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ABSTRACT: A universal property of resonant subwavelength scatterers is
that their optical cross-sections are proportional to a square wavelength, λ2,
regardless of whether they are plasmonic nanoparticles, two-level quantum
systems, or RF antennas. The maximum cross-section is an intrinsic property
of the incident f ield: plane waves, with infinite power, can be decomposed into
multipolar orders with finite powers proportional to λ2. In this article, we
identify λ2/c and λ3/c as analogous force and torque constants, derived within
a more general quadratic scattering-channel framework for upper bounds to
optical force and torque for any illumination field. This framework also solves
the reverse problem: computing globally optimal “holographic” incident
beams, for a fixed collection of scatterers. We analyze structures and incident fields that approach the bounds, which for
wavelength-scale bodies show a rich interplay between scattering channels, and we show that spherically symmetric structures
are forbidden from reaching the plane-wave force/torque bounds. This framework should enable optimal mechanical control of
nanoparticles with light.
KEYWORDS: optomechanics, optical force, optical torque, illumination fields, fundamental limits

Optically induced forces and torques offer precise
mechanical control of nanoparticles,1−5 yet a basic

understanding of what is possible has been limited by the
inherent complexity in the optical response of a nanoparticle of
any size, shape, and material. Here we show that a general
scattering-channel decomposition embeds optical-response
functions into matrix quadratic forms that, in tandem with a
convex passivity constraint, readily yield analytical upper bounds
for scatterers under arbitrary illumination. For plane waves, the
force and torque bounds are proportional to λ2/c and λ3/c,
respectively (for wavelength λ and speed of light c), for scatterers
of any size, analogous to the well-known ∼λ2 cross-section of a
small scatterer.6−11 Spheres, cylinders, and helices can approach
the various bounds, which often require a complex interplay
between scattering channels. With modern progress in spatial
light modulators12−14 and other beam-shaping techniques,15−17

the “reverse” problem of shaping the incident field for a fixed
geometry is increasingly important. Our quadratic-form frame-
work naturally yields globally optimal illumination fields as
extremal eigenvectors of Hermitian matrices. For a generic
scattering problem, we show that optimized incident fields can
achieve sizable enhancements (20−40×) to optically induced
force and torque, offering orders-of-magnitude enhancements
over conventional beams.
Mechanical forces induced by light are the foundation for

optical trapping and manipulation, versatile tools with

applications ranging from laser cooling18 and nanoparticle
guidance5,19−25 to biomolecular sensing.26−28 In the limit of
dipolar response, analytical expressions for force and torque are
known, as are associated concepts such as “gradient” forces29−31

and optical “chirality”.32−34 At wavelength size scales and larger,
the only structures for which analytical bounds or semianalytical
response expressions are known are ray-optical32,35 or
spherical.36 For nonspherical scatterers, optical forces and
torques generally require simulation of Maxwell’s equa-
tions,37−41 providing numerical results but little insight. This
contrasts strongly with the more detailed knowledge of power
flow in such systems, ranging from bounds6,7,10,11,42−44 to sum
rules45−47 to spherical-particle design criteria.48 The disparity
between the broad understanding of power flow versus the
relative paucity for momentum flow may reflect the complexity
of the Maxwell stress tensor relative to the Poynting vector. But
as we show below, for passive systems in which energy is not
supplied to the polarization currents, the requirement that
outgoing power is less than incoming power is a convex
constraint dictating what is possible for power, momentum, and
other quantities of interest.
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“Holographic” optical force and torque generation49−53 faces
similar challenges. Whereas analytical bounds can be derived for
the concentration of light for power transfer,54 especially for
dipolar objects,55,56 finding optimal illumination fields for force/
torque typically requires iterative computational optimization
schemes49,57,58 which may not converge to a global optimum.
Recent work has identified the potential of quadratic forms for
phase optimization,58 “absorption”-like energy-exchange quan-
tities,59 or “optical eigenmodes”;60 the framework here shows
generally how quadratic frameworks enable global optimization
for any power quantity.
Reference 59 recently developed a framework that comple-

ments the one we use below. The authors identify conservation
laws for “transfer” quantities, such as absorbed power, force, and
torque, and derive upper bounds for such transfer rates. The
bounds they derive for a given object are quite different from the
analytical bounds that we derive for arbitrary scatterers: their
bounds require the full scattering matrix of an object (as no
other constraints are considered), whereas we use passivity as a
constraint and derive bounds without knowledge of the
scattering matrix, requiring only the number of incoming
channels for which there is nontrivial coupling. The illumination
bounds of ref 59 are closer to the bounds we derive for optimal
illumination, with the key difference that our bounds apply
generally to scattering quantities (scattered/extinguished power,
linear momentum, angular momentum, etc.) that may not be
“transfer” properties but that are necessarily quadratic forms.

■ SCATTERING-CHANNEL FRAMEWORK
The scattering properties of a body are uniquely determined by
the incoming and outgoing fields on any bounding surface.61 We
represent all electromagnetic fields in six-dimensional tensors,

ψ = E
H

ikjjj y{zzz (1)

For a fixed frequencyω (time-dependence e−iωt), the “scattering
channels” are basis sets on or outside a bounding surface of all
scatterers in a given problem; equivalently, they are the “ports”
commonly used in temporal coupled-mode theory.62,63 We
assume that the surface encloses all scatterers (such that all
channels are propagating or far-field in nature), that the
background is lossless, so that each channel carries fixed and
position-independent energy and momenta, and that a finite set
of channels describe the scattering process with arbitrarily high
accuracy. We start by considering a basis of N “incoming”
channels, represented by basis statesφ1− throughφN− in a tensor

−9 :

φ φ φ=− − − −x x x( ( ) ( )... ( ))N1 29 (2)

Any complete set of incident channels may be used (plane
waves, vector spherical waves, etc.). For the analytical force/
torque bounds we will derive, the incident field will be fixed for a
given problem, whereas for the illumination-field bounds, it will
comprise the degrees of freedom to be optimized, in which case
it is always possible to constrain the illumination to a subset of
solid angles, as may be experimentally advantageous. From here,
we will show how to construct sets of power-orthogonal
incoming and outgoing states and that for any energy/
momentum quantity there is a certain orthogonality between
incoming and outgoing states that simplifies the ultimate
quadratic forms.

The power flowing into a surface S with outward normal n̂ is
given by

∫ ∫ ψ ψ− × *· ̂ = − − ̂×
̂×

†

Θ

E H n
n

n
1
2

Re 1
4S S ´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

ikjjjj y{zzzz
(3)

where Θ is a real-symmetric matrix (cross products change sign
under interchange of their arguments, so (n̂×)T = −n̂× and vice
versa). For the incoming-wave basis −9 , with linearly
independent but not necessarily orthonormal states, the power
of an incoming field ψin in this basis, ψ = −cin in9 , is

∫ − Θ−
†

−c c1
4S

in in

Ä
ÇÅÅÅÅÅÅÅÅÅ ikjjj y{zzz

É
ÖÑÑÑÑÑÑÑÑÑ9 9

(4)

Now we use the physical knowledge that −9 comprises only
incoming states (with nonzero power) to assert that −Θ/4 is
positive-def inite over all states of interest. Since −Θ/4 is definite,
it can be used to define a modified inner product, and then one
can use, for example, the Gram−Schmidt process to orthonorm-
alize our −9 basis in this quadratic form,64 giving

∫ − Θ =−
†

−
1
4S

ikjjj y{zzz9 9 0
(5)

where0 is the identity tensor. (Note that if the ambient medium
is periodic, the surface S needs to be replaced by a volume that is
one unit cell thick.65 The Bloch waves in a periodic medium will
not be linearly independent over a single cross-section.)
For power-orthogonal outgoing channels, we time-reverse the

incoming channels. The outgoing channels, denoted +9 , are then
given by

=
−

*+ −
´ ≠ÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖ

ikjjjj y{zzzz9 9
0

0
7 (6)

where the parity matrix 7 accounts for the different time-
reversal properties of electric (E → E*) and magnetic (H →
−H*) fields. These states have the opposite normalization,
because the power is flowing in the opposite direction:

∫ ∫
∫
∫

− Θ = − Θ *

= − − Θ *

= − − Θ *

= −

+
†

+ − −

− −

−
†

−

1
4

1
4
1
4
1
4

S S

T

S

T

S

ikjjj y{zzz ikjjj y{zzzikjjj y{zzzikjjj y{zzz

9 9 9 9

9 9

9 9

7 7

0

where we used the fact that Θ = −Θ7 7 , as can be verified by
direct substitution. Thus, we have constructed power-
orthonormal sets of incoming and outgoing states.
Any nontrivial field solution of a scattering solution will

comprise both incoming and outgoing waves, and thus
computing power, force, torque, or another quadratic form
will include “overlap” terms between the incoming states of −9
and the outgoing states of +9 . We can show generally that such
terms will always cancel. Consider an energy/momentum-flux
quantity that is a quadratic form of the fields flowing through a
surface S:
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∫ ψ ψ= †Q
S

8
(7)

where8 is a Hermitian operator determined by, for example, the
Poyting vector or the electromagnetic stress tensor. In the SI, we
use the time-reversal pairing of the input/output states to prove
that 8 must satisfy the time-reversal expression

= − T8 78 7 (8)

To show orthogonality between the incoming and outgoing
waves, we now consider a scenario in which no absorption
occurs, and all incoming power/momentum is converted into
outgoing power/momentum. The total fields are given by the
incoming and outgoing fields

ψ ψ ψ= + = +− +c cin out in out9 9 (9)

Evaluating the power/momentum quantity on the surface S, we
find

∫
∫ ∫

∫

ψ ψ ψ ψ ψ ψ= [ + + ]

= +

+

† † †

†
−
+

−
†

+
†

+

†
−
†

−

Q

c c c c

c c

2Re

2Re

S

S S

S

in in out out in out

in in out out

in out

ikjjj y{zzz ikjjj y{zzzÄ
ÇÅÅÅÅÅÅÅÅÅ ikjjj y{zzz

É
ÖÑÑÑÑÑÑÑÑÑ

9 9 9 9

9 9

8 8 8

8 8

8
(10)

From eq 8, it is straightforward to show that incoming/outgoing
channels carry equal and opposite energy/momentum:
∫ ∫= −+

†
+ −

†
−S S

9 9 9 98 8 . Thus, the first two terms in eq 10
add to zero, and we are left only with the third term. The total
sum Q has to equal zero, leaving

∫ =−
†

+Re 0
S

9 98
(11)

Thus, the time-reversed, propagating basis states exhibit
orthogonality between incoming and outgoing waves, for any
flux quantity represented by a quadratic form.

■ ANALYTICAL BOUNDS
By virtue of linearity, any quantity describing energy or
momentum flow of a field ψ through a surface S can be
described by eq 7, as a quadratic form.41,66 We can decompose
the incoming- and outgoing-wave components of ψ into basis-
coefficient vectors cin and cout:

ψ = −x x c( ) ( )in in9 (12a)

ψ = + c(x) (x)out out9 (12b)

For linear materials (considered hereafter), the basis coefficients
cin and cout are related by =c cout in6 , where 6 is the scattering
matrix. By the power-orthonormalization condition for −9 , eq 5,
and its negative for +9 , absorption is simply

= −† †P c c c cabs in in out out (13)

i.e., incoming minus outgoing power. Similarly, the force or
torque on any scatterer, in some direction i, is the difference in
momentum flux of the incoming and outgoing waves, given by

= [ − ]† †F
c

c c c c1
i i iin in out out3 3

(14)

τ ω= [ − ]† †c c c c1
i i iin in out out- -

(15)

where c is the speed of light and i3i and i- are dimensionless
matrix measures of linear and angular momentum, given by
overlap integrals (described above) involving the stress tensor
(SI). There are no cross terms, as proven by eq 11. Equations
13−15 compactly represent enegy/momentum flow in an
intuitive basis. We can derive general bounds by adding a single
constraint: passivity.
Passivity requires that induced currents do no work;67 as a

consequence, absorption and scattered power are nonnegative.
In a recent series of papers,42−44,68−70 we have identified
passivity-based quadratic constraints to the currents induced
within a medium and applied them to find material-dictated
bounds to a variety of optical-response functions. Here, we apply
such constraints to the scattering channels themselves. Non-
negative absorption, i.e., Pabs > 0, translates eq 13 to a quadratic
photon-conservation constraint on cout:

≤† †c c c cout out in in (16)

The largest force or torque that can be exerted on a
nanoparticle can thus be formulated as the maximum of eqs 14
and 15 subject to passivity, i.e., eq 16. Equations 14−16
represent a particularly straightforward quadratic optimization
with quadratic constraints. Of the two terms each in eqs 14 and
15, the first are fixed by the incident field, while the second are
the variable ones to be bounded. For simplicity, we assume the
standard case in which channels have equal positive- and
negative-momentum eigenstates, such that the eigenvalues
come in positive/negative pairs and max[cout

† (−4)cout] =
max[cout† 4cout] (it is straightforward to generalize the results
for alternative bases). Then the Rayleigh quotient64 in tandem
with the passivity constraint, eq 16, bounds the second terms of
eqs 14 and 15 by cout† 4cout ≤ (cout† cout)λmax(4) ≤

λ†c c( ) ( )in in max 4 , for = ,i i4 3 - , where λmax(4) is the largest
eigenvalue of 4. Denoting the incoming power, momentum
flow, and angular momentum flow by = †c cin in in> ,

= † cc c /i iin, in in37 , and ω= †c c /i iin, in in-1 , respectively, the
maximum force and torque are given by

λ≤ +F
c

( )i i iin,
in

max 37 >
(17)

τ ω λ≤ + W
( )i i iin,

in
max -1

(18)

Equations 17 and 18 are general bounds to the force or torque
that can be exerted on any scatterer, given only the incident-field
properties and the power and momentum properties of the
relevant scattering channels. Intuitively, eq 17 predicts an
optimal force for nanoparticles that absorb all of the momentum
along direction i of the coupled incoming channels and generate
outgoing waves in those channels of equal power and large,
negative momentum. The eigenvalue encodes the relative
difficulty in any set of scattering channels of generating such
momentum transfer. The analogous interpretation applies to eq
18 in terms of angular momentum.
Natural scattering channels for wavelength-scale nano-

particles are the vector spherical waves (VSWs), Ml,m
± (TE)

and Nl, m
± (TM), where l and m are the angular and projected

quantum numbers, respectively. A scatterer of finite size will
have nontrivial coupling to only a finite number of channels

ACS Photonics Article

DOI: 10.1021/acsphotonics.8b01263
ACS Photonics 2019, 6, 395−402

397

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.8b01263/suppl_file/ph8b01263_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.8b01263/suppl_file/ph8b01263_si_001.pdf
http://dx.doi.org/10.1021/acsphotonics.8b01263


parametrized by lmax, a maximum angular quantum number.
Farsund and Felderhof71 have derived analytical expressions for
the integrals defining the matrices i3 and i- (see SI). As shown in
Figure 1, z- is diagonal, since the VSWs are pure angular

momentum states. Conversely, z3 has nonzero entries only off
the diagonal. In the SI, we derive bounds on the largest
eigenvalues of i3 and i- : λmax( i3) ≤ 1 and λ = l( )imax max- . The
physical origin of these bounds can be understood as follows: for
any linear combination of VSWs comprising a single photon,
they will demonstrate less directionality (and hence smaller
linear momentum) than the corresponding plane-wave photon
with momentum ℏk; by contrast, the angular momentum of a
VSW can be as large as lmax times ℏ|k| per photon. We can
simplify eqs 17 and 18 for prototypical plane-wave incident
fields.Within channels up to lmax, a plane wave with amplitude E0

and wavevector k carries power π= +† | |
| |l lc c ( 2 )

Z
E

kin in max
2

max 2
0

2

0
2

( S I ) . I t s l i n e a r momen t um flu x p e r t im e i s

= = β†
+

†cc c c c/i i c
l

lin, in in 1 in in
i max

max
37 , where βi = k̂·i ̂ is the fraction

of the incident wave’s momentum in direction i. Its angular
momentum per time is ω βγ ω= =† †c c c c/ ( / )i i i iin, in in in in-1 ,
where γi is the degree of right circular polarization for the
wave projected into direction i. Both βi and γi have a range of
[−1, 1]. Following this procedure and dividing out the plane-
wave intensity, Iinc = |E0|2/2Z0, yields the bounds

λ
π β≤ + + +

F
I c

l l
l

l4
( 2 ) 1

1
i

i
inc

2

max
2

max
max

max

ikjjjjj y{zzzzz (19)

τ λ
π

βγ≤ + +
I c

l l l
8

( 2 )( )i
i i

inc

3

2 max
2

max max
(20)

Equations 19 and 20 bound the largest forces/torques that can
be generated from incident plane waves. (Equations 17 and 18
provide bounds for more general incident waves.) The
quantities λ2/c and λ3/c naturally emerge as force/torque
analogs of the λ2 scattering cross-sections. Such proportion-
alities emerge physically by dimensional analysis, while the
quadratic framework leading to eqs 19 and 20 provides exact,
quantitative upper bounds.

Within eqs 19 and 20 is a second interesting result: spherically
symmetric scatterers cannot reach the plane-wave incident-field
bounds, except in the trivial case lmax = 1. Reaching these bounds
requires outgoing waves to be proportional to the maximal
eigenvectors of the i3 and i- matrices, which do not coincide with
the incoming-wave coefficients of a plane wave. (By modifying
the incident field to match the VSW coefficients over the full 4π
angular range, one can engineer a scenario in which spherically
symmetric objects are optimal.) This is in contrast to scattered-
power optimization, where it is known that spherically
symmetric scatterers can be globally optimal72 for any incident
field, and it arises because the additional requirements of
directionality/polarization for linear/angular momentum re-
quire specific combinations of VSW channels for maximum
effect.
Figures 2 and 3 show examples of designed nanoparticles that

can approach the plane-wave bounds. For Figure 2, the inner

Figure 1. Power, force, or torque imparted to any structure (or
collection thereof) can be encoded in matrix quadratic forms4 that are
amenable to analytical bounds and quadratic optimization. In a vector-
spherical-wave (VSW) basis, the force (4 → i3) and torque ( → z4 - )
matrices have nonzero values as shown on the right.

Figure 2. Force bounds of eqs 17 and 19 require strong and highly
directional scattering. Core−shell structures with aligned resonances
show strong scattering and imperfect but good directionality.
Optimized Si−SiO2 structures (r1 = 0.1a, r2 = 0.9a) experience a
force approaching the lmax = 3 bounds, with negligible scattering in
higher channels.

Figure 3. To achieve the torque bounds of eqs 18 and 20, a scatterer
must generate the largest possible Δm between incoming/outgoing
waves. A helix interacting with a circularly polarized wave impinging
normal to its rotation axis exhibits a magnetic dipole moment μ that
generates counter-rotating outgoing waves, to create a torque (solid
lines) that nearly achieves the lmax = 1 bound (dotted lines).
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radii of core−shell Si−SiO2 structures were optimized (over a
length scale a) to exhibit aligned resonances (“superscatter-
ing”7). Even though spheres cannot exactly reach the bounds, as
proven above, such resonances can effectively scatter light in the
backward direction, enhancing a large force in the forward
direction that achieves a substantial fraction of the bound. For
the three channels primarily excited, nearly 65% of the total
bound can be achieved, while nearly saturating the force due to
the l = 1, 2 channels. By contrast, spheres cannot generate
substantial torque, which requires coupling positive- and
negative-angular-momentum channels. Helices are excellent
nanoswimmers,73 and we find that illuminating a helix
(refractive index 3.5, structural details in SI) normal to its
rotation axis generates counter-rotating outgoing waves and a
large net torque perpendicular to its rotation axis. Figure 3 shows
that an optimized helix can closely approach the lmax = 1 bound.

■ OPTIMAL ILLUMINATION FIELDS
The quadratic framework lends itself readily to the reverse
problem: given a fixed scatterer, what incident field generates
maximal force/torque? More generally, what incident field
maximizes general power/momentum quadratic forms? Sig-
nificant interest in this problem has led to a variety of iterative
optimizationmethods, which often converge to suboptimal local
extrema.57 Yet starting from the Poynting-vector/stress-tensor
quadratic form, described by eq 7, one can write any figure of
merit in the form

=
†

†Q
c
c

c
c

in

out

11 12

12 22

in

out

ikjjjj y{zzzz i
kjjjjjj

y
{zzzzzzikjjjj y{zzzz4 4

4 4 (21)

where 114 and 224 (and hence the whole 4 matrix) are
Hermitian. Per eqs 13−15, for absorbed power, net force, and
net torque, the off-diagonal terms are zero, while

= − =11 224 4 ,, i3, and i- , respectively (where , is the identity
matrix). For the power or momentum flux in the scattered field,

the precise definitions of ii4 depend on the decomposition of
the incident field into incoming versus outgoing waves; in the
V SW b a s i s , o n e c a n s h o w ( c f . S I ) t h a t

= − = − =12 11 224 4 4 ,, i3, or i- , respectively. The outgoing-
field coefficients are given by the product of the scattering matrix
with the incoming-field coefficients, cin6 , such that one can
rewrite eq 21 as a quadratic form of the incoming-field
coefficients only:

= [ + + + ]† † † †Q c cin 11 12 12 22 in4 4 6 6 4 6 4 6 (22)

Constraining the total power contained in the incoming wave
over some spatial region or set of channels imposes a constraint

≤†c c 1in in$ for a Hermitian positive-definite matrix$ (e.g.,$ is
the identity matrix for a unity-average-power constraint in the
scattering channels). The optimal coefficient vector cin(opt) that
maximizes eq 22 subject to this constraint solves the generalized
eigenproblem

λ[ + + ] =† c c2Re( )11 12 22 in
(opt)

max in
(opt)4 4 6 6 4 6 $ (23)

where λmax is the largest eigenvalue. The extremal eigenfunction
solving eq 23 is the globally optimal incident field. Intuitively, it
is sensible that the scattering matrix 6 determines the optimal
incident field, since 6 encodes the response for any incoming
wave. A key feature of eq 23 is that for the wavelength-scale
scatterers in many optical force experiments, only a small to
moderate number of VSWs are typically excited. Hence 6 has
relatively few degrees of freedom, enabling rapid computation of
the optimal incident field.
Figure 4 demonstrates the capability for eq 23 to generate

orders-of-magnitude increases in force/torque through wave-
front shaping. We consider a 200 nm silver nanocube. The
nanocube supports a strongly scattering quadrupole resonance
at wavelength λ = 525 nm that already generates a significant
force along the direction of an incoming plane wave. For a right
circularly polarized (RCP) wave, absorption in the silver
transfers the m = 1 angular momentum of the wave to the

Figure 4. Global optimization of an illumination field can be achieved in a single eigenvector computation per eq 23. Here we optimize force and
torque on a silver cube (200 nm edge length) for illumination fields decomposed into VSW and Bessel-beam (BB) bases, with circularly polarized plane
waves (CP PWs) as a standard for comparison (left). (a) Despite the seemingly large torque generated on resonance (λ = 525 nm) by a RCP PW(black
line and inset), optimal VSW and BB incident fields offer >40× and >20× improvements, respectively, for a fixed field intensity. The scattered fields
(right) for the optimal BB show an outgoing radiation pattern carrying angular momentum, primarily in the l = 2, m = ±2 channels. (c) Plane waves
generate no in-plane forces (Fx, Fy) on such a cube. VSW and BB incident fields optimized for maximum |Fx| generate in-plane forces larger than the Fz
of a plane wave. The scattered fields (right) for the optimal BB show the highly asymmetric radiation pattern. (b, d) Optimized VSW and BB field
coefficients, alongside field patterns in the plane of the cube (insets).
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cube and generates a commensurate torque (a, inset). Yet
through wavefront shaping, the torque can be dramatically
enhanced, without increasing the intensity of the incident field.
We consider two incident-field bases: VSWs, with quantum
numbers l, m, and s (where s denotes polarization), and vector
Bessel beams (BBs),74 diffraction-free cylindrical beams with an
angular order m and a polarization s. Note that Bessel beams are
a subset of VSWs, so VSWs can exhibit superior performance,
although BBs are more practical for experimental implementa-
tions.31 One could similarly optimize plane waves coming from
within a given solid angle. After solving for the scattering matrix
with a free-software implementation75 of the boundary element
method,76 solution of eq 23 yielded the optimal VSW and BB
fields. As shown in Figure 4(a,b), isolation and optimization of
the dominant scattering channels yields 20−40× increases in the
torque. The field patterns (right) indicate the angular
momentum carried away by the scattered fields. In contrast to
the torque case, the nanocube already feels large forces in plane-
wave interactions, as seen in Figure 4(c) (black dashed line),
simply through the momentum carried in forward-scattered and
backscattered waves (i.e., along z). However, the force in a
lateral direction is necessarily zero by symmetry. With the same
nanocube scattering matrix, we thus optimized eq 23 for the x-
directed force [Figure 4(c)]. The optimal field coefficients,
shown in Figure 4(d), generate lateral forces even larger than the
normally directed force under plane-wave excitation. The field
patterns (right, red) show the highly asymmetric scattering that
is responsible for the large lateral force.
The quadratic-optimization approach developed here can be

applied across the landscape of optical force and torque
generation. The analytical bounds of eqs 17−20 predict optimal
response for a fixed incident field, while the optimal-eigenvector
approach of eq 23 determines optimal incident fields for a fixed
structure. Looking forward, incorporation of temporal dynamics
and associated effects (e.g., back-action77) may lead to robust
and efficient methods for producing even larger effects, toward
optimal dynamical control at the nanoscale.
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Coupled-mode theory for general free-space resonant scattering of
waves. Phys. Rev. A: At., Mol., Opt. Phys. 2007, 75, 053801.
(7) Ruan, Z.; Fan, S. Design of subwavelength superscattering
nanospheres. Appl. Phys. Lett. 2011, 98, No. 043101.
(8) Loudon, R. The Quantum Theory of Light, 3rd ed.; Oxford
University Press: New York, 2000.
(9) Stutzman, W. L.; Thiele, G. A. Antenna Theory and Design, 3rd ed.;
John Wiley & Sons, 2012.
(10) Kwon, D.-H.; Pozar, D. M. Optimal Characteristics of an
Arbitrary Receive Antenna. IEEE Trans. Antennas Propag. 2009, 57,
3720−3727.
(11) Liberal, I.; Ra’di, Y.; Gonzalo, R.; Ederra, I.; Tretyakov, S. A.;
Ziolkowski, R. W. Least Upper Bounds of the Powers Extracted and
Scattered by Bi-anisotropic Particles. IEEE Trans. Antennas Propag.
2014, 62, 4726−4735.
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I. TIME-REVERSAL PROPERTIES OF ENERGY/MOMENTUM FLUX OPERATORS

In the main text, we saw that energy/momentum quantities of interest, such as absorbed power, force, or torque,
can generally be written for a field  as quadratic forms

Q =

ˆ
S
 †Q , (S1)

where Q is a Hermitian operator determined by the Poyting vector or the electromagnetic stress tensor. Here, we use
the fact that Q represents energy or momentum flow to assert that Q must satisfy a general time-reversal expression.

Consider a total field that is purely outgoing:  = V+c. Then Q would be given by

Q = c
†
✓ˆ

S
V†

+QV+

◆
c (S2)

S1



If we time-reverse the fields, V+ ! V� = PV+, then the quantity Q must go to its negative (energy/momentum flows
in the opposite direction):

�Q = c
†
✓ˆ

S
VT

+PQPV+

◆
c

= c
†
✓ˆ

S
V†

+PQTPV+

◆
c. (S3)

Since Eq. (S2) and Eq. (S3) apply for any c and any V+/�, we have the relation

Q = �PQTP. (S4)

From Eq. (S4), it is straightforward to show that, as argued in the main text, that the incoming/outgoing channels
carry equal and opposite energy/momentum:

ˆ
S
V†

+QV+ = �
ˆ
S
V†

�QV�. (S5)

II. QUADRATIC FORMS

First, we show that we can write the flux rates of power, linear momentum, and angular momentum through any
surface S as the quadratic form given by Eq. (S1) and repeated here,

Q =

ˆ
S
 †Q , (S6)

A. Power

Assuming an outward normal n̂ on some surface S, net power flow in a field  is given by the Poynting vector,
which can be written in six-vector notation as

P =

ˆ
S
 †
✓
�1

4
⇥

◆
 , (S7)

where ⇥ is the real-symmetric matrix,

⇥ =

✓
�n̂⇥

n̂⇥

◆
. (S8)

B. Linear momentum

The flux of linear momentum through a surface is determined by a surface integral of the Maxwell stress tensor,
which is � =

⇥
EE

† � 1
2I
�
E

†
E
�⇤

+
⇥
HH

† � 1
2I
�
H

†
H
�⇤

(for "0 = µ0 = 1). The linear-momentum flux along a given
direction, denoted x̂, is given by

P · x̂ =
1

2
Re

ˆ
S
x̂ ·
⇢

EE
† � 1

2
I
�
E

†
E
��

+


HH

† � 1

2
I
�
H

†
H
���

n̂. (S9)

If we define the nonsquare, 6⇥ 2 matrices X and N,

N =

✓
n̂

n̂

◆
, X =

✓
x̂

x̂

◆
, (S10)

then we can alternatively write the flux rate as

P · x̂ =
1

2
Re

ˆ
S


Tr
�
XT  †N

�
� 1

4
 † Tr

�
XTN

��
. (S11)
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By straightforward trace manipulations, we can rewrite this as

P · x̂ =
1

4

ˆ
S
 †

NXT + XNT � 1

2
Tr
�
XTN

��
 , (S12)

which is precisely of the form of Eq. (S6), with one-fourth times the term in square brackets denoting the operator Q.

C. Angular momentum

The angular-momentum integrand is similar to that for linear momentum, with the replacement � ! r⇥�. In the
direction x̂, the angular momentum (around the origin) takes the form

J · x̂ =
1

2
Re

ˆ
S
(x̂⇥ r) ·

⇢
EE

† � 1

2
I
�
E

†
E
��

+


HH

† � 1

2
I
�
H

†
H
���

n̂. (S13)

Clearly the angular-momentum flux is identical to the linear-momentum flux, with the replacement x ! r⇥x. Thus,
if we define

U =

✓
r⇥ x

r⇥ x

◆
, (S14)

we can directly write the angular-momentum analog of Eq. (S12):

J · x̂ =
1

4

ˆ
S
 †

NUT + UNT � 1

2
Tr
�
UTN

��
 , (S15)

again with one-fourth times the term in square brackets denoting Q.

D. Power: scattering-coe�cient quadratic forms

Now we consider a scattering problem in which an incident field interacts with a scattering body, thereby producing
a scattered field. Any field  (which could be the total field, the scattered field, or the incident field, e.g.) can be
decomposed into incoming- and outgoing-wave components, as in the main text,

 =  in +  out

= V�cin + V+cout. (S16)

Then the power in  flowing through S is given by

Q =

ˆ
S

h
 †
inQ in +  †

outQ out + 2Re †
inQ out

i

= c
†
in

✓ˆ
S
V†

�QV�

◆
cin + c

†
out

✓ˆ
S
V†

+QV+

◆
cout + 2Re


c
†
in

✓ˆ
S
V†

�QV+

◆
cout

�
, (S17)

where Q is the corresponding power/momentum operator from the previous subsections. In the main text, we
saw that we time-reversal incoming/outgoing basis states can be chosen to satisfy

´
S V†

�QV� = �
´
S V†

+QV+ and´
S V†

�QV+ = 0, giving

Q = c
†
inQincin � c

†
outQincout. (S18)

where Qin =
´
S V†

�QV�.
Absorbed power is simply the power flow of the total field into S, and thus can be written identically from Eq. (S18),

where cin and cout now refer specifically to the in/out decomposition of the total field. Moreover, for power flow, as
discussed in the main text, it is convenient to choose Qin = I, where I is the identity matrix, such that

Pabs = c
†
incin � c

†
outcout. (S19)

S3



Scattered power is the outgoing power in the scattered field, which has no incoming-field component and can thus be
written Pscat = c

†
scatcscat. Di↵erent bases may have di↵erent partitions for the incident/scattered fields in the in/out

basis; for vector spherical waves,

cin =
1

2
cinc , (S20)

cout = cscat +
1

2
cinc . (S21)

Thus,

Pscat = (cout � cin)
† (cout � cin) . (S22)

Extinction is the sum of absorption and scattering, and thus in the VSW basis is the sum of Eq. (S19) and Eq. (S22),
giving

Pext = 2Re
h
c
†
in (cin � cout)

i
(S23)

E. Force/torque: scattering-coe�cient quadratic forms

We can work out similar quadratic forms, in terms of the scattering-channel coe�cients, for the force, torque, and
scattering/extinction contributions to the corresponding momentum flux rates. Equation (S18) holds for any of these
quadratic forms, beyond just power. Force is the net transfer of linear momentum in the total field  , and thus by
analogy with Eq. (S19) (but noting that in this case the corresponding matrix is not the identity):

F · x̂ = c
†
inPicin � c

†
outPicout, (S24)

where Pi =
´
S V†

�QV� for Q as defined by Eq. (S12).
Then, the linear-momentum flux rate for the scattered field,  scat, is given by the same expression, except with

no incoming-wave component, the sign of the outgoing-wave component reversed, and the outgoing-wave coe�cients
replaced with the scattered-field coe�cients: Pscat · x̂ = c

†
scatPicscat. In the VSW basis, by Eqs. (S20,S21),

Pscat · x̂ = (cout � cin)
† Pi (cout � cin) . (S25)

Then, the linear momentum extinguished is

Pscat · x̂ = 2Re
h
c
†
inPi (cout � cin)

i
. (S26)

For angular momentum, the corresponding equations take the same form as Eqs. (S24–S26), with the replacement
Pi ! Qi. In the next section, we list the definitions of vector-spherical-waves and use the results of Ref. [4] to explicitly
write out the matrices Pi and Qi.

III. VECTOR SPHERICAL WAVES: DEFINITIONS AND MATRICES

There are many possible conventions for vector spherical waves (VSWs), with di↵erent coe�cient and sign conven-
tions, and thus for clarity we include our convention here in detail (our convention is the same as that of Ref. [2]),
and we also include the force and torque matrices Pi and Ji in the VSW basis.

First, we note that in addition to the in/out basis used throughout, one could instead use an incident-field/scattered-
field separation. Which separation is used determines which types of spherical Bessel functions are used in the VSWs:

Einc(x) = Vreg(x)cinc (S27a)

Escat(x) = V+(x)cscat (S27b)

Ein(x) = V�(x)cin (S27c)

Eout(x) = V+(x)cout, (S27d)
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where the “reg” subscript denotes “regular” (i.e. well-behaved spherical Bessel functions at the origin), the “+”
superscript denotes outgoing waves, and the “-” superscript denotes incoming waves. (In the main text it was clearer
to use subscripts, to avoid conjugate-transpose symbol clashes, but here we use superscripts to avoid index symbol
clashes.) The tensors Vreg/+/� comprise the vector spherical waves as columns:

Vreg/+/�(x) =
h
. . .Nreg/+/�

`,m (x) , M
reg/+/�
`,m (x) . . .

i
,

1  `  `max ,�`  m  ` . (S28)

The vectors N
reg/+/�
`,m (x) denote e-polarized waves while M

reg/+/�
`,m (x) denote h-polarized waves. ` is the angular

momentum “quantum number” while m is the projected (angular momentum) quantum number. The magnetic fields
are given by the same equations as the electric fields, with M ! N and N ! �M.

Our vector-spherical-wave convention is

N
reg/+/�
`,m (x) =

1

k
r⇥

h
r⇥

⇣
x zreg/+/�

` (kr)Y`m(✓,�)
⌘i

(S29)

M
reg/+/�
`,m (x) = r⇥

⇣
x zreg/+/�

` (kr)Y`m(✓,�)
⌘

, (S30)

where zreg/+/�
` represents the three spherical Bessel functions j`, h

(1)
` and h(2)

` respectively (also see [3, Eqs. (4.9)–
(4.14)]). The spherical harmonics Y`m are defined as

Y`m(✓,�) =

s
2`+ 1

4⇡`(`+ 1)

(`�m)!

(`+m)!
Pm
` (cos ✓)eim� . (S31)

Our definition of the vector spherical waves are the same as that in [2, Eqs. (1.4.56,1.4.57)]. Note that the spherical
harmonics defined in Eq. (S31) for di↵erent `’s and m’s are orthogonal but not unit-normalized, as

ˆ
Y`m(✓,�)⇤Y`0m0(✓,�) =

1

`(`+ 1)
�``0�mm0 . (S32)

Applying the curl operator in Eqs. (S29,S30) becomes [3]

N
reg/+/�
`,m (x) =

s
2`+ 1

4⇡`(`+ 1)

(`�m)!

(`+m)!
·
 
zreg/+/�
` (⇢)

⇢
eim�`(`+ 1)Pm

` (cos ✓)êr

+ eim� dP
m
` (cos ✓)

d✓

1

⇢

d

d⇢

h
⇢zreg/+/�

` (⇢)
i
ê✓

+ (im)eim�P
m
` (cos ✓)

sin ✓

1

⇢

d

d⇢

h
⇢zreg/+/�

` (⇢)
i
ê�

◆
, (S33)

M
reg/+/�
`,m (x) =

s
2`+ 1

4⇡`(`+ 1)

(`�m)!

(`+m)!
·
✓
(im)

eim�

sin ✓
Pm
` (cos ✓)zreg/+/�

` (⇢)ê✓

� eim� dP
m
` (cos ✓)

d✓
zreg/+/�
` (⇢)ê�

◆
, (S34)

where ⇢ = kr.
As we will discuss in the next subsection, Farsund and Felderhof [4] worked out overlap integrals of the Maxwell

stress tensor for vector spherical waves of di↵erent orders, which determine the values of the force and torque matrices
whose eigenvalues we bound. We use a slightly di↵erent VSW convention from Farsund and Felderhof, which we
delineate here:

1. In Ref. [4], they define Y`m(✓,�) to be

Y`m(✓,�) =

s
2`+ 1

4⇡

(`�m)!

(`+m)!
Pm
` (cos ✓)eim� .

In this definition, Y`m(✓,�) is orthonormal. Therefore, we have a factor
p
`(`+ 1) di↵erence.
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2. Their definition of Vreg/+/� has an extra factor k.

3. Their definition of Mreg/+/� has an extra factor i.

Therefore, the conversion between our coe�cients c and the Farsund–Felderhof coe�cients cFF is

ce`m = k
p
`(`+ 1)cFFe`m, (S35)

ch`m = ik
p
`(`+ 1)cFFh`m. (S36)

A. Torque matrices

As shown in Sec. II, the matrices Pi and Ji, for force and torque in the i direction, respectively, are determined by
overlap integrals

´
S V†

�QV�, involving the basis tensor V� and a tensor Q defined by the particular integral quantity
(stress tensor, Poynting flow, etc.). In this subsection we write out the torque matrix Ji (translating the results of
Ref. [4]), while the next subsection contains the force matrix Pi.

The torque matrix Ji accounts for nonzero integrals (over the spherical bounding surface) of VSWs of order {`,m, s}
with VSWs of order {`0,m0, s0}. Farsund and Felderhof show that it is simpler to work with a variable q 2 {0,±1}
instead of i, where q = 0 corresponds to i = z and q = ±1 are linear combinations of the x and y directions. For a
given q, it is helpful to define a term Lq(`mm0) as follows:

Lq(`mm0) = (�1)`+m+1
p
`(`+ 1)(2`+ 1)

✓
` ` 1

�m m0 q

◆
, q 2 {�1, 0, 1} ,

where the last term of the above equation is the Wigner-3j symbol [4]. For any q (and i), the torque matrix is
block-diagonal in `, as there is no coupling between ` and `0 waves when ` 6= `0. In terms of Lq, the ` blocks of the
torque matrices are:

J`z(mm0) = L0(`mm0) (S37)

J`x(mm0) =
L+1(`mm0)� L�1(`mm0)p

2
(S38)

J`y(mm0) = �i
L+1(`mm0) + L�1(`mm0)p

2
(S39)

Now, we want to write down the matrices J`x, J`y and J`z explicitly and try to get the eigenvalues analytically. First,
we have

L0(`mm0) = (�1)`+m+1
p
`(`+ 1)(2`+ 1)

✓
` ` 1

�m m0 0

◆
(S40)

= (�1)`+m+1
p
`(`+ 1)(2`+ 1) · (�1)`+m+1 mp

`(`+ 1)(2`+ 1)
�mm0 (S41)

= m �mm0 (S42)

Therefore we have

J`z =

2

6666666664

�`
�`+ 1

. . .
0

. . .
`� 1

`

3

7777777775

(S43)

It is clear that the eigenvalues of J`
z are �`,�`+ 1, . . . , 0, . . . , `� 1, `.
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L1(`mm0) = (�1)`+m+1
p
`(`+ 1)(2`+ 1)

✓
` ` 1

�m m0 1

◆
(S44)

= (�1)`+m+1
p
`(`+ 1)(2`+ 1) · (�1)`+m

s
(`+m)(`�m+ 1)

2`(`+ 1)(2`+ 1)
�m0,m�1 (S45)

= �
r

(`+m)(`�m+ 1)

2
�m0,m�1 (S46)

If we want to write it explicitly, it is

L`
1 =

2

666666666664

0 0 0 0

�
q

1·2`
2 0 0 0

�
q

2·(2`�1)
2 0 0

. . .

�
q

(2`�1)·2
2 0

�
q

2`·1
2

3

777777777775

(S47)

L�1(`mm0) = (�1)`+m+1
p
`(`+ 1)(2`+ 1)

✓
` ` 1

�m m0 �1

◆
(S48)

= (�1)`+m+1
p
`(`+ 1)(2`+ 1) · (�1)`+m+1

s
(`�m)(`+m+ 1)

2`(`+ 1)(2`+ 1)
�m0,m+1 (S49)

=

r
(`�m)(`+m+ 1)

2
�m0,m+1 (S50)

If we want to write it explicitly, it is

L`
�1 =

2

6666666664

0
q

1·2`
2 0 0 0

0 0
q

2·(2`�1)
2 0 0

. . . q
(2`�1)·2

2 0

0 0 0 0
q

2`·1
2

3

7777777775

(S51)

We have

J`x =

2

66666666666664

0
p
1·2`
2p

1·2`
2 0

p
2·(2`�1)

2p
2·(2`�1)

2 0
p

3·(2`�2)

2
. . .

. . .
. . .p

(2`�2)·3
2 0

p
(2`�1)·2

2p
(2`�1)·2

2 0
p
2`·1
2p

2`·1
2 0

3

77777777777775
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J`y =

2

66666666666664

0 i
p
1·2`
2

�i
p
1·2`
2 0 i

p
2·(2`�1)

2

�i
p

2·(2`�1)

2 0 i
p

3·(2`�2)

2
. . .

. . .
. . .

�i
p

(2`�2)·3
2 0 i

p
(2`�1)·2

2

�i
p

(2`�1)·2
2 0 i

p
2`·1
2

�i
p
2`·1
2 0

3

77777777777775

Although it is not analytically obvious how to derive the eigenvalues of J`x or J`y, it is straightforward to show
numerically that their eigenvalues are also �`,�`+ 1, . . . , `� 1, `. This can also be argued by symmetry: absent an
incident field, there is no preferred direction in space, and thus the angular momentum “available” in any direction
should be identical.

B. Force matrices

The force matrices are more complex than the torque matrices. For any q, we can decompose the force matrices
into two parts:

Pq = Pd
q + Pc

q , q 2 {�1, 0, 1} ,

where Pd
q denotes the interaction for waves of the same polarization, but di↵erent `’s, whereas Pc

q is the interaction
matrix for the same `’s but di↵erent polarizations (e-h).

Again, following Ref. [4] while noting the di↵erent normalizations,

Pd0

q (`m, `0m0) = Re

"s
1

`(`+ 1)
· i`�`0(`02 + `0 � 1)Rq(`m, `0m0) ·

s
1

`0(`0 + 1)

#
, (S52)

where the term Rq(`m, `0m0) is a product of two Wigner 3j-symbols,

Rq(`m, `0m0) = (�1)m
p
(2`+ 1)(2`0 + 1)

✓
` `0 1
0 0 0

◆✓
` `0 1

�m m0 q

◆
. (S53)

In the expression for Rq, the first Wigner 3j-symbol can be simplified:

✓
` `0 1
0 0 0

◆
=

8
>><

>>:

(�1)`
q

`2

`(2`�1)(2`+1) , if `0 = `� 1 ,

0 , if `0 = ` ,

(�1)`+1
q

(`+1)2

(`+1)(2`+1)(2`+3) , if `0 = `+ 1 .

(S54)

Therefore, we have the following

Rq(`m, `0m0) =

8
>>>>>><

>>>>>>:

(�1)`+m
p
(2`+ 1)(2`� 1)

q
`2

`(2`�1)(2`+1)

 
` `� 1 1

�m m0 q

!
, if `0 = `� 1 ,

0 , if `0 = ` ,

(�1)`+m+1
p
(2`+ 1)(2`+ 3)

q
(`+1)2

(l+1)(2`+1)(2`+3)

 
` `+ 1 1

�m m0 q

!
, if `0 = `+ 1 .

(S55)

=

8
>>>>>><

>>>>>>:

(�1)`+m
p
l

 
` `� 1 1

�m m0 q

!
, if `0 = `� 1 ,

0 , if `0 = ` ,

(�1)`+m+1
p
`+ 1

 
` `+ 1 1

�m m0 q

!
, if `0 = `+ 1 .

(S56)

We then have:
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• When q = 1,

Rq(lm, `0m0) =

8
>><

>>:

q
(`+m�1)(`+m)
2(2`�1)(2`+1) �m0,m�1, if `0 = `� 1 ,

0 , if `0 = ` ,

�
q

(`�m+1)(`�m+2)
2(2`+1)(2`+3) �m0,m�1, if `0 = `+ 1 .

(S57)

• When q = 0,

Rq(lm, `0m0) =

8
>><

>>:

q
(`+m)(`�m)
(2`�1)(2`+1)�m0,m, if `0 = `� 1 ,

0 , if `0 = l ,q
(`+m+1)(`�m+1)

(2`+1)(2`+3) �m0,m, if `0 = `+ 1 .

(S58)

• When q = �1,

Rq(lm, `0m0) =

8
>><

>>:

q
(`�m�1)(`�m)
2(2`�1)(2`+1) �m0,m+1, if `0 = `� 1 ,

0 , if `0 = ` ,

�
q

(`+m+1)(`+m+2)
2(2`+1)(2`+3) �m0,m+1, if `0 = `+ 1 .

(S59)

Then, because we take the real part when we calculate the force, the force matrix is

Pd
q =

Pd0

q + (Pd0

q )†

2
,

Note that we have the same block for e � e and h � h polarization. So for each pair of ` and `0, we need to have 2
copies of the matrix.

l=1

e h e h e h

l=2

l=3

l'=1 l'=2 l'=3

cPe

h

e

h

e

h

22

22

12

12

23

23

21

d

32

32

P
P11

11

P

P

P

P

P

P

P

P

P

c

d

d

d

dc

c

33Pc

33Pc

d

d

21

d

Figure S1. The structure of the force matrix Pz

Now, let us focus on the Pc
q. From [4, Eqs. (7.19,7.20)], we have

Pc0

q (`mm0) =
1

`(`+ 1)
Lq(`mm0) (S60)
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Note that this term is not along the diagonal since it is the e-h interaction. Pc0
q has the same form for both e� h and

h� e blocks. Again, there is a real operator for the force calculation, and therefore

Pc
q =

Pc0
q + (Pc0

q )
†

2
. (S61)

Finally, Pq = Pd
q + Pc

q. Using the same q ! i conversion as for the torque case,

Pz = P0 (S62)

Px =
P+1 � P�1p

2
(S63)

Py = �i
P+1 + P�1p

2
(S64)

Pz, for example, has the structure shown in Fig. S1.

IV. BOUNDS ON EIGENVALUES OF Pi AND Ji IN THE VSW BASIS

As we saw in Sec. III A, the eigenvalues of the Ji, for any i, are simply the diagonal entries of Jz:

�`,�`+ 1, . . . , `� 1, `,

and thus the maximum eigenvalue is

�max(Ji) = `max. (S65)

For the force matrices Pi, the o↵-diagonal components make it impossible (as far as we can tell) to solve for the
eigenvalues analytically. The Gershgorin circle theorem [5] can be used to get within about a factor of 1.5 of the
largest eigenvalue, but it turns out that a simple physical argument yields a tighter bound.

Consider some set of incoming waves given by a set of coe�cients cin. The momentum per time carried by those
waves is given by 1

cc
†
inPicin. The maximum momentum that could be carried by those waves is given by the number

of photons per unit time multiplied by ~k, i.e. the total momentum is less than or equal to the sum of ~k = ~!/c
for each photon. The number of photons per unit time is given by c

†
incin/~!, since c

†
incin is the incoming power.

Following these arguments mathematically, we can write:

1

c
c
†
inPicin  ~kdN

dt

= ~kc
†
incin

~!
=

1

c
c
†
incin.

We can rewrite the final expression without the speed of light,

c
†
inPicin  c

†
incin, (S66)

which applies for any cin vector, implying that

�max(Pi)  1. (S67)

Fig. S2 shows that the largest eigenvalue of Pi in a VSW basis converges to the bound as `max ! 1. Note that the
eigenvalue bound itself does not rely on any property of VSWs and must be true for any basis.
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Figure S2. Largest eigenvalue of Pi as a function of `max, converging to the bound of 1.

V. PLANE-WAVE POWER AND MOMENTUM IN THE VSW BASIS

In this section we derive the quantities c
†
incin, c

†
inPicin, and c

†
inJicin in the case that cin represents the VSW

coe�cients for a plane wave propagating in the z direction. We can start from the plane-wave expansions in Ref. [3]
and convert to our VSW basis to find the incoming-wave coe�cients. Plane waves have nonzero coe�cients only for
m = ±1; taking m = 1 below, the coe�cients for linear polarization are

c
Lin
e`m =

1

2

p
⇡(2`� 1)i`�1 (S68a)

c
Lin
e`�m = �1

2

p
⇡(2`� 1)i`�1 (S68b)

c
Lin
h`m =

1

2

p
⇡(2`+ 1)i`�1 (S68c)

c
Lin
h`�m =

1

2

p
⇡(2`+ 1)i`�1, (S68d)

for right circular polarization they are

c
RCP
e`m =

1

2

p
2⇡(2`� 1)i`�1 (S69a)

c
RCP
h`m =

1

2

p
2⇡(2`+ 1)i`�1, (S69b)

and for left circular polarization they are

c
LCP
e`�m = �1

2

p
2⇡(2`� 1)i`�1 (S70a)

c
LCP
h`�m =

1

2

p
2⇡(2`+ 1)i`�1. (S70b)

The value of c†incin is the same for any polarization (since the power is not a↵ected by polarization). It is simplest to

compute the power for circular polarization, in which case it is the sum 1
2

P`max

`=1 2⇡ (2`+ 1). At this point we rescale

our coe�cients by the value |E0|
k
p
2Z0

, where E0 is the plane-wave amplitude, k the wavenumber, and Z0 the impedance

of free space (to ultimately yield a power-normalized c
†
incin). Then,

c
†
incin =

⇡

k2
|E0|2

2Z0

�
`2max + 2`max

�
. (S71)

All of the following quantities will ultimately be written in terms of c†incin, so we drop the scale factor |E0|/k
p
2Z0

hereafter.
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Now we consider the momentum flowing in direction i. The momentum per time is given by (ẑ · î)c†inPzcin/c =

�ic
†
inPzcin/c, since there is no x- or y-directed momentum. (It can be verified that c

†
inPxcin = c

†
inPycin = 0.) From

Sec. III B, we know that Pz = Pd
z + Pc

z. We saw that

Pc
z(`mm0) =

1

`(`+ 1)
L0(`mm0) ,

which means that

c
†
inPc

zcin =
`maxX

`=1

1

`(`+ 1)
c`c`

= ⇡
`maxX

`=1

2`+ 1

`(`+ 1)
, (S72)

where we used the fact that cin has nonzero coe�cients only for m = 1, for which L0(`mm0) = �mm0 . From Eq. (S52),
the Pd

z contribution is

c
†
inPd

zcin =
`max�1X

`=1

1

2

h
(`2 + `� 1) + (`+ 1)2 + `+ 1� 1

i

·

s
(`+ 2)`

(2`+ 1)(2`+ 3)
·

s
1

`(`+ 1)
·

s
1

(`+ 1)(`+ 2)

·
p
2⇡(2`+ 1) ·

p
2⇡(2`+ 3)

= ⇡
`max�1X

`=1

2`(`+ 2)

(`+ 1)
(S73)

The first line of the above equation is the summation of the {`, (` + 1)} and {(` + 1), `} interaction. For both
interactions, Rq(`m, `0m0) is the same. We vary ` from 1 to `max � 1 since the interaction only comes into play when
`max � 2. The first term of the second line includes Rq(`m, `0m0). The third line incorporates the values of cin for
channels ` and `+ 1. So the sum of the contributions from Pc

z and Pd
z is

c
†
inPzcin = ⇡

`max�1X

`=1

2`+ 1

`(`+ 1)
+ ⇡

2`max + 1

`max(`max + 1)
+ ⇡

`max�1X

`=1

2`(`+ 2)

(`+ 1)

= ⇡
`max�1X

`=1

2`(`+ 1)2

`(`+ 1)
+ ⇡

`max�1X

`=1

1

`(`+ 1)
+ ⇡

2`max + 1

`max(`max + 1)

= ⇡
`max�1X

`=1

2(`+ 1) + ⇡ · `max � 1

`max
+ ⇡

2`max + 1

`max(`max + 1)

= ⇡

✓
`2max + `max � 2 +

`max � 1

`max
+

2`max + 1

`max(`max + 1)

◆

= ⇡(`2max + 2`max)
`max

`max + 1

=
`max

`max + 1
c
†
incin. (S74)

And thus the momentum flow per time in direction i, denoted Pin,i in the main text, is

Pin,i =
�i
c

`max

`max + 1
c
†
incin. (S75)

Finally, for the angular momentum, we separately consider the RCP and LCP waves, and at the end show that the
total angular momentum is proportional to the degree of right circular polarization. Again, one can show for any cin

that c†inJxcin = c
†
inJycin = 0, such that the angular momentum in direction i is determined by the z-directed fraction,

c
†
inJicin = �ic

†
inJzcin. (S76)
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For an RCP plane wave, the coe�cients of cin are nonzero only for m = 1, for which the diagonal entries of Jz are 1,
such that c†inJzcin = c

†
incin. Conversely, for an LCP plane wave the coe�cients of cin are nonzero only for m = �1,

for which the diagonal entries of Jz are �1, such that c†inJzcin = �c
†
incin, the negative of the RCP case. Thus is we

define �i as the degree of right circular polarization of any incoming wave, the angular momentum per unit time is

Jin,i =
�i�i
!

c
†
incin. (S77)

VI. FORCE BOUND WHEN `max = 1

In the main text, we derived force and torque bounds in a VSW basis for plane-wave incidence for any `max, using
the eigenvalue bound �max(Pi) = 1. Here, we consider the case `max = 1. In this case, analysis of the matrices in
Sec. III B shows that �max(Pz) = 1/2. Carrying this factor of 1/2 through the bound derivation, one finds that the
force in the i direction normalized by the incident-wave intensity is bounded above by

Fi

Iinc
 3�2

4⇡c
, (S78)

about a factor of 1/3 tighter than the bound in the main text, for this special case.

VII. HELIX: STRUCTURAL DETAILS

The line running along the center of a helix wrapping around the z axis has a simple parametrization:

r(t) = (R cos(t), R sin(t), ht), (S79)

where R controls the radius of that center line as it wraps, and h scales the rate at which the height along z changes.
The parameter t controls how many rotations of the helix occur, e.g. [0, 4⇡] means two circles. For a three-dimensional
helical structure, we need two unit vectors at each point along the center line, to create the circular surface slice of
the helix. Starting with the tangent vector (by di↵erentiation),

t(t) = (�R sin(t), R cos(t), h), (S80)

one can get the local normal vector as

n(t) = (� cos(t),� sin(t), 0). (S81)

The second local basis vector is the “binormal,”

b(t) = t⇥ n =
1p

R2 + h2
(h sin(t),�h cos(t), R). (S82)

To create the 3D helix, we thus use a vector S that is the sum of r(t) with two new parameters and the two basis
vectors. We use a parameter u which ranges from 0 to 2⇡, to create the circular surfaces around the helical line, and
a second parameter a that represents the radius of the circle that wraps around the center line (not the radius of the
circle formed by the center line itself, which is R).

S(u, t) = r(t) + an(t) cos(u) + ab(t) sin(u). (S83)

For the structure simulated in the main text, we used the values R = 0.9, a = 0.45, and h = 0.3.

VIII. CROSS-SECTION BOUNDS REDERIVED

In this final section we derive VSW bounds on scattering, absorption, and extinction cross-sections for plane-wave
illumination, and verify that the resulting bounds agree with previous results from the literature [6–10]. To examine
scattered power and extinction, we will need to connect the incoming-field/outgoing-field separation to the common
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incident-field/scattered-field separation. For VSWs, it is generally true for any incident field that half of the field must
be incoming and the other half must be outgoing (to have a continuous field at the origin, where incoming/outgoing
fields have singularities) [11]. The scattered field must be purely outgoing. Thus, the relationship between the in/out
coe�cients cin and cout, and the inc/scat coe�cients cinc and cscat is given by Eqs. (S20,S21).

We start with absorption, the bound for which is particularly simple. Absorption is given by c
†
incin � c

†
outcout, and

thus maximum absorption satisfies

maximize
cout

c
†
incin � c

†
outcout

subject to c
†
outcout  c

†
incin.

(S84)

Maximum absorption occurs when c
†
outcout = 0 (all power is incoming and absorbed), such that

P (max)
abs = c

†
incin =

⇡|E0|2

2k2Z0

�
`2max + 2`max

�
(S85)

The absorption cross-section is the absorbed power divided by the incident intensity, Iinc = |E0|2/2Z0. Then the
maximum absorption cross-section is

�(max)
abs =

⇡

k2
�
`2max + 2`max

�
=
�2

4⇡

�
`2max + 2`max

�
. (S86)

Scattered power is the outgoing power in the scattered fields, and hence is given by c
†
scatcscat. By Eqs. (S20,S21),

cscat = cout � cin, such that maximum scattered power is the solution to the optimization problem

maximize
cout

(cout � cin)
† (cout � cin)

subject to c
†
outcout  c

†
incin.

(S87)

Lagrangian multipliers confirm the intuition that the optimal cout is the negative of cin: cout = �cin. Then the
scattered power will be 4c†incin, i.e. 4 times the maximum absorbed power, and the maximum scattering cross-section
is

�(max)
scat =

4⇡

k2
�
`2max + 2`max

�
=
�2

⇡

�
`2max + 2`max

�
. (S88)

Extinction is the sum of the absorbed and scattered powers, and thus equals 2Re c†in (cin � cout) (which equals the

more intuitive expression Re c†inccscat). Then the maximum extinction satisfies

maximize
cout

2Re c†in (cin � cout)

subject to c
†
outcout  c

†
incin.

(S89)

The maximum is achieved at the maximum-scattering condition, cout = �cin, meaning the extinction cross-section
has the same upper bound as the scattering cross-section:

�(max)
ext =

4⇡

k2
�
`2max + 2`max

�
=
�2

⇡

�
`2max + 2`max

�
. (S90)
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