 + |!�| (!⌫0)00

(!⌫)00

!q
f†f †

inc
 inc (S47)

Upon plugging in  inc =
�
Einc
Hinc

�
, Eq. (S47) gives us the contribution for the upper bound of average LDOS arising

from the Lorentzian pole (see Eq. (15) of main text). Since Eq. (S47) bounds Im s(!0 + i�!) in [Eq. (16) of main
text], we arrive at an upper bound for frequency-averaged LDOS:

h⇢i f(!)e�2d�!/c

⇡ |!|
X

j

ˆ
V

 †
inc,j

(!) inc,j(!) dV + 2H!0,�!(0)↵LDOS. (S48)

Equation (S48) is the result used in Eq. (23) of main text. For simplicity, we now consider nonmagnetic materials in
the presence of an electric dipole (Hinc = 0). Calculating the incident electric field in the spirit of Eq. (S5) from the
free-space Green’s function in Eq. (S6), we arrive at the following bound that keeps all the terms in the expansion
(where we bound ↵LDOS by a halfspace enclosing the scatterer V with a minimum emitter-scatterer separation d):

h⇢i  ⇢0(|!|)
f(!) |k|3

8⇡

ˆ
V

6X

n=2

Cne�ar

|k|nrn +
�!/⇡

!2
0
+ (�!)2

1

8⇡d3
(S49)

where f(!) = 1

2|!|

⇣���(!�)
�
(!⌫)00

��1

(!�)†
���+

���(!�)†
�
(!⌫)00

��1

(!�)
���+ 2

���(!�)
�
(!⌫)00

��1

(!⌫0)
00
���
⌘
, which simpli-

fies to f(!) =
⇣

|!�|2+|!�|(!"0)00
|!|(!")00

⌘
for scalar, homogeneous materials, is a material-dependent dimensionless metric,

a = 2 Im!/c, and r denotes the distance from the dipolar source. The coe�cients Cn’s are given by:

C2 = 2

C3 = 4
�!

|!|

C4 = 6� 4

"✓
!0

|!|

◆2

�
✓
�!

|!|

◆2
#

C5 = 12
�!

|!|
C6 = 6.
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We defer the calculations of the integrals appearing in Eq. (S49) to the next section, where we will see how we can use
various approximations to simplify their expressions for canonical geometries. We can also extend Eq. (S49) to the
case of magnetic materials as well as magnetic LDOS by modifying the free-space Green’s function to accommodate
for magnetic fields and/or dipoles.

X. POWER–BANDWIDTH BOUNDS

In our power–bandwidth LDOS bound (Eq. (S49)), we end up with an integral that has 5 terms:

C6

ˆ
e�ar

r6
, C5

ˆ
e�ar

r5
, C4

ˆ
e�ar

r4
, C3

ˆ
e�ar

r3
, C2

ˆ
e�ar

r2
(S50)

where a = 2 Im!/c is proportional to the bandwidth over which averaging occurs. The 1/rn contribution to the
integrand in the first three terms decays su�ciently quickly that the exponential term is not required for convergence.
The term e�ar can simply be bounded above by e�ad and brought out of the integral; for (�!)d/c ⌧ 1, such a
simplification is also nearly tight. Thus, we can use bounds for the first term:

ˆ
e�ar

r6
 e�ad

ˆ
1

r6
= ⇡e�ad

8
>>><

>>>:

1

6d3 halfspace
1

2d4 2D plane
1

3d3 3D spherical shell
1

d4 2D spherical surface,

(S51)

and the second term:

ˆ
e�ar

r5
 e�ad

ˆ
1

r5
= ⇡e�ad

8
>>><

>>>:

1

3d2 halfspace
2

3d3 2D plane
2

d2 3D spherical shell
4

d3 2D spherical surface,

(S52)

and the third term:

ˆ
e�ar

r4
 e�ad

ˆ
1

r4
= ⇡e�ad

8
>>><

>>>:

1

d
halfspace

1

d2 2D plane
4

d
3D spherical shell

4

d2 2D spherical surface.

(S53)

Thus we are left with the final two terms of Eq. (S50) (the 1/rn integrals are calculated separately in Sec. XI). For
those terms, we cannot extract the exponential from the integrand, as the remaining integral is divergent for the 3D
cases. Thus, we compute the integrand with the e�ad term in the integrand.

With that term, we find the bounds:

ˆ
e�ar

r3
 2⇡

8
>>><

>>>:

(ad+ 1)E1(ad) halfspace
e
�ad

d
2D plane

2E1(ad) 3D spherical shell

2 e
�ad

d
2D spherical surface.

(S54)

and

ˆ
e�ar

r2
 2⇡

8
>>><

>>>:

e
�ad

a
halfspace

E1(ad) 2D plane
2e

�ad

a
3D spherical shell

2e�ad 2D spherical surface.

(S55)

where E1(x) = �Ei(�x) and Ei(�x) is the exponential integral.
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For the halfspace, for example, we can put all of this together to bound Eq. (S49) above by

h⇢i
⇢0(|!|)

 f(!)e�ad

8


C6

6|k|3d3 +
C5

3|k|2d2 +
C4

|k|d + 2C3(ad+ 1)E1(ad)e
ad +

2C2|k|
a

�
. (S56)

For a spherical shell, we get the bound

h⇢i
⇢0(|!|)

 f(!)e�ad

8


C6

3|k|3d3 +
2C5

|k|2d2 +
4C4

|k|d + 4C3 E1(ad)e
ad +

4C2|k|
a

�
. (S57)

For a 2D plane:

h⇢i
⇢0(|!|)

 f(!)e�ad

8


C6

2|k|4d4 +
2C5

3|k|3d3 +
C4

|k|2d2 +
2C3

|k|d + 2C2 E1(ad)e
ad

�
. (S58)

Finally, for a 2D spherical surface:

h⇢i
⇢0(|!|)

 f(!)e�ad

8


C6

|k|4d4 +
4C5

|k|3d3 +
4C4

|k|2d2 +
4C3

|k|d + 4C2

�
. (S59)

For simplicity in the above equations, we have dropped the last term in Eq. (S49) coming from ↵LDOS, which is
negligible for bandwidths �! that are smaller than typical frequencies |!| considered.

XI. GREEN’S-FUNCTION-RELEVANT INTEGRALS: HALFSPACES AND SPHERES

We consider integrals of various-order 1/rn and e�ar/rn terms, that arise repeatedly in our various bound formu-
lations.

A. Planar integrals

Here we consider integrals from a point to either a 2D planar surface or a 3D halfspace. For the halfspace, the
integral of some function f(x) can be written

ˆ
f(x) dV ! 2⇡

ˆ 1

d

dz

ˆ 1

0

d⇢ [⇢f(⇢, z)] . (S60)

Equation (S60) can be applied to a 2D planar surface simply by removing the integral over z on the right-hand side,
and thus the 2D-plane integrals below emerge as intermediate steps of the halfspace solution.

1.
´

1

r6
dV

The integral of 1/r6 is

ˆ
1

r6
dV = 2⇡

ˆ
dz

ˆ
d⇢

⇢

(⇢2 + z2)3
=
⇡

2

ˆ
dz

1

z4
=
⇡

6

✓
� 1

z3

◆ ����
1

d

=

(
⇡

6d3 halfspace
⇡

2d4 2D plane
(S61)

2.
´

1

r5
dV

The integral of 1/r5 is

ˆ
1

r5
dV = 2⇡

ˆ
dz

ˆ
d⇢

⇢

(⇢2 + z2)( 5/2)
=

2⇡

3

ˆ
dz

1

z3
=

(
⇡

3d2 halfspace
2⇡

3d3 2D plane
(S62)
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3.
´

1

r4
dV

The integral of 1/r4 is

ˆ
1

r4
dV = 2⇡

ˆ
dz

ˆ
d⇢

⇢

(⇢2 + z2)2
= ⇡

ˆ
dz

1

z2
=

(
⇡

d
halfspace

⇡

d2 2D plane
(S63)

4.
´

e�ar

r3
dV

The integral of e�ar/r3 is

ˆ
e�ar

r3
dV = 2⇡

ˆ
dz

ˆ
d⇢
⇢e�a

p
⇢2+z2

(⇢2 + z2)3/2

= 2⇡

ˆ 1

d

dz


aEi(�az) +

e�az

z

�

=

(
2⇡
⇥
(ad+ 1)E1(ad)� e�ad

⇤
halfspace

2⇡
h
e
�ad

d
� aE1(ad)

i
2D plane,

(S64)

where Ei denotes the exponential integral and E1(x) = �Ei(�x) for positive real x. These expressions can be further
simplified via the bounds

1

2
e�x ln

✓
1 +

2

x

◆
< E1(x) < e�x ln

✓
1 +

1

x

◆
(S65)

5.
´

e�ar

r2
dV

The integral of e�ar/r2 is

ˆ
e�ar

r2
dV = 2⇡

ˆ
dz

ˆ
d⇢
⇢e�a

p
⇢2+z2

⇢2 + z2

= �2⇡

ˆ 1

d

dz Ei(�az)

=

(
2⇡
h
e
�ad

a
� dE1(ad)

i
halfspace

2⇡E1(ad) 2D plane,
(S66)

with the same notation and possible simplification as in the previous section.

6.
´

e�ar

r4
dV

Although we don’t use it in the power–bandwidth limits, it is useful to compare the integral of e�ar/r4 to e�ad

times the integral for 1/r4. The integral of e�ar/r4 is

ˆ
e�ar

r4
dV = 2⇡

ˆ
dz

ˆ
d⇢
⇢e�a

p
⇢2+z2

(⇢2 + z2)2

= ⇡

ˆ 1

d

dz


�a2 Ei(�az) +

e�az(az � 1)

z2

�

=

8
<

:
⇡
h
e
�ad

d
(1 + ad)� a2dE1(ad)

i
halfspace

⇡a2 E1(ad) +
e
�ad

(ad�1)

z2 2D plane.
(S67)
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Note that for ad small (ad ⌧ 1), the halfspace bound simplifies to ⇡e�ad/d, which is exactly what we get when we
pull e�ad out of the integrand and multiply it by the integral of 1/r4. Hence for the typical case of ad small, pulling
the exponential out of the integrand hardly loosens the bound.

B. Spherical integrals

Here we consider integrals from a point to either a 2D spherical surface or a 3D spherical shell of infinite thickess.
Then, the integral of some function f(x) can be written

ˆ
f(x) dV ! 4⇡

ˆ 1

d

dr
⇥
r2f(r)

⇤
. (S68)

Equation (S68) can be applied to a 2D spherical surface by removing the integral over r on the right-hand side, and
thus the 2D-spherical-surface integrals below emerge as intermediate steps of the shell solution. For a smaller solid
angle ⌦, one can always make the replacement

4⇡ ! ⌦ (S69)

1.
´

1

r6
dV

The integral of 1/r6 is

ˆ
1

r6
dV = 4⇡

ˆ
dr

1

r4
=

(
4⇡

3d3 3D spherical shell
4⇡

d4 2D spherical surface
(S70)

2.
´

1

r5
dV

The integral of 1/r5 is

ˆ
1

r5
dV = 4⇡

ˆ
dr

1

r3
=

(
2⇡

d2 3D spherical shell
4⇡

d3 2D spherical surface
(S71)

3.
´

1

r4
dV

The integral of 1/r4 is

ˆ
1

r4
dV = 4⇡

ˆ
dr

1

r2
=

(
4⇡

d
3D spherical shell

4⇡

d2 2D spherical surface
(S72)

4.
´

e�ar

r3
dV

The integral of e�ar/r3 is

ˆ
e�ar

r3
dV = 4⇡

ˆ 1

d

dr
e�ar

r

=

(
4⇡E1(ad) 3D spherical shell

4⇡ e
�ad

d
2D spherical surface,

(S73)

with the same notation and simplifications as the corresponding halfspace sections.
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ω0=4eV  

ω0=3.8eV  

ω0=4.2eV  

ω0=3.65eV  
(a) (b)

Drude-Lorentz

Palik

Drude-Lorentz

Palik

FIG. S2: (a) Electric LDOS from Palik data for permittivity of Ag compared to that based on Drude-Lorentz
multi-oscillator model. (b) Average electric LDOS at various center frequencies, which show close agreement at
center frequencies of 3.65eV and 4.2eV. At frequencies between these two, the di↵erence in average LDOS reflects
the fact that the DL model does not match Palik data very well at these frequencies. The emitter-scatterer distance
d is set to 10nm, and the scatterer here is Ag halfspace.

5.
´

e�ar

r2
dV

The integral of e�ar/r2 is
ˆ

e�ar

r2
dV = 4⇡

ˆ 1

d

e�ar dr

=

(
4⇡

a
e�ad 3D spherical shell

4⇡e�ad 2D spherical surface,
(S74)

with the same notation and possible simplification as the corresponding halfspace sections.

XII. LDOS FROM DRUDE-LORENTZ MODEL VS. PALIK DATA

In Fig. 4 of the main text, we have used the Drude-Lorentz (DL) multi-oscillator model to describe the average
LDOS and bounds for Ag, since it behaves nicely for complex frequencies in the UHP. In principle, however, we can
analytically continue Palik data [11] for permittivity of Ag to the UHP (but using DL model is simpler as it explicitly
provides an analytic expression for permittivity).

Figure S2(a) shows how the DL model fit compares to LDOS for bulk Ag (halfspace). In Fig. S2(b), we compute
the average LDOS for both the DL model and Palik data. Notice that for the latter, since we do not have data for
complex frequencies, we have numerically integrated LDOS (weighted by the Lorentzian in Eq. (15) of main text)
over real frequencies. Although the two results are extremely close to each other at center frequencies of 3.65eV and
4.2eV, with greater deviation at 3.8eV and 4.0eV due to the error incurred in approximating the Palik data by a DL
model.

XIII. LORENTZIAN APPROXIMATION TO THE MEAN PLANCK ENERGY ⇥(!)

In bounding near-field RHT, we have chosen to replace the mean Planck energy ⇥(!) by a Lorentzian, which is
more amenable to contour-integration techniques (involved in bounding RHT). As long as the Lorentzian strictly
is larger than ⇥ for all frequencies, the Lorentzian approximation is indeed a bound for the actual RHT. However,
a more ideal bound is one that minimizes their di↵erence, and in Fig. S3 we compare how closely our Lorentzian
approximates the mean energy.
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Mean Planck

Lorentzian

Mean Planck

Lorentzian
(a) (b)

FIG. S3: (a) Plot of the mean Planck energy and its Lorentzian approximation, both normalized to unity at the
origin. The x-axis is a dimensionless parameter proportional to frequency, given a temperature set by the problem.
(b) Comparison of the integral of these two curves up to some maximum range. Although not clear from the figure,
their integral over all positive frequencies converges and are very close—suggesting that the Lorentzian is indeed a
close bound to the mean energy.

As Fig. S3(a) illustrates, there is close agreement between the two curves (normalized such that they both have unit
magnitude at the origin). In Fig. S3(b), the integrated values are not fully converged, but one can show analytically
that the area for the (peak-normalized-to-unity) Lorentzian and the mean energy is

p
2⇡/2 ⇡ 2.22 and ⇡2/6 ⇡ 1.64,

respectively. Thus, the Lorentzian has about 1.35 times more area than for the mean energy ⇥ as quoted in the main
text. Although their high-frequency asymptotic behavior di↵ers qualitatively (polynomial vs. exponential decay), the
Lorentzian approximation provides a tight bound to ⇥ and thus comes in handy for RHT bounds.

XIV. POWER–BANDWIDTH BOUNDS FOR NEAR-FIELD RHT

Given object 1 at temperature T1 and object 2 at T2, we can write the radiative heat flux between the two
bodies as H1!2(!) = �(!) [⇥(!, T1)�⇥(!, T2)], where ⇥(!, T ) denotes the Planck spectrum and � is a temperature
independent flux rate from incoherent sources in body 1 radiating to body 2. In order to derive upper limits to the
heat flux, we need to bound the structure-dependent flux rate �(!) (since ⇥(!, T ) is a known, broad spectrum).

Starting from the heat flux between two bodies expressed in terms of the electromagnetic Poynting vector,

H1!2(!) =
1

2
Re

ˆ
S

�
E⇥H

�
· n̂

=
1

4

ˆ
S

 †⇤ (S75)

we can relate the fields to the fluctuation currents in volume 1, V1, in terms of the Green’s functions (in index
notation):

H1!2(!) =
1

4

ˆ
S

 i(xs)⇤ij(xs) j(xs)

=
1

4

ˆ
S

ˆ
V1(x)

ˆ
V1(x

0)

�ik(xs,x)�k(x)⇤ij(xs)�jl(xs,x
0)�l(x

0). (S76)

The fluctuation–dissipation theorem [12] gives the ensemble-average of the currents (taking "0 = µ0 = 1 for simplicity):

⌦
�i(x

0)�j(x
00)
↵
FD

=
4

⇡!
⇥(!, T ) Im�ij(!)�(x

0 � x
00). (S77)
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Noting that the additional term in the integrand H!0,�!(!) would pass through to the integrals under the square
roots, we can finally bound:

h�i ⌘
ˆ 1

�1
�(!)H!0,�!(!)d!  1

3

X

{i,j}

ˆ
S

|cij |
q
h⇢⇠i(xs)

ih⇢⇠j(xs)
i. (S85)

While Eq. (S85) depends on the shape of the bounding surface, we can further simplify by noticing that for each
point xs on the bounding surface, we are free to choose our coordinate system such that n̂ is along the z-axis. Then,

since ⇤ =

✓
�ẑ⇥

ẑ⇥

◆
has only four non-zero elements all with unit magnitude, we have that

P
{i,j} |cij | = 4). Also,

by virtue of the o↵-diagonal structure of ⇤, an electric dipole (i = 1, 2, 3) will always be accompanied by a magnetic
dipole (j = 4, 5, 6) and vice versa. Using the fact that h⇢pj(xs)

i  3h⇢Ei and similarly for h⇢mj(xs)
i (also including c

for correct dimensions—equivalent to keeping "0, µ0),

h�i  4c

ˆ
S

q
h⇢Eih⇢Hi. (S86)

Equation (S86) is the result used in Eq.(33) of the main text.

XV. POWER–BANDWIDTH BOUNDS FOR CDOS

Optimizing average CDOS very closely follows the derivation laid out in Sec. IX. In fact, the only di↵erence (apart

from replacing the sum-rule constant ↵LDOS by ↵CDOS) is that we now have to maximize Im
h

1

⇡!

´
V

e T

inc,2
(!)�(!) (!)

i

where e inc,2 =
�
Einc,2 �Hinc,2

�T
is the incident field as if the dipole source were at the measurement position x

instead of the emitter position x0 (up to a sign flip for the magnetic field). With this simple modification, We can
carry over the results in Sec. IX (formulating the optimization problem in the form of Eq. (S39), just with slightly
modified variables) to arrive at the following bound on average CDOS appearing in Eq.(27) of the main text (where
! = !0 + i�!):

h⇢iji 
f(!)

⇡ |!|

s✓ˆ
V

 †
inc,1,i

(!) inc,1,i(!) dV

◆✓ˆ
V

 †
inc,2,j

(!) inc,2,j(!) dV

◆
+ 2H!0,�!(0)↵CDOS (S87)

where  inc,1 is the usual incident field from the dipole at x0. The calculation now proceeds similar to Eq. (S5), but
now we do not sum over the dipole orientations (assuming nonmagnetic materials in the presence of an electric dipole
for simplicity): ˆ

V

|Einc,j |2 !
X

i

ˆ
V

|Gij |2 (S88)

where j refers to the dipole polarization at x0 (or at x if we consider Einc,2,j). In general, Eq. (S88) depends on this
polarization, but we can bound the integral by a polarization-independent term (where r denotes the emitter-scatterer
distance and other terms appearing below are defined near the end of Sec. IX):

X

i

ˆ
V

|Gij |2 =
|k|4 e�ar

16⇡2r2

"����

✓
1 +

i

a
� 1

a2

◆����
2

+ 2Re

 ✓
1 +

i

a
� 1

a2

◆✓
�1� 3i

a
+

3

a2

◆!
x4

j

r4
+

����

✓
�1� 3i

a
+

3

a2

◆����
2 x4

j

r4

#

 |k|4 e�ar

16⇡2r2

"����

✓
1 +

i

a
� 1

a2

◆����
2

+ 2Re

 ✓
1 +

i

a
� 1

a2

◆✓
�1� 3i

a
+

3

a2

◆!
+

����

✓
�1� 3i

a
+

3

a2

◆����
2
#

=
|k|6 e�ar

4⇡2

6X

n=4

Bne�ar

|k|nrn (S89)

where the coe�cients Bn’s are given by:

B4 = 1

B5 = 2
�!

|!|
B6 = 1.



17

where FD indicates that we are averaging over the fluctuation currents (not to be confused with averaging over
frequency bandwidth). Since the Planck spectrum is known, we will simply work with the energy flux �(!) in what
follows.

Inserting the average fluctuations into the power, taking the transpose, and using generalized reciprocity [13]
(�(xs,x) = �

0
T (x,xs) where 0 denotes flipping the sign of 3⇥ 3 o↵-diagonal matrices GEH and GHE) plus Cholesky

decomposition on the Hermitian, positive-definite matrix Im� (expressed as LL†) leads to

�(!) =
1

⇡!

ˆ
S

ˆ
V1

�T

ik
(xs,x)⇤ji(xs) Im�lk(!)�

T

jl
(xs,x)

=
1

⇡!

ˆ
S

ˆ
V1

�
0
ki
(x,xs)⇤ji(xs)Ll↵L

†
↵k

�
0

lj
(x,xs)

=
1

⇡!

X

{i,j}

ˆ
S

ˆ
V1

cij(xs)LT

↵k
�

0
ki
(x,xs)L

T

↵l
�

0

lj
(x,xs) (S78)

where {i, j} indicates the allowed dipole orientations by ⇤ji, which is nonzero only for certain combinations of i, j
and whose structure is reflected in the coe�cients cij . Note that if the fields were from the same dipole (remember

�
0

kj
(x,xs) represents the field due to a �j up to a sign), then the integral over V1 in Eq. (S78) would correspond to

power absorbed in V1 due to that dipole (note also the Im�1 prefactor). Through the Cauchy–Schwarz inequality, we
can bound Eq. (S78) exactly in terms of such dissipation:

�(!)  1

⇡!

X

{i,j}

ˆ
S

|cij |

sˆ
V1

��LT

↵k
�

0
ki
(x,xs)

��2
ˆ
V1

���LT

↵l
�

0
lj
(x,xs)

���
2

 1

⇡!

X

{i,j}

ˆ
S

|cij |

s✓ˆ
V1

 ⇠i(xs)
(x) Im� ⇠i(xs)

(x)

◆✓ˆ
V1

 ⇠j(xs)
(x) Im� ⇠j(xs)

(x)

◆
(S79)

where  ⇠i(xs)
(x) denotes the field at x due to a dipolar source ⇠i at xs. We can relate this to power absorption due

to each individual dipole by inserting an !/2 prefactor:

�(!)  2

⇡!2

X

{i,j}

ˆ
S

|cij |

s✓
!

2

ˆ
V1

Im�
�� ⇠i(xs)

(x)
��2
◆✓

!

2

ˆ
V1

Im�
�� ⇠j(xs)

(x)
��2
◆

(S80)

where the terms in parentheses are now exactly the powers absorbed in V1 by each dipole. Thus we can write

�(!)  2

⇡!2

X

{i,j}

ˆ
S

|cij |
q

PV1,⇠i(xs)
(!)PV1,⇠j(xs)

(!). (S81)

The power radiated by a given dipole into V1 is less than or equal to the total power radiated by that dipole. If
we denote the polarization-resolved LDOS as ⇢i = (6/⇡!) Im�†

i
 , with the factor of 6 introduced because we are no

longer averaging over dipole orientation, then

Prad =
⇡!2

6
⇢i. (S82)

Here we will make our first approximation: that in the near-field cases of interest, the LDOS ⇢i is much larger than
its free-space value, i.e. ⇢i � ⇢0, in which case we can approximate ⇢i as the scattered-field LDOS. Henceforth ⇢i will
denote the scattered-field LDOS. The inequality becomes

�(!)  1

3

X

{i,j}

ˆ
S

|cij |
q
⇢⇠i(xs)

(!)⇢⇠j(xs)
(!). (S83)

Now, we want to integrate over frequency and multiply by a bandwidth weighting function H!0,�!(!). We will hold
o↵ on the weight function for a moment, and again use Cauchy–Schwarz to simplify the integrals:

ˆ 1

�1
�(!)d!  1

3

X

{i,j}

ˆ
S

|cij |

s✓ˆ 1

�1
d!⇢⇠i(xs)

(!)

◆✓ˆ 1

�1
d!⇢⇠j(xs)

(!)

◆
(S84)
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Written out in full form, we can bound average CDOS for nonmagnetic materials in the presence of an electric dipole
(where r1 and r2 respectively denote the distance from the scatter to the source and measurement positions):

h⇢iji  ⇢0(|!|)
f(!) |k|3

2⇡

vuut
 ˆ

V

6X

n=4

Bne�ar1

|k|nrn
1

! ˆ
V

6X

n=4

Bne�ar2

|k|nrn
2

!
+ 2H!0,�!(0)↵CDOS. (S90)

For a halfspace enclosure, we can exactly calculate all the integrals appearing in Eq. (S90) as was done in Sec. XI
to arrive at the following bound (dropping the last term in Eq. (S90) coming from ↵CDOS, which is negligible for
bandwidths �! small compared to typical frequencies |!|):

h⇢iji
⇢0(|!|)

 f(!)e�a(d1+d2)/2

2

s✓
B6

6|k|3d3
1

+
B5

3|k|2d2
1

+
B4

|k|d1

◆✓
B6

6|k|3d3
2

+
B5

3|k|2d2
2

+
B4

|k|d2

◆
(S91)

where d1 and d2 denote the minimum value of r1 and r2 respectively. We can also extend Eqs. (S90,S91) for magnetic
materials as well as magnetic LDOS by modifying the free-space Green’s function to accommodate for magnetic fields
and/or dipoles. It can also be extended for 2D materials by modifying the volume to a surface integral.
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