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We predict that a low-permittivity oblate body (disk-shaped object) above a thin metal substrate (plate

with a hole) immersed in a fluid of intermediate permittivity will experience a metastable equilibrium

(restoring force) near the center of the hole. Stability is the result of a geometry-induced transition in the

sign of the force, from repulsive to attractive, that occurs as the disk approaches the hole—in planar or

nearly planar geometries, the same material combination yields a repulsive force at all separations, in

accordance with the Dzyaloshinski��-Lifshitz-Pitaevski�� condition of fluid-induced repulsion between

planar bodies. We explore the stability of the system with respect to rotations and lateral translations

of the disks and demonstrate interesting transitions (bifurcations) in the rotational stability of the disks as a

function of their size. Finally, we consider the reciprocal situation in which the disk-plate materials are

interchanged and find that in this case the system also exhibits metastability. The forces in the system are

sufficiently large to be observed in experiments and should enable measurements based on the diffusion

dynamics of the suspended bodies.
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Casimir forces arising from quantum and thermal fluc-
tuations of charges are becoming increasingly important in
nano- and microscale systems [1–9], where the usually
attractive nature of the force leads to unwanted effects
such as stiction [8]. Recent theoretical developments
have made it possible to study the influence of geometry
and materials on these interactions [8,10]; for instance,
geometry effects alone can lead to unusual behaviors,
including nonmonotonic and/or repulsive forces between
vacuum-separated bodies [11–13]. For planar geometries,
one way to obtain repulsion is to employ fluids [1,14,15].
Dzyaloshinski�� et al. showed decades ago that two planar
bodies of permittivities "1;2 immersed in a fluid of permit-

tivity "3 satisfying "1 < "3 < "2 will repel one another [1],
an effect that has also been observed in experiments
[16,17]. Based on that prediction, one might ask whether
the Dzyaloshinski��-Lifshitz-Pitaevski�� (DLP) condition
alone suffices to obtain repulsion regardless of geometry.
In this Letter, we exploit a recently developed numerical
method for computing Casimir interactions between arbi-
trary bodies [18] to answer this question in the negative.
Specifically, we show that the Casimir potential between
an oblate body (a disk-shaped object) and a thin metal
substrate (a plate with a hole) immersed in a fluid satisfying
the DLP condition exhibits a metastable equilibrium at the
center of the hole, creating a ‘‘Casimir trap’’ for the disk.

Although Casimir suspensions are impossible for
vacuum-separated bodies (irrespective of geometry)
[19,20], they can arise in fluids satisfying the DLP

condition [21–23]. The approach described here differs
from previous work in that it does not rely on material
dispersion [23] or the presence of external forces (e.g.,
gravity [22]), nor does it require bodies to be enclosed
inside one another [21,24], but instead stems from the
anomalous behavior of electromagnetic fields in this par-
ticular geometry (shown schematically in Fig. 1). In recent
work [13], we exploited a similar geometric effect to
demonstrate the possibility of switching the sign of the
Casimir force between two vacuum-separated bodies—a
small, metallic, prolate body (thin needle) centered above a
metal plate with a hole—from attractive to repulsive. That
phenomenon was explained via a simple symmetry argu-
ment [13]: because the fields of a needle in vacuum behave
like those of a dipole oriented along its symmetry axis, its
interaction with a plate decreases as the needle reaches the
center of the hole (at which point the field lines become
orthogonal to the plate). The same symmetry argument (in
conjunction with a more sophisticated dipole model) is
employed here to show that in water, the interaction
between a small polytetrafluoroethylene (PTFE) body
and a thin gold (Au) plate with a hole can be switched
from repulsive to attractive near the vicinity of the hole. To
our surprise, however, the interesting geometry in this case
is not a needle but rather an oblate body (thin disk), a
consequence of the flipped polarization response of the
disk in the fluid. We quantify deviations from dipolelike
behavior by comparing our Casimir predictions against a
corresponding Casimir-Polder (CP) model in which the
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disk is modeled as a dipole of equivalent polarizability, and
show that finite-size effects can lead to significant qualita-
tive and quantitative deviations for large disks and small
separations. Interestingly, despite these deviations, we find
that the desired geometric effects persist even for large
disks (with diameters � hole size), leading to much larger
forces than those predicted in the vacuum case. Moreover,
unlike the vacuum case (in which the needle must be
anchored to a static surface [13,25]), here the disks are
stable with respect to rotations and/or lateral translations,
and are therefore free to move subject to Brownian motion.
This enables exploration of this phenomenon through a
broader set of experimental techniques, e.g., measurements
based on total-internal reflection microscopy or diffusion
dynamics. Finally, we consider the ‘‘reciprocal’’ situation
involving a Au disk above a PTFE plate and find that in that
case, one also obtains a metastable equilibrium, albeit with
larger geometric anisotropy, leading to larger energy
barriers.

Figure 1 shows the room-temperature Casimir energy U
between a PTFE disk and a coaxial Au plate immersed in

water, as a function of their mutual center-center separa-
tion d. U is normalized by the energy U0 when the two
bodies are coplanar (d ¼ 0) and is plotted for multiple
aspect ratios � ¼ L=t (keeping t fixed). The Au dielectric
permittivity is obtained from a Drude model with plasma
frequency !p ¼ 9 eV and damping constant � ¼
0:035 eV, whereas the PTFE and water permittivities are
obtained using the oscillator models described in Ref. [26].
This specific material combination was chosen because it
satisfies the DLP condition of fluid repulsion between
planar bodies—indeed, we find that the force between a
finite disk and an unpatterned (W ¼ 0) plate is repulsive
over all d and diverges as d ! 0 (not shown). As expected,
and in contrast to the unpatterned case, the presence of the
hole means that U no longer diverges as d ! 0 but instead
reaches a finite constant (so long as L <W). We find that
for spheres (dashed black line) or nearly isotropic or pro-
late bodies, U increases monotonically with decreasing d,
attaining its peak at d ¼ 0 as expected. The situation is
different for oblate bodies (�> 1), in which case U peaks
at a critical separation dc > 0 (determined by �), below
which the force transitions from repulsive to attractive. In
particular, instead of the usual unstable equilibrium, we
find that the disk exhibits a metastable equilibrium at
d ¼ 0. In order to investigate the full stability of the disk
and its dependence on �, the top insets in Fig. 1 show the
energy of the system in the coplanar configuration (d ¼ 0)
as a function of rotation � and lateral translations s of the
disk, for multiple �. Our results reveal that whenever � is
either too small or too large, the nonmonotonicity in the
potential (and corresponding metastability) disappears.
Specifically, we find that dc and the corresponding poten-
tial barrier � ¼ UðdcÞ �U0 vanish as L ! 0 and L ! W
(not shown in the figure), respectively. Moreover, while the
disk is repelled from the edges of the hole irrespective of
�, its stability with respect to rotations changes drastically
with increasing L=W. In particular, beyond L � 0:7W,
corresponding to � � 80, additional unstable and stable
equilibria appear at (a finite) �c>0 and �¼90�, respec-
tively. ForL*0:9W (not shown), corresponding to� � 90,
the preferred orientation of the disk (the minimum U)
changes from� ¼ 0� (parallel) to� ¼ 90� (perpendicular).
In the perpendicular orientation, the potential barrier
� ! 0 and the disk is repelled from the hole.
In order to understand the above features as well as the

origin of the nonmonotonicity in U, it is useful to examine
the Casimir-energy imaginary-frequency spectrum Uði�Þ
of the system, whose integral (a Matsubara sum at finite
temperatures [8]) yields U. The bottom inset of Fig. 2
shows Uði�Þ for a representative disk-plate configuration
exhibiting nonmonotonicity (� ¼ 60) at multiple separa-
tions d ¼ f0; 0:2; 0:4gW and illustrates that nonmonotonic-
ity in d is present only at small ‘‘quasistatic’’ �. In this
quasistatic regime, a thin disk immersed in a fluid of larger
permittivity will act like a fluctuating dipole oriented
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FIG. 1 (color online). Room-temperature Casimir energy U of
a PTFE disk (thickness t ¼ 10 nm) suspended above a Au plate
(thickness h ¼ 10 nm and inner and outer diametersW ¼ 1 �m
and D ¼ 2W) immersed in water, as a function of vertical
separation d (normalized by W). U is normalized by the energy
in the coplanar configuration U0 � Uðd ¼ 0Þ and plotted for
multiple aspect ratios � ¼ L=t, where L is the disk diameter.
Also shown is the energy of a sphere of diameter 20t (dashed
black line). Top insets: U as a function of rotation angle � (left)
and lateral translations s (right) for multiple �. Bottom inset:
Unstable equilibrium separation dc (red circles), along with
the energy U0 (green line) and corresponding energy barrier
� ¼ UðdcÞ � U0 (blue line), normalized by kBT � 25 meV, as
a function of L. Both dc and L are normalized by W.
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mainly along its symmetry axis [27]. In contrast, the same
disk in vacuum will be mainly polarized in the direction
transverse to its axis of symmetry (as shown below). Since
the fields generated by a fluctuating dipole lie mainly along
the dipole axis and become orthogonal to the metal plate
as d ! 0, it follows that the disk-plate interaction will
weaken in the vicinity of the hole [13], leading to the
behavior above.

In what follows, we quantify the previous argument via a
simple model in which the disk is described as a dipole
with an effective polarizability, corresponding to the
leading-order term of a spherical-harmonic expansion in
the scattering formalism [28]. The zero-temperature CP
energy between a polarizable particle at position x and the
plate can be written as [9,29,30]

UCP ¼ � @

2�

Z 1

0
d�Tr½�ði�Þ �Gði�;x;xÞ�; (1)

where �ði�Þ and Gði�;x;xÞ are the imaginary-frequency
dipole polarizability and the dyadic Green’s function (GF)
of the plate in the surrounding medium evaluated at the
location of the dipole.

Although the polarizability of a disk of permittivity
"1, diameter L, height t, and corresponding volume V ¼
�L2t, surrounded by a medium of permittivity "3, cannot
be easily computed analytically, it is nevertheless well
approximated by that of a spheroidal body of similar
dimensions [31,32]. In that case, �ij ¼ �ij�j and the

polarizability in the jth direction

�j ¼ "23V
�� 1

1þ ð�� 1Þnj (2)

is determined by the ratio � � "1="3 and depolarization
factors nx;y ¼ 1
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e3
½e� arctanðeÞ� t < L;

(3)

where e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1� ðt=LÞ2jp
is the eccentricity of the

body [32].
To qualitatively explain the behavior observed in Fig. 1,

it suffices to restrict our analysis to the asymptotic limits of
either an elongated ‘‘needle’’ (a prolate body with t � L)
or a flat ‘‘disk’’ (an oblate body with t 	 L), in which case

�z ¼ "23V

� �� 1 t � L

1� 1
� t 	 L;

�x;y ¼ "23V

�
2 ��1
�þ1 t � L

�� 1 t 	 L:

(4)

Matters simplify further in the limit of large index contrast
(� 	 1 or � � 1), in which case the CP energies of the
needle Uneedle and disk Udisk take the form

Uneedle ¼ �"23V

8<
:
�Gzz � � 1

�Gzz � 2ðGxx þGyyÞ � 	 1;
(5)

Udisk ¼ �"23V

8<
:
�ðGxx þGyyÞ � � 1

� 1
� Gzz � 	 1;

(6)

whereGkk � Gkkði�;x;xÞ. In the case of an infinitesimally
thin perfect electric conductor (PEC) plate (corresponding
to "2 ! 1, h ! 0, and D ! 1 in our geometry) with a
hole of size W, one can write down an analytical expres-
sion for Gkkð0;x;xÞ in the nonretarded limit [33,34]. For a
dipole centered along the axis of symmetry of the plate,
i.e., x ¼ f0; 0; dg, one finds that Gzz exhibits local minima
and maxima at d ¼ 0 and d ¼ dc � W=3, respectively,
while Gxx ¼ Gyyð� GzzÞ decreases monotonically with

separation [33]. Both GF components are plotted versus
d in the top inset of Fig. 2 (dashed lines). It follows from
Eq. (5) that a needle will experience a repulsive (attractive)
force for d < dc (d > dc) in the � � 1 regime, as was
predicted in Ref. [13], and a repulsive force at all separa-
tions in the � 	 1 regime, in agreement with predictions
based on the DLP condition. In contrast, however, Eq. (6)
predicts that a disk will experience an attractive force at all
separations in the � � 1 regime, and an attractive
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FIG. 2 (color online). Room-temperature Casimir U (solid
lines) and Casimir-Polder UCP (dashed lines) energies, normal-
ized by kBT � 25 meV, for the disk-plate geometry of Fig. 1, as
a function of d (normalized by W), plotted for multiple aspect
ratios � ¼ L=t. UCP is obtained from the polarizability of the
disks, as determined by Eq. (2). Top inset: Diagonal components
of the photon GF of the plate evaluated along the axis of
symmetry, for both finite D ¼ 2W (solid lines, evaluated nu-
merically) and semi-infinite D ! 1 PEC (dashed lines, eval-
uated analytically [33]) plates. Bottom inset: Casimir integrand
Uði�Þ, in arbitrary units, as a function of imaginary frequency i�
at three different separations d ¼ f0; 0:2; 0:4gW, for � ¼ 60.
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(repulsive) force for d < dc (d > dc) in the � 	 1 regime,
in qualitative agreement with our results above.

In order to incorporate effects coming from the finite
size or thickness of the plate, as well as to quantify devia-
tions from the dipole picture that arise in the L ! W and
d ! 0 limits, we compare our results of Fig. 1 to the
corresponding CP potential of the system, obtained via
Eq. (1) by assuming a spheroidal particle with polarizabil-
ity given by Eq. (2) and with Gði�Þ computed numerically.
As expected, the GFs of the finite Au plate, plotted in the
� ! 0 limit in the top inset of Fig. 2 (solid lines), are
smaller than those of the semi-infinite PEC plate (due to its
smaller surface area) but exhibit the same anomalous
behavior. (Away from the quasistatic regime, correspond-
ing to larger �,Gzz exhibits nonmonotonicity but � tends to
unity, causing the object to appear more isotropic, as can be
seen from Eq. (2), and leading to the disappearance of this
effect.) Figure 2 shows bothUCP and the Casimir energyU
versus d, for multiple values of � (with t fixed as before),
showing agreement at large d and small �, a regime where
the disks behave like ideal (isolated) dipoles. In the oppo-
site limit of large � � 1 (corresponding to L�W), the
outer and inner surfaces of the disk and plate approach one
another (touching as d ! 0 for L 
 W), thereby causing
the interaction energy to be dominated by proximity effects
[9]. This transition manifests itself in multiple ways: First,
although the CP model predicts a monotonically increasing
dc with increasing L, we find instead that in the finite
system, dc reaches a maximum at L � 0:4W and then
decreases as L ! W (red circles in the bottom inset of
Fig. 1). Second, while the dipole picture predicts a mono-
tonically increasing UCP � L2 (stemming from the linear
dependence of the polarizability with the disk volume), the
dependence of U0 on L exhibits a power-law divergence
that scales as 1=ðW � LÞ	, with 	 � 5=2, in the limit as
L ! W (bottom inset of Fig. 1). The same proximity
effects are responsible for a dramatic increase in � (blue
line in the bottom inset of Fig. 1) with increasing L. We
note, however, that the competition between increasing U
and decreasing nonmonotonicity eventually skews in favor
of the latter, causing a peak in � as L ! W and eventually
causing � ! 0 in this limit (not shown in the figure).

Figure 3 shows the ratio U=U0 for the same geometry of
Fig. 1 but for the ‘‘reciprocal’’ situation, where the Au and
PTFE materials are interchanged (corresponding to a Au
disk above a PTFE plate). As before, the insets explore the
stability of the system with respect to rotations and lateral
translations of the disk. In this case, the polarizability of
the disk is largest along the lateral (x-y) directions, and
hence the relevant equation describing the resulting CP
interaction is the top equation of Eq. (6). However, unlike
the previous case, here, it is theGxx andGyy components of

the dyadic GF (and not Gzz) that exhibit nonmonotonicity,
leading again to a metastable equilibrium at d ¼ 0,
albeit with slightly smaller U and significantly larger

nonmonotonicity for the same �. Essentially, the index
contrast between the Au disk and the fluid is orders of
magnitude larger than for a PTFE disk, leading to larger
polarization anisotropies. Unfortunately, the enhanced an-
isotropy comes at a price: First, the small index contrast
between the plate and the fluid results in a smaller U, a
consequence of the larger contribution of the plate area.
Second, the transition in the preferred orientation of the
disk from � ¼ 0� ! 90� occurs at smaller �. The large
polarization anisotropy of the Au disk also means that the
potential trap is not very sensitive to the disk thickness.
Fixing h ¼ 10 nm and L ¼ 0:6W, we find that � ! 2�
and U0 ! 5U0 as t is increased from t ¼ 10 ! 100 nm
(corresponding to a decrease in � from � ¼ 60 ! 6). On
the other hand, we find that � is very sensitive to changes
in the PTFE plate thickness. Fixing t¼10nm and L¼
0:6W, we find that � ! 0 rapidly as h is increased from
h ¼ 10 ! 100 nm. The situation is reversed in the recip-
rocal configuration of Fig. 1, in which case the trap is
sensitive to the disk thickness and not the plate thickness.
The system described in this work constitutes a promis-

ing platform to investigate two unusual geometry-induced
Casimir phenomena: a violation of the DLP condition of
fluid repulsion between planar bodies and the stable sus-
pension of two bodies. At room temperature, the resulting
‘‘Casimir trap’’ has a depth on the order of kBT, which,
unlike the case of a needle in vacuum [13], allows for
simpler (and more varied) experimental verification of
this phenomenon. It could also open new horizons for
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FIG. 3 (color online). Room-temperature Casimir energy U as
a function of d for the disk-plate geometry of Fig. 1, but with the
Au and PTFE materials interchanged.U is normalized byU0 and
plotted for multiple values of �. Top insets: U as a function of
rotation angle � (left) and lateral translations s (right) for
multiple �. Bottom inset: Unstable equilibrium separation dc
(red circles), along with U0 (green line) and � ¼ UðdcÞ �U0

(blue line), normalized by kBT � 25 meV, as a function of L.
Both dc and L are normalized by W.
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technological applications where passive suspension is
relevant. We believe that even more pronounced effects
should arise in other geometries and material configura-
tions. For instance, stronger potential traps might be
obtained by designing the shapes of the suspended bodies
to exhibit larger polarization anisotropy, a subject of
future work.
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