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We derive shape-independent limits to the spectral radiative heat transfer rate between two closely
spaced bodies, generalizing the concept of a blackbody to the case of near-field energy transfer. Through
conservation of energy and reciprocity, we show that each body of susceptibility χ can emit and absorb
radiation at enhanced rates bounded by jχj2=Im χ, optimally mediated by near-field photon transfer
proportional to 1=d2 across a separation distance d. Dipole-dipole and dipole-plate structures approach
restricted versions of the limit, but common large-area structures do not exhibit the material enhancement
factor and thus fall short of the general limit. By contrast, we find that particle arrays interacting in an
idealized Born approximation (i.e., neglecting multiple scattering) exhibit both enhancement factors,
suggesting the possibility of orders-of-magnitude improvement beyond previous designs and the potential
for radiative heat transfer to be comparable to conductive heat transfer through air at room temperature,
and significantly greater at higher temperatures.

DOI: 10.1103/PhysRevLett.115.204302 PACS numbers: 44.40.+a, 41.20.Jb

Heat exchange mediated by photons, or radiative heat
transfer, can be dramatically modified for bodies separated
by small gaps [1–7]. We exploit energy-conservation and
reciprocity principles to derive fundamental limits to the
near-field spectral heat flux between closely spaced bodies
of arbitrary shape, given only their material susceptibilities
χðωÞ and their separation distance d. Our approach enables
us to define optimal absorbers and emitters in the near
field, which contrast sharply with far-field blackbodies: their
response is bounded by the amplitude of their volume
polarization currents, rather than their surface absorptivities,
and maximum energy transfer requires coordinated design
of the two bodies (whereas the far-field limit derives from
the properties of a single blackbody). These distinguishing
characteristics lead to two possible enhancements relative
to blackbody emission: a material enhancement factor
jχðωÞj2=Im χðωÞ that represents the maximum absorber
and emitter polarization currents, and a near-field enhance-
ment factor 1=d2 that represents maximum interaction
between currents in free space. We show that restricted
versions of our limits can be approached for sphere-sphere
and sphere-plate configurations. For two extended structures,
however, common planar geometries—including bulk
metals [8–17], metamaterials [18–24], and thin films
[25–31]—exhibit flux rates orders of magnitude short of
the limits because they do not satisfy the optimal-absorber
condition. Instead, we find that idealized plasmonic-particle
arrays, interacting within a Born approximation with
negligible multiple scattering, approach the limits at selected
frequencies, and that the possibility of reaching the limits,
even over a narrow bandwidth (a desirable feature for
thermophotovoltaics [7,32–35]), would represent an
orders-of-magnitude improvement over current designs.

A ray-optical blackbody absorbs every photon incident
upon its surface, which by reciprocity (Kirchoff’s law) yields
its emissivity and the blackbody limit to thermal radiation
[36]. At wavelength and subwavelength scales, nanostruc-
tures can exhibit optical cross sections much larger than
their physical cross sections [37], making it difficult even to
define quantities like emissivity. A further difficulty in the
near field is the presence of evanescent waves, which can
increase transmitted power but only through interference
with reflected waves [38]. Although the possibility of
enhancement beyond the blackbody limit was realized by
Rytov, Polder, and others in the 1950s [1,2], efforts to find
underlying limits have been restricted to planar structures
with translation symmetry (including metamaterials),
without consideration of material loss [10,15–17,21,30].
Spherical-harmonic [39,40] and Green’s-function [41] limits
are difficult to apply in the near field where a large but
unknown number of spherical harmonics can be excited
by general shapes [42].
Without reference to particular structures or symmetries,

assuming only linear electromagnetism, we translate the
reciprocity principle to the near field by applying it to
polarization currents within the bodies. Dipoles in vacuum
exchange energy at a rate limited by the energy density of
an outgoing free-space wave [43]. As we show below, the
maximum energy transfer between material bodies occurs
when the currents within the bodies couple individually at
the dipole-dipole limit, amplified by material enhancement
factors. These conditions allow for much greater heat
transfer than has previously been shown possible.
Radiative heat exchange is depicted schematically in

Fig. 1(a): fluctuating currents arise in body 1 at temperature
T1, and transfer energy to body 2 at a rate of [4]
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H1→2 ¼
Z

∞

0

ΦðωÞ½Θðω; T1Þ − Θðω; T2Þ�dω; ð1Þ

where ΦðωÞ is a temperature-independent energy flux and
Θ is the Planck spectrum. ΦðωÞ is the designable quantity
of interest, to be tailored as a function of frequency
depending on the application and available materials.
Limits.—The spectral heat flux ΦðωÞ is the power

absorbed in body 2 from fluctuating sources in body 1 (or
vice versa). In recent work [42] we have bounded the
scattering properties of any dissipative medium excited by
a known, externally generated incident field. The bounds
arise from the functional dependencies of power expressions
with respect to induced currents: absorption is a quadratic
functional, whereas extinction (absorptionþ scattering),
given by the optical theorem [44–47], is only a linear
functional. Energy conservation requires that extinction be
greater than absorption, which imposes a bound on the
magnitude of the excited currents. Radiative heat transfer,
however, involves sources within one of the scatterers,
preventing a simple optical theorem.
To circumvent this issue we reframe the scattering

problem (without approximation). We define the “incident”
field to be the unknown field emanating from body 1, and the
“scattered” field to arise only with the introduction of body
2. For a Green’s function (GF)G1 that is the field of dipole in
the presence of body 1, the fields are given by a standard
integral-equation separation [48], Einc;1 ¼ ði=ε0ωÞ

R
V1
G1J

and Escat;1 ¼
R
V2
G1P, where J are the stochastic source

currents in body 1,P is the polarization field induced in body
2, and ε0 is the vacuum permittivity. This decomposition
permits an optimal theorem with respect to body 2, such
that its extinction is proportional to Im

R
V2
Einc;1 · P (its

absorption [44] is proportional to
R
V2
jPj2). The energy-

conservation arguments from above imply that absorption in
body 2 is bounded,

Pabs;2 ≤
ε0ω

2

jχ2ðωÞj2
Im χ2ðωÞ

Z
V2

jEinc;1ðx2Þj2; ð2Þ

which is formally derived by variational calculus [42].
To achieve this limit, the optimal polarization field must
be proportional to the incident field, P ∼Einc;1, to maximize

the extinction overlap integral. In the near field, where
source fields rapidly decay, negative-permittivity metals that
support surface-plasmon modes can achieve this condition,
as we will demonstrate.
The limit in Eq. (2) reduces the optimal-flux problem

to a question of how large the emitted field Einc;1 can
be in V2. Inserting Einc;1 into Eq. (2) yields an integral
of the stochastic currents, which is determined by the
fluctuation-dissipation theorem [4], hJjðx;ωÞ;Jkðx0;ωÞi¼
4ε0ωΘðω;T1ÞIm½χðωÞ�δjkδðx−x0Þ=π, such that the
ensemble-averaged emitted field at x2 in V2 is
hjEinc;1ðx2Þj2i ¼ 4ε0ωΘðIm χ1Þ

R
V1
∥G1ðx2;x1Þ∥2F, where

∥ · ∥F denotes the Frobenius norm [49]. By reciprocity
[50] one can exchange the positions in the integrand,
x1 ↔ x2 (while transposing the GF, but the transpose does
not affect the norm), such that emission from V1 is
equivalent to absorption for free-space sources in V2,
as in Fig. 1(c). Absorption is bounded by energy con-
servation [42], limiting the emitted-field magnitude

hjEinc;1ðx2Þj2i ≤ 4ε0ωΘ
jχ1j2
Im χ1

Z
V1

∥G0ðx1;x2Þ∥2F; ð3Þ

where G0 is the free-space GF, cf. Fig. 1(d). Inserting
Eq. (3) into Eq. (2) and separating the Planck spectrum by
Eq. (1), the maximum flux between two bodies is

ΦðωÞ ≤ 2

π

jχ1ðωÞj2
Im χ1ðωÞ

jχ2ðωÞj2
Im χ2ðωÞ

Z
V1

Z
V2

∥G0ðx1;x2Þ∥2F: ð4Þ

The limit of Eq. (4) can be further simplified. In the near
field, G0 is ideally dominated by the quasistatic term
∼1=r3, which is primarily responsible for the evanescent
waves that enable greater-than-blackbody heat-transfer rates
[4,7]. Dropping higher-order terms (further discussed in
Ref. [51]), we bound Eq. (4) by integrating over the infinite
half-spaces containing V1 and V2, assuming a separating
plane between the two bodies. (If not, e.g., between two
curved surfaces, only the coefficients change.) For bodies
separated by a distance d, the integral over the (infinite)
area A is given by Ref. [51]

R
V1;V2

∥G0∥2F ¼ A=32πd2,
yielding flux limits per area or relative to a blackbody with
flux ΦBB ¼ k2A=4π2 [4]:

(a) (b) (c) (d)

FIG. 1 (color online). (a) Radiative heat transfer: Fluctuating currents in an emitter (body 1, susceptibility χ1) generate a field Einc;1
and transfer energy to an absorber (body 2, susceptibility χ2) at a rate Pabs;2. (b) Energy conservation bounds Pabs;2 in terms ofEinc;1, and
a resonant enhancement factor jχ2j2=Im χ2. (c) The sources and “receivers” can be exchanged by reciprocity, whereupon (d) absorption
in body 1 is bounded, yielding a spectral-flux limit determined by χ1, χ2, and the free-space GFG0. For near-field transfer the GF integral
is ∼1=d2, for separation d.
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ΦðωÞ
A

≤
1

16π2d2
jχ1ðωÞj2
Im χ1ðωÞ

jχ2ðωÞj2
Im χ2ðωÞ

; ð5Þ

ΦðωÞ
ΦBBðωÞ

≤
1

4ðkdÞ2
jχ1ðωÞj2
Im χ1ðωÞ

jχ2ðωÞj2
Im χ2ðωÞ

: ð6Þ

Equations (4)–(6) are fundamental limits to the near-field
spectral heat flux between two bodies and form the central
results of this Letter. They arise from basic limitations to
the currents that can be excited in dissipative media, and
their derivations further suggest physical characteristics of
the optimal response in near-field heat transfer: an optimal
emitter enhances and absorbs near-field waves from recip-
rocal external sources in the absence of the absorber,
whereas an optimal absorber enhances and absorbs near-
field waves from the emitter in the presence of the emitter.
These principles can be understood by working backwards
through Fig. 1. The optimal-emitter condition identifies the
largest field that can be generated in an exterior volume
(V2) by considering the reciprocal absorption problem, per
Fig. 1(c). Reinserting the absorber, cf. Fig. 1(b), should not
reflect the emitted field but rather enhance and absorb it.
Because heat flux is symmetric with respect to absorber-
emitter exchange, both bodies should satisfy each condition
(induced currents proportional to source fields). Equation (4)
can be interpreted as sources throughout the emitter gen-
erating free-space dipolar fieldsG0 enhanced by jχ1j2=Im χ1,
which are further enhanced by jχ2j2=Im χ2 and absorbed.
The dipole-dipole interactions are bounded by their separa-
tion distance [43,54], leading to simple shape-independent
limits in Eqs. (4)–(6). Ideal structures that achieve these
limits can have significantly greater heat transfer than
blackbodies, even if their spectral flux has a narrow
bandwidth. Whereas the heat transfer between blackbodies
in the far field is H=A ¼ σSBT4, where σSB is the Stefan-
Boltzmann constant [36], a straightforward calculation [51]
shows that ideal near-field heat exchange over a narrow
bandwidth Δω=ω ¼ Im χ=jχj, typical of plasmonic systems
[55,56], can achieve per-area transfer rates of

H
A
≈ σSBT4

2

7ðkdÞ2
jχj3
Im χ

; ð7Þ

exhibiting both distance and material enhancements relative
to the Stefan-Boltzmann rate.
The limits generalize [51] to local media with

tensor susceptibilities via the replacement jχj2=Imχ →
∥χðImχÞ−1χ†∥2. Nonlocal effects, which appear below
10 nm length scales [57], and which regularize the 1=d2

divergence [4], are outside the scope of these limits,
but we believe that a generalization to nonlocal χ is
possible and have preliminary results [58] suggesting that
“hydrodynamic” [59,60] nonlocal materials cannot surpass
the local-χ bounds.
Dipolar interactions.—If one of the bodies is small

enough for its response to be dipolar, the optimal-absorber

and optimal-emitter conditions converge: the polarization
currents induced in each structure by free-space dipoles in
place of the opposite structure must be proportional to the
incident fields. This condition is satisfied for two-dipole
transfer, and the enhancement of the emitted and absorbed
fields is possible via “plasmonic” resonances in metallic
nanoparticles. For two identical particles with volumes V,
tip-to-center-of-mass distances r, and tip-to-tip separation
d, Eq. (4) limits the flux

½ΦðωÞ�dipole-dipole ≤
3

4π3
jχ1ðωÞj2
Im χ1ðωÞ

jχ2ðωÞj2
Im χ2ðωÞ

V2

ð2rþ dÞ6 : ð8Þ

The radiative flux [4] between quasistatic metal spheres
peaks at the limit given by Eq. (8).
Heat transfer between a dipole and an extended structure

is limited by integrating over the half-space occupied by
any extended structure, yielding a maximum flux

½ΦðωÞ�dipole-to-ext ≤
1

8π2
jχ1ðωÞj2
Im χ1ðωÞ

jχ2ðωÞj2
Im χ2ðωÞ

V
ðrþ dÞ3 ; ð9Þ

where rþ d is the distance between the extended structure
and the particle’s center. Heat flux between a sphere and a
bulk metal, each supporting a plasmonic mode, can achieve
half of the maximum flux [4,51,61] if the resonances align.
This geometry falls short by a factor of 2 because planar
surface plasmons exist only for TM polarization [62], and
thus the planar structure reflects near-field TE-polarized
light emitted by the sphere. Neither structure exhibits the
1=d2 enhancement factor, which for dipolar coupling
(∼1=d6) requires interactions over two extended areas.
Figure 2 compares flux rates for sphere-sphere (orange

circles) and sphere-plate (blue circles) geometries, com-
puted by the fluctuating-surface current method [63–65], to
the limits of Eqs. (8) and (9) (orange and blue dashed lines).
The spheres are modeled by Drude susceptibilities [44] with
plasma frequencyωp and loss rate γ ¼ 0.1ωp. The “plate” is
simulated by a very large ellipsoid (volume ≈7000× larger
than the sphere) comprising a material with a modified
plasma frequency, ωp;pl ¼

ffiffiffiffiffiffiffiffi
2=3

p
ωp, and a modified loss

rate, γpl ¼ 2γ=3, to align the resonant frequencies of the
sphere and plate without modifying the flux limit. In each
case the separation distance d ¼ 0.1c=ωres and the sphere
radii are r ¼ d=5. The computations support the analytical
result that the dipolar limits can be approached to within at
least a factor of 2.
Extended structures.—For extended structures that do

not behave like single dipoles, the optimal-absorber con-
straint is more demanding in that the absorber should
enhance the emitted field while accounting for interactions
between the two bodies. We will show that common planar
structures do not exhibit this behavior but that nanostruc-
tured media offer the possibility of approaching it.
Bulk metals (negative-permittivity materials) support

surface plasmons that enable greater-than-blackbody heat
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flux at their resonant frequency. Individually, a single metal
interface nearly satisfies the optimal-emitter condition,
emitting near-field waves over a broad bandwidth of
surface-parallel wave vectors (which enabled the nearly
optimal sphere-plate transfer above). However, when a
second metal is brought close to the first, it reflects most
of the incident field, except over a narrow wave vector
bandwidth, due to multiple-scattering effects between the

bodies. The failure of the two-metal geometry to achieve the
optimal-absorber condition leads to a peak spectral heat flux,
at the surface-plasmon frequency ωsp, of approximately [51]�

ΦðωspÞ
A

�
plate-to-plate

¼ 1

4π2d2
ln

� jχj4
4ðIm χÞ2

�
; ð10Þ

which is significantly smaller than the limit in Eq. (5) due to
the weak, logarithmic material enhancement. Equation (10)
appears to be new and is a significantly better approximation
than planar bounds that do not account for material loss
[10,16], as discussed in the Supplemental Material [51]. The
shortcomings of the bulk-metal interactions cannot be over-
come with simple metamaterial or thin-film geometries. The
flux rate between hyperbolic metamaterials (HMMs) is mate-
rial independent [21,51]. Optimal thin films behave similarly
to HMMs [31], thereby also falling short of the limits.
“Elliptical” metamaterials, with nearly isotropic effective
permittivities, exhibit resonances for χeff ≈ −2 and thus trans-
fer heat at a rate similar to Eq. (10), limited by the same inter-
ference effects discussed above, and because jχeff j4 ≪ jχj4.
Figures 3(a) and 3(b) demonstrate the shortcomings of

such structures, showing the computed flux between mirror
images of thin-film (purple), hyperbolic-metamaterial
(blue), and elliptical-metamaterial (orange) structures, as
a function of (a) frequency and (b) material-loss rate, for a
fixed separation d ¼ 0.1c=ωp. Assuming smooth surfaces,
the structural parameters are computationally optimized
[51] using a derivative-free local optimization algorithm
[66,67]. Figure 3(b) shows that the suboptimal perfor-
mance can be attributed primarily to the fact that the
structures do not exhibit the material enhancement factor
jχj4=ðIm χÞ2 ∼ 1=γ2, as predicted by Eq. (10) and due to the
significant reflections in such geometries.

(a) (b) (c)

FIG. 3 (color online). (a),(b) Comparison of heat flux between mirror images of large-area Drude-metal structures separated by
d ¼ 0.1c=ωp. (a) Structures optimized for maximum flux at three frequencies, ω ¼ ð0.2; 0.4; 1= ffiffiffi

2
p Þωp, for a material loss rate

γ ¼ 0.01ωp. Thin films (purple), hyperbolic metamaterials (blue), and elliptical metamaterials (orange) exceed blackbody enhance-
ments but fall far short of the limit (black solid line) from Eq. (5). The dashed silver line represents the heat transfer for an idealized
plasmonic-particle array without multiple scattering. (b) Optimized structures as a function of loss rate, for ω ¼ 0.4ωp. Each structure
exhibits the 1=d2 near-field enhancement factor, but only the idealized particle array exhibits the jχj4=ðIm χÞ2 ∼ 1=γ2 material
enhancement factor. (c) Frequency-integrated heat transfer coefficient of a structure that reaches the single-frequency limit in Eq. (5)
over a narrow bandwidth Δω ∝ γ. Radiative heat exchange in this limit shows the possibility of surpassing conductive heat transfer
through air (dotted line) at T ¼ 300 K (gold line), which is not possible for plate-plate configurations (inset, dashed lines), and of
significant further enhancements at higher temperatures (blue, purple lines).
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FIG. 2 (color online). Comparison of heat flux in sphere-sphere
and sphere-plate structures to the analytical limits of Eqs. (8) and
(9). Two Drude metal spheres (orange circles, fit to a solid line)
approach the dipole-dipole limit (dashed orange line) at their
resonant frequency, ωres ≈ ωp=

ffiffiffi
3

p
. A sphere and a plate (blue

circles) approach within a factor of 2 of the limit between dipolar
and extended objects (dashed blue line), if the material resonance
of the plate is slightly modified (see text). In each case the
separation is d ¼ 0.1c=ωres, with sphere radii r ¼ d=5. The flux
rates exhibit the material enhancement factor jχj4=ðIm χÞ2, but not
the near-field enhancement factor, due to the lack of large-area
interactions. The sphere area A is taken to be the cross-section πr2.
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The spectral heat flux of the limit in Eq. (4) can be
interpreted as the exchange of enhanced free-space dipole
fields, as discussed above. Guided by this intuition, we
include in Figs. 3(a) and 3(b) the heat flux between close-
packed arrays of oblate disk ellipsoids (dashed silver
lines), small enough to be dipolar. We idealize their
response as the additive sum of Eq. (8) over a lattice
neglecting multiple scattering (i.e., in a Born approxima-
tion) [68] and accounting for the polarization dependence
of nonspherical ellipsoids [37]. This structure combines
the individual-particle interactions that exhibit the material
enhancement (which planar bodies do not) with the large-
area interactions that exhibit 1=d2 near-field enhancement
(which isolated bodies do not). Figures 3(a) and 3(b)
suggest the possibility for 2 to 3 orders of magnitude
enhancement by periodic structuring and tailored local
interactions.
Experimental measurements of radiative heat transfer

are done in vacuum [6,12,13] because radiative transfer is
dominated by conductive transfer through an air gap.
Achieving the limits presented here, even over a narrow
bandwidth, could transform this landscape. Figure 3(c)
shows the heat-transfer coefficient h ¼ R

Φð∂Θ=∂TÞdω
for extended Drude-metal structure with loss rates
γ ¼ 0.01ωp (appropriate, e.g., for Ag and Au [69]). For
Lorentzian-shaped energy transfer with tunable center
frequency ωres ¼ ωp=

ffiffiffi
2

p
, peaked at the limit given by

Eq. (5), with a bandwidth Δω ¼ γ [51,55,56], radiative
transfer can surpass conductive (thermal conductivity
κair ¼ 0.026 W=m · K [70]) even at T ¼ 300 K. In the inset
we fix the wavelengths at λ ¼ 7.6 μm for T ¼ 300 K and
λ ¼ 3 μm for T ¼ 1500 K, and plot h as a function of
distance forplate-plate (dashed)andoptimal (solid) transfer.
We find that radiative transfer can surpass conductive at
separation of d ¼ 50 nm at 300 K and almost d ¼ 0.5 μm
at T ¼ 1500 K, gap sizes that are readily achievable in
experiments.
Radiative heat transfer at the nanoscale is a nascent

but growing field. Calculations have primarily been for
dipolar [5,10,61] or highly symmetric bodies [8–14,18–23,
25–31,71–73], with computational study of more complex
geometries possible only recently [35,64,65,74–76].
Guided by the physical principles presented here, a targeted
search through the mostly uncharted near-field design
space offers the prospect of orders-of-magnitude enhance-
ments in radiative energy transfer.
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