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Chapter One

Computation and visualization of photonic
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In this chapter, we describe various approaches to computing the spectra of photonic qua-
sicrystals (PQC). We focus on a recently developed superspace method for computing the
spectra and eigenstates of PQCs defined by the standard cut-and-project construction, that
involves directly solving Maxwell’s equations in higher dimensions, where a generalization
of Bloch’s theorem applies. We emphasize the conceptual and practical differences between
superspace and supercell methods, which involve computing the eigenfrequencies and/or
local density of states to an approximation of the true aperiodic structure.

1.1. Introduction and Background

Photonic quasicrystals (PQCs) have a number of unique properties compared to
ordinary periodic structures,1–28 especially in two or three dimensions where they
can have greater rotational symmetry and therefore offer some hope of achieving
complete photonic band gaps with lower index contrast8,26,27,29–31 (lower than the
roughly 2:1 contrast currently required for periodic structures.32). In this chapter,
we discuss different approaches to computing the spectra of quasicrystals, empha-
sizing the relationship between the spectrum computation and the cut-and-project
construction of the quasicrystal. We focus on two sets of computational methods,
which we denote as either superspace or supercell methods. Until recently, most
studies of PQC spectra have been carried out using a variety of supercell methods,
which involve truncating the PQC in some fashion, e.g. using rational approx-
imants or a large supercell with absorbing/radiating boundary conditions, and
computing the spectra of the resulting “supercell” using any number of standard
computational techniques. In this way, the aperiodicity of the exact PQC is only
approached in the limit in which a large “supercell” calculation captures a suffi-
ciently large portion of the aperiodic lattice. In contrast, the recently-developed
superspace approach, the main focus of this chapter, involves computing the spectra
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and eigenstates of PQCs defined by the cut-and-project method by directly solving
a periodic eigenproblem in a higher-dimensional lattice, where Bloch’s theorem
applies.33 The idea that many quasicrystals can be constructed by an irrational
slice of a higher-dimensional lattice is well known,34,35 and in fact is the most com-
mon formulation of quasicrystals in two and three dimensions,.36–38 While the
possibility of direct numerical calculations within the higher-dimensional space
seems to have been little explored outside of some tight-binding calculations in
one-dimensional quantum systems,39,40 this superspace approach offers a promis-
ing route for efficiently computing PQC spectra in general geometries.33 In what
follows, we emphasize the conceptual and practical differences between these two
approaches.

In one dimension, a typical quasicrystal is an aperiodic sequence of two or
more materials, determined either by a slice of a higher-dimensional lattice35 or
by some “string concatenation” rule,34 as reviewed by Ref. 28 and also below in
Sec. 1.1.1. In either case, the most standard approach to computing the spectra
of one-dimensional PQCs involves the application of supercell methods in which the
PQC is approximated (truncated) using a sufficiently large portion of the aperiodic
structure, as reviewed in Sec. 1.1.2. For these one-dimensional systems, efficient
2× 2 transfer-matrix methods are available that allow one to quickly compute the
transmission spectra and density of states for supercells consisting of many thou-
sands of layers.41,42 Two- and three-dimensional quasicrystals are almost always
defined as an irrational slice (i.e., incommensurate Miller indices) of a higher-
dimensional lattice; for example, the famous Penrose tiling can be viewed as a
two-dimensional slice of a five-dimensional cubic lattice or of a four-dimensional
root lattice A4.

35 In such cases, supercell computations of a finite portion of the
infinite aperiodic structure (or a rational approximate thereof35,41) require slower
numerical methods, most commonly finite-difference time-domain (FDTD) sim-
ulations6,15,21,43–46 or planewave expansions.26,47–49 Unfortunately, these meth-
ods become very expensive for large supercells, nearly prohibitively so for three-
dimensional quasicrystals—there have been experiments for 3D PQCs,37,38 but as
yet few theoretical predictions.6,50,51 With FDTD methods, for example, the PQC
local density of states is typically integrated in Monte-Carlo fashion via random
sources or initial conditions,10,13,25 but many simulations are required to sample
all possible modes in a large supercell. Also, the finite domain of a supercell be-
comes even more significant in higher dimensions where a tractable supercell is
necessarily smaller, as there can be localized states15,19,21,25 whose presence is de-
pendent on the particular region of the PQC considered.

There is also an important distinction between computations that attempt to
capture the spectrum of the entire quasicrystal and computations that, by design,
calculate only a local density of states in some region or its equivalent, a transmis-
sion through a certain slice of the PQC, or related quantities. For example, the local
density of states (LDOS) at some point in space, for a given frequency, is propor-
tional to the power radiated by a current source at that point, while the total den-
sity of states (giving the full spectrum) is the integral of the LDOS over all space.52

Computations involving current sources (or external fields) that vary randomly
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over a large supercell3,10,13,25 are essentially performing a Monte-Carlo integration
of the LDOS and can therefore be expected to converge to the true density of states.
However, calculations that involve sources introduced only in some regions, either
to compute the power radiated by those sources or some other sort of transmission
measurement46 are computing a type of LDOS. While the LDOS can be very im-
portant in its own right (e.g. to predict spatially varying spontaneous emission
rates), it can have dramatic spatial variations that make it an imperfect guide to
the overall spectrum. As another example of a suggestive and useful quantity that
nevertheless does not necessarily reveal gaps in the overall DOS, several authors
have studied transmission through particular finite slices of the QC from a set of
incident planewaves.9,30,31,42,45,53 In such cases, one may observe a low transmis-
sion coefficient through a quasicrystal not because of a true gap in the spectrum,
but rather because a portion of the spectrum couples poorly to the particular inci-
dent field (e.g. because those quasicrystal modes are localized in another region of
space, or perhaps simply because of a large field mismatch).

The superspace method involves computing the the spectrum of the PQC in the
higher-dimensional unit cell defined by its cut-and-project construction. As re-
viewed in Sec. 1.2, the superspace approach does not require any particular sub-
section of a large supercell to capture the infinite aperiodic structure—instead, ev-
ery possible supercell of the entire aperiodic structure is uniformly sampled (up
to a finite resolution). This involves extending Maxwell’s equations to higher di-
mensions, and computing the resulting spectrum in terms of the Bloch planewave
eigenmodes of the higher-dimensional unit cell, which can be discretized using
any number of standard numerical grids.54 In this way, the influence of finite-
resolution on the convergence of the spectrum can be systematically understood:
one is not “missing” any part of the quasicrystal, so much as resolving the en-
tire quasicrystal with lower resolution. We illustrate this general approach with
several example calculations. First, we compare results for a one-dimensional
“Fibonacci sequence” with standard one-dimensional transfer-matrix techniques.
Second, as mentioned above, we demonstrate how one can use the same technique
to study defects in the quasicrystal, as demonstrated in the one-dimensional “Fi-
bonacci” example. We demonstrate the ease with which one can construct and
explore different quasicrystals by continuously varying the cut angle, and how ex-
ponential convergence with resolution can be obtained from smoothing the super-
space structure. We then turn to optimizing the superspace dielectric structure, in
order to obtain the largest fractional bandgap, and find that in all cases the optimal
structure is actually a periodic quarter-wave stack. Finally, we discuss extension of
the method to higher-dimensional structures.

1.1.1. Quasicrystals via cut-and-project

Given a periodic lattice, any lower dimensional cross-section of that lattice may be
either periodic or quasi-periodic, depending upon the angle of the cross-section.
For example, the periodic 2D cross-sections of a 3D crystal are the lattice planes,
defined in crystallography by integer Miller indices. If the Miller indices have
irrational ratios, on the other hand, the cross-section is aperiodic but still has long-
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range order because of the underlying higher-dimensional periodicity. This is what
is known as a “cut-and-project” method of defining a quasicrystalline structure: as
a slice of a periodic structure in a higher-dimensional “superspace”.34 (For a thor-
ough discussion of quasicrystals via cut-and-project, see Ref. 34.) Cut-and-project
defines a specific class of quasicrystals; equivalently, and more abstractly, cut-and-
project corresponds to structures whose Fourier transform has support spanned by
a finite number of reciprocal basis vectors (the projection of the reciprocal lattice
vectors from higher dimensions).34,36 This class includes most commonly consid-
ered quasicrystals in two or three dimensions, including the Penrose tiling,35 as
well as many one-dimensional quasicrystals including a version of the Fibonacci
structure.

For example, consider the Fibonacci PQC in one dimension formed from two
materials εA = 4.84 and εB = 2.56 in layers of thickness A and B, respectively, sim-
ilar to a recent experimental structure.9 The Fibonacci structure S is then defined
by the limit n → ∞ of the string-concatenation rule Sn = Sn−2Sn−1 with starting
strings S0 = B and S1 = A,9 generating a sequence BABAABABAABA · · · . In
the case where B/A is the golden ratio τ = (1+

√
5)/2, exactly the same structure

can be generated by a slice of a two-dimensional lattice as depicted in Fig. 1.1..34

The slice is at an angle φ with an irrational slope tan φ = 1/τ, and the unit cell
of the 2D lattice is an A × A square at an angle φ in a square lattice with period
(A+ B) sin φ = a. Because the slope is irrational, the offset/intercept of the slice
is unimportant: any slice at an angle φ intercepts the unit cell at infinitely many
points, filling it densely.

φ
X

Y

ε  =4.84A

ε  =2.56B

A

B

Figure 1.1. Unit cell of the Fibonacci superspace dielectric. The physical dielectric is ob-
tained by taking a slice at an angle tanφ = τ. Black/white are the dielectric constants of the
structure factor material and air, chosen to be ε = 4.84 and ε = 2.56, respectively.

For thickness ratios B/A ̸= τ, the Fibonacci structure cannot be constructed by
cut-and-project, and in general string-concatenation rules can produce a different
range of structures (such as the Thue-Morse PQC55) than cut-and-project.a This is
aSimilarly, there are two-dimensional structures defined by analogous rules that cannot be formed by
cut-and-project, and some structures such as the 2D Fibonacci crystal where it is unclear whether a
cut-and-project construction is possible.56,57
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partly a question of definition—some authors reserve the term “quasicrystal” for
cut-and-project structures.35 In any case, cut-and-project includes a wide variety
of aperiodic structures, including most of the structures that have been proposed
in two or three dimensions (where they can be designed to have n-fold rotational
symmetry for any n), and are the class of quasicrystals that we consider in this
paper.

In general, let d ≤ 3 be the number of physical dimensions of a quasicrystal
structure generated by a d-dimensional “slice” of an n-dimensional periodic struc-
ture (n > d). Denote this slice by X (the physical space) with coordinates x ∈ Rd,
and denote the remaining n − d coordinates by y ∈ Rn−d in the “unphysical”
space Y (so that the total n-dimensional superspace is Z = X ⊕ Y). The primi-
tive lattice vectors Ri ∈ Z define the orientation of the lattice with respect to the
slice (rather than vice versa), with corresponding primitive reciprocal vectors Gi

defined by the usual Ri ·Gj = 2πδij.
34 (The concept of an “irrational slice” is com-

monly used in the quasicrystal literature. However, a general definition of what
is meant by an “irrational slice” seems difficult to find, and less evident in dimen-
sions d > 2. A more precise definition of “irrational slice” in general dimensions
is given in Ref. 33.

The physical dielectric function ε(x) is then constructed by starting with a pe-
riodic dielectric function ε(x, y) in the superspace and evaluating it at a fixed y
(forming the slice). Because an irrational slice is dense in the unit cell of the su-
perspace,34 it doesn’t matter what value of y one chooses, as discussed below. In
principle, one could define the unit cell of ε in the superspace to be any arbitrary
n-dimensional function, but in practice it is common to “decorate” the higher-
dimension unit cell with extrusions of familiar d-dimensional objects.34,35 More
precisely, “cut-and-project” commonly refers to constructions where a set of lattice
points within a finite window of the cut plane are projected onto the cut plane, and
this is equivalent to a simple cut where objects at the lattice points are extruded in
the y direction by the window width.34 In particular, the extrusion window is
commonly an inverted projection (shadow) of the unit cell onto the y directions,34

although this is not the case for the Fibonacci construction of Fig. 1.1..
Note that the higher-dimensional lattice need not be hypercubic. For example,

the Penrose tiling can be expressed as a two-dimensional slice of either a five-
dimensional hypercubic lattice or of a non-orthogonal four-dimensional root lattice
A4.

35 For computational purposes, the lower the dimensionality the better.

1.1.2. Supercell approach

As mentioned above, aside from the superspace approach, the most common ap-
proach to computing PQC spectra is the supercell method, which we briefly de-
scribe here. For convenience we examine this method using an example structure
known as the Fibonacci quasicrystal. In the supercell approach, the exact qua-
sicrystal is replaced with a rational approximate, in which the structure of Fig. 1.1. is
constructed from a cut angle of tan φ = p

q , where p
q is a rational number close to

τ. For example, the first few rational approximates to τ are 1/1, 2/1, 3/2, 5/3 . . ..
As the cut line has a rational slope, the cut-and-project construction will yield a



April 23, 2012 13:28 PSP Review Volume - 9.75in x 6.5in qc-review-latest

6 Using Pan Stanford’s Review Volume Document Style

100 101 102 103
10-4

10-3

10-2

10-1

100

101

102

Supercell Period

Re
la

tiv
e 

Er
ro

r

x-2

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

kx (2πc / period)

ω
 (2

πc
 / 

pe
rio

d)

p = 34, q = 21 bandstructure

Figure 1.2. Error in the lower band edge of the Fibonacci PQC defined by the cut-and-
project method applied to the structure in Fig. 1.1., as a function of the supercell period,

which is
√

p2 + q2, where p/q is a rational approximate to τ = 1+
√
5

2 . The dashed black

line indicates quadratic convergence, consistent with the fact that |p/q− τ| ∼ 1
p2+q2 . Inset:

bandstructure for the p = 34, q = 21 approximate. The kx = 0 point of the red band
indicates the frequency points used for the convergence.

periodic structure with period
√

p2 + q2. As p and q increase, the period of the

structure diverges, while the error
∣

∣

∣

p
q − τ

∣

∣

∣
goes to zero. These successively larger

periodic structures therefore approximate the exact aperiodic structure. To exam-
ine how rapidly the bandstructure of these rational approximates converges to the
exact bandstructure, we examine the lower band edge of a bandgap at ω ≈ 0.235
for the Fibonacci PQC described in above (Fig. 1.1.), shown in the inset to Fig. 1.2..
Fixing the Bloch vector of the periodic structure to be kx = 0, we plot the error of
this band edge for successive rational approximates in the main part of Fig. 1.2..
Although the convergence isn’t exact, the error generally goes as the inverse square
of the structure period.

This dependence can be understood from the convergence of the rational ap-
proximates p/q to τ: for any real number x, the error in the rational approximate is

bounded by
∣

∣

∣

p
q − x

∣

∣

∣
<

1√
5q2

.58 Since p ∼ q, this bound goes as the inverse-square

of the period (although some irrational numbers may have rational approximants
that converge faster, depending on their continued-fraction expansions59). How-
ever, in Sec. 1.3.4 we will see that the superspace method can yield exponential
convergence in the bandstructure for a smoothed version of Fig. 1.1., regardless of
the value of φ.
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1.2. Computations in Higher Dimensions

Although the cut-and-project technique is a standard way to define the quasicrystal
structure, most computational studies of photonic quasicrystals simulate the re-
sulting structure only in the projected (d-dimensional) physical space (the supercell
approach). In the superspace approach, however, one instead extends Maxwell’s
equations into the periodic n-dimensional superspace, where Bloch’s theorem ap-
plies. By looking at only the unit cell in n dimensions one can capture the infinite
d-dimensional quasicrystal.

Let us start with Maxwell’s equations in the physical space X for the quasicrys-
tal ε(x, y) at some fixed y (that is, y is viewed as a parameter, not a coordinate).
Maxwell’s equations can be written as an eigenproblem for the harmonic modes
H(x, y)e−iωt,60 where again y appears as a parameter.

∇x ×
1

ε(x, y)
∇x ×H = (ω/c)2H (1.1)

where ∇x × denotes the curl with respect to the x coordinates. Assuming that the
structure is quasicrystalline, i.e. that X is an irrational slice of the periodic super-
space Z, then ω should not depend upon y.39 The reason is that y only determines
the offset of the “initial” slice of the unit cell (for x = 0), but as we reviewed above
the slice (considered in all copies of the unit cell) fills the unit cell densely. There-
fore, any change of y can be undone, to arbitrary accuracy, merely by offsetting x
to a different copy of the unit cell. An offset of x doesn’t change the eigenvalues ω,
although of course it offsets the eigenfunctions H.

The fact that ω is independent of y allows us to re-interpret Eq. (1.1), without
actually changing anything: we can think of y as a coordinate rather than a pa-
rameter, and the operator on the left-hand side as an operator in d-dimensional
space. Note that H is still a three-component vector field, and ∇x × is still the
ordinary curl operator along the x directions, so this is not so much a higher-
dimensional version of Maxwell’s equations as an extension of the unmodified
ordinary Maxwell’s equations into a higher-dimensional parameter space. The y
coordinate appears in the operator only through ε. Because ω is independent of y,
i.e. it is just a number rather than a function of the coordinates, Eq. (1.1) in higher
dimensions is still an eigenproblem, and its spectrum of eigenvalues ω is the same
as the spectrum of the d-dimensional quasicrystal, since the equations are iden-
tical. The physical solution is obtained by evaluating these higher-dimensional
solutions at a fixed y, say y = 0 (where a different y merely corresponds to an
offset in x as described above).

For a real, positive ε, both the physical operator and the extended operator in
in Eq. (1.1) are Hermitian and positive semi-definite, leading to many important
properties such as real frequencies ω.60

1.2.1. Bloch’s theorem and numerics for quasicrystals

Because the superspace eigenproblem is periodic, Bloch’s theorem applies: the
eigenfunctions H(x, y) can be written in the Bloch form h(z)eik·z, where h is a
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periodic function defined by its values in the unit cell, and k is the n-dimensional
Bloch wavevector.60

Here, k determines the phase relationship between H in different unit cells of
the superspace, but it does not have a simple interpretation once the solution is
projected into physical space. The reason is that h, viewed as a function of x, is
again only quasiperiodic: translation in x “wraps” the slice into a different portion
of the unit cell, so both h and eik·z change simultaneously and the latter phase
cannot be easily distinguished. This prevents one from defining a useful phase or
group velocity of the PQC modes.

The key point is that Bloch’s theorem reduces the eigenproblem to a finite do-
main (the n-dimensional unit cell), rather than the infinite domain required to
describe the quasicrystal solutions in physical space. This means that standard
numerical methods to find the eigenvalues of differential operators are immedi-
ately applicable. For example, since the solution h is periodic, one can apply a
planewave expansion method61 for h:

h(z) = ∑
G

h̃Ge
iG·z, (1.2)

where the summation is over all n-dimensional reciprocal lattice vectors G. Be-
cause the curl operations only refer to the x coordinates, ∇x × h is replaced by
a summation over gx × h̃G, where gx denotes G projected into X. The result-
ing eigenproblem for the Fourier coefficients h̃ (once they are truncated to some
wavevector cutoff) can be computed either by direct dense-matrix methods62 or,
more efficiently, by iterative methods exploiting fast Fourier transforms.61 In the
present paper, we do the former, which is easy to implement in higher dimensions.
We should also remind the reader that there is a constraint∇x ·H = 0 on the eigen-
functions, in order to exclude unphysical solutions with static magnetic charges.
In a planewave method, this leads to a trivial constraint (kx + gx) · h̃ = 0, again
with k and G projected into X.

1.2.2. The spectrum of the quasicrystal

With a familiar eigenproblem arising from Bloch’s theorem, such as that of a pe-
riodic physical structure, the eigenvalues form a band structure: discrete bands
ωn(k) that are continuous functions of k, with a finite number of bands in any
given frequency range.63 For a finite-resolution calculation, one obtains a finite
number of these bands ωn with some accuracy that increases with resolution, but
even at low resolutions the basic structure of the low-frequency bands is read-
ily apparent. The eigenvalues of the higher-dimensional quasicrystal operator of
Eq. (1.1), on the other hand, are quite different.

The underlying mathematical reason for the discrete bandstructure of a physi-
cal periodic structure is that the Bloch eigen-operator for a periodic physical lattice,
(∇+ ik)× 1

ε (∇+ ik)×, is the inverse of a compact integral operator correspond-
ing to the Green’s function, and hence the spectral theorem applies.64 Among
other things, this implies that the eigenvalues at any given k for a finite unit cell
form a discrete increasing sequence, with a finite number of eigenvalues below
any finite ω. The same nice property does not hold for the operator extended to
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n dimensions, because along the y directions we have no derivatives, only a vari-
ation of the scalar function ε. Intuitively, this means that the fields can oscillate
very fast along the y directions without necessarily increasing ω, allowing one to
have infinitely many eigenfunctions in a finite bandwidth. More mathematically,
an identity operator is not compact and does not satisfy the spectral theorem,64

and since the operator of Eq. (1.1) is locally the identity along the y directions the
same conclusion applies. This means that, when the y direction is included as a
coordinate, it is possible to get an infinite number of bands in a finite bandwidth
at a fixed k.

In fact, as we shall see below, this is precisely what happens, and moreover it is
whatmust happen in order to reproduce the well-known properties of quasicrystal
spectra. It has been shown that quasicrystal spectra can exhibit a fractal structure,34

with infinitely many gaps (of decreasing size) in a finite bandwidth, and such a
structure could not arise from an ordinary band diagram with a finite number
of bands in a given bandwidth. Of course, once the unit cell is discretized for
numerical computation, the number of degrees of freedom and hence the number
of eigenvalues is finite. However, as the resolution is increased, not only do the
maximum frequency and the accuracy increase as for an ordinary computation, but
also the number of bands in a given bandwidth increases. Thus, as the resolution
is increased, more and more of the fractal structure of the spectrum is revealed.

1.3. One-dimensional results

As a proof of concept implementation of cut-and-project, we construct a Fibonacci
quasicrystal in Sec. 1.3.1 using the projection method described above, compute
the bandstructure as a function of the projected wave-vector kd and compare to a
transfer-matrix calculation of the same quasicrystal structure. We also demonstrate
the field visualization enabled by the projection method, both in the superspace
(n dimensions) as well as in the physical space (d dimensions). In Sec. 1.3.2, we
demonstrate how this method can accommodate systems with defects. Finally,
we explore several one-dimensional quasicrystal configurations in Sec. 1.3.3 by
varying the cut angle φ.

1.3.1. Fibonacci quasicrystal

1.3.1.1. Spectrum

We solved Eq. (1.1) numerically using a planewave expansion in the unit cell of
the 2D superspace, as described above, for the 1D Fibonacci quasicrystal structure
depicted in Fig. 1.1.. The resulting band diagram is shown in Fig. 1.3.(left), along
with a side-by-side comparison of the local density of states in Fig. 1.3.(right) cal-
culated using a transfer-matrix approach with a supercell of 104 layers.65 The two
calculations show excellent agreement in the location of the gaps, except for one
or two easily-identified spurious bands inside some of the gaps, which are dis-
cussed in further detail below. The most important feature of Fig. 1.3.(left) is the
large number of bands even in the finite bandwidth ω ∈ [0, 0.4], with the num-
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Figure 1.3. Left: Frequency spectrum ω of the Fibonacci quasicrystal vs. “wave-vector” kx.
The blue lines indicate spurious states which arise due to finite resolution effects (see text).
Right: Corresponding density of states ρ(ω) computed using a transfer-matrix technique
with a supercell of 104 layers.
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Figure 1.4. Enlarged view of the Fibonacci spectrum showing a gap with a spurious band
crossing it. Insets show the magnetic field |Hz| for the spurious band at various kx—the
localization of this mode around the X-parallel edges of the dielectric indicate that this is a
discretization artifact.

ber of bands increasing proportional to the spatial resolution (planewave cutoff).
This is precisely the feature predicted abstractly above, in Sec. 1.2.2: at a low res-
olution, one sees only the largest gaps, and at higher resolutions further details of
the fractal spectrum are revealed as more and more bands appear within a given
bandwidth, very different from calculations for periodic physical media. The im-
portant physical quantity is not so much the band structure, since k has no simple
physical meaning as discussed previously, but rather the density of states formed
by projecting the bandstructure onto the ω axis. In this density of states, the small
number of spurious bands within the gaps, which arise from the discretization as
discussed below, plays no significant role: the density of states is dominated by the
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huge number of flat bands (going to infinity as the resolution is increased), and the
addition of one or two spurious bands is negligible.

1.3.1.2. Spurious modes

As the wavevector k varies, most of the bands in the spectrum of Fig. 1.3. are flat,
except for certain modes (highlighted in blue) which appear to cross the band gaps
relatively quickly. In fact, a simple argument shows that, in the limit of infinite
resolution, the physical spectrum cannot depend on k, and hence any strongly
k-dependent band must be a numerical artifact. First, ω cannot depend on the
components of k in the unphysical directions Y, because the Maxwell operator of
Eq. (1.1) has no y-derivatives (equivalently, any phase oscillations in y commute
with the operator). Second, ω cannot depend on the components of k in the physi-
cal directions X, either. The reason is that, from Bloch’s theorem, k and k+G give
the same eigensolutions for any reciprocal lattice vector G, and the projections of
the reciprocal lattice vectors are dense in X for a quasicrystal.

These “spurious” bands that appear arise from the discretization of the dielec-
tric interfaces parallel to the slice direction. Because the slice is at an irrational
angle, it will never align precisely with a uniform grid, resulting in inevitable stair-
casing effects at the boundary. With ordinary electromagnetic simulations, these
staircasing effects can degrade the accuracy,66 but here the lack of derivatives per-
pendicular to the slice allows spurious modes to appear along these staircased
edges (there is no frequency penalty to being localized perpendicular to the slice).
Indeed, if one looks at the field patterns for the spurious modes, one of which is
shown in the inset of Fig. 1.3.(right), one sees that the field intensity is peaked along
the slice-parallel dielectric interfaces. Because they are localized to these interfaces
and are therefore dominated by the unphysical staircasing, the spurious modes be-
have quite differently from the “real” solutions and are easily distinguished qual-
itatively and quantitatively (e.g via their k-dependence). In one dimension, as the
resolution is increased, the number of spurious modes in a given gap does not in-
crease like all of the other bands, because the thickness of the staircased interface
region decreases proportional to the resolution. This makes the gaps in the band-
structure obvious: here, they are the only frequency ranges for which the number
of eigenvalues does not increase with resolution. Equivalently, as noted above, the
contribution of the spurious bands to the density of states is asymptotically neg-
ligible as resolution is increased. However, in higher dimensions we have found
that the presence of spurious modes is more pronounced and tends to obscure
even the large bandgaps. Therefore, we desire a rigorous method to identify and
eliminate spurious modes, which we now describe.

Examining the right panel of Fig. 1.5., which contains the frequency spectrum of
the same Fibonacci lattice explored previously, we see that the dispersion curves of
certain spurious in different bandgaps appear to fall along a straight line (the black
dashed line in Fig. 1.5.[right]). This dispersion curve is characteristic of modes in
a uniform medium. This observation lead us to speculate that spurious modes
appear at the boundaries of the reciprocal space, that is, at the extremal values of
k+G allowed in the computational cell. As they are at the cell boundaries, these
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Figure 1.5. Identification and removal of spurious modes in one dimension. Left: spec-
trum of the Fibonacci quasicrystal, as in Fig. 1.3.. We have superposed a black dashed line
to indicate that the spurious modes appear to largely follow a linear dispersion relation.
Right: density-of-states computed by removing all modes that satisfy λ(H) ≥ 0.9, where λ
is defined in Eq. (1.3). All spurious modes in the large bandgaps have vanished.

modes are not represented accurately because their coupling to nearby values of
k+G are not accounted for. In normal planewave-expansion methods, this does
not matter as one is usually interested in the low-frequency modes, which are not
strongly affected by the truncation at high values of k+G. However, in this case
high values of |k+G| can correspond to low values of |(k+G)x| - therefore, this
truncation may manifest itself even in the low-lying spectrum. Testing this hy-
pothesis, we filtered the frequency spectrum of Fig. 1.5.(Left) using the following
measure

λ(H) ≡ ∑G∈Extreme |HG|2

∑G |HG|2
. (1.3)

Here a reciprocal vector is “extreme” if it is at the boundary of the computa-
tional cell. If λ(H) > 0.9, we exclude the mode. The filtered results are shown
in Fig. 1.5.(Right). We depict the results as a density of states because the bands
now discontinuously jump across the bandgaps as kx is varied. Shown in this way,
we see that all spurious modes in the large bandgaps have been removed, validat-
ing our assumptions.

We can directly examine the behavior of spurious modes by examining the HG

directly in reciprocal space. These are shown in Fig. 1.6. and Fig. 1.7.. The former
depicts a spurious mode in the main bandgap, while the latter depicts a “physical”
mode. There is a clear difference between the two modes, with the spurious mode
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strongly weighted at the cell boundary (in this case, the weight is over 99% on the
boundary).
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Figure 1.6. Fourier-space spectrum |HG|2 of a spuriousmode, on a log scale: dashedwhite
line denotes the “physical” X direction in which fluctuations carry an energy penalty, and
the solid white line denotes the “un-physical” Y direction. Circle denotes the peak in the
mode’s Fourier-space support, which occurs at the boundary of the computational cell.
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Figure 1.7. Fourier-space spectrum |HG|2 of a physical mode, on a log scale. In contrast
to Fig. 1.6., the primary support of this mode occurs in the center of the computational cell.

1.3.1.3. Visualizing the eigenmodes in superspace

Computing the eigenmodes in the higher-dimensional superspace immediately
suggests a visualization technique: instead of plotting the quasiperiodic fields as
a function of the physical coordinates x by taking a slice, plot them in the two-
dimensional superspace. This has the advantage of revealing the entire infinite
aperiodic field pattern in a single finite plot.39 Such plots were already used above,
to aid in understanding the spurious modes localized at staircased interfaces. A
typical extended mode profile is shown in Fig. 1.8., plotted both as a function of
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Figure 1.8. Plot of the magnetic field amplitude |Hz| for a band-edge state taken along a
slice of the two-dimensional superspace (in the φ direction). Inset: Two-dimensional super-
space field profile (red/white/blue indicates positive/zero/negative amplitude).

the physical coordinate x for large supercell and also in the unit cell of the super-
space (inset). In the inset superspace plot, one can clearly see the predicted field
oscillations perpendicular to the slice plane, as well as a slower oscillation rate
(inversely proportional to the frequency) parallel to the slice. In the plot versus
x, one can see the longer-range quasi-periodic structure that arises from how the
slice wraps around the unit cell in the superspace. The factor of three to four long-
range variations in the field amplitude are suggestive of the critically localized
states (power-law decay) that one expects to see in such quasicrystals.9,67,68

By visualizing the bands in this way, we can demonstrate the origin of the qua-
sicrystal band gap in an interesting way. In an ordinary photonic crystal, the gap
arises because the lowest band concentrates its electric-field energy in the high-
dielectric regions (due to the variational principle), while the next band (above the
gap) is forced to have a nodal plane in these regions (due to orthogonality).60 A
very similar phenomenon can be observed in the quasicrystal eigenmodes, when
plotted in the superspace. In particular, Fig. 1.9. displays the electric-field energy
distribution of the band-edge states just above and below gaps 1 and 2 of Fig. 1.3..
Very similar to an ordinary two-dimensional photonic crystal, the bands just below
the gaps are peaked in the dielectric squares, whereas the upper-edge bands have
a nodal plane in these squares. If the same fields were plotted only in the phys-
ical coordinate space, the position of the peaks and nodes would vary between
adjacent layers and this global pattern (including the relationship between the two
gaps) might not be apparent. In contrast to a two-dimensional photonic crystal,
on the other hand, the quasicrystalline field pattern has fractal oscillations in the
superspace.
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Figure 1.9. Electric field energy distribution of the band edge states of gaps 1 and 2 in
Fig. 1.3.. Although they have a complex small-scale structure, the large-scale variation is
easily understood in terms of the structure of the superspace.

ε=4.84

ε=2.56

0.02

εd

φ
X

Ya

Figure 1.10. Dielectric for the Fibonacci chain with ε = 2.56 (light blue), and a defect—an
additional εd = 8.0 layer, shown in gray.

1.3.2. Defect modes

Much of the interest in quasicrystal band gaps, similar to the analogous case of
band gaps in periodic structures, centers around the possibility of localized states:
by introducing a defect in the structure, e.g. by changing the thickness of a sin-
gle layer, one can create exponentially localized states in the gap.4,69 In periodic
systems, because such defects break the periodicity, they necessitate a larger com-
putational cell, or supercell, that contains many unit cells. In quasicrystal systems
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once the gaps are known, on the other hand, defect states are arguably easier to
compute than the gaps of the infinite structure, because an exponentially local-
ized defect mode can be computed accurately with a traditional supercell and the
infinite quasicrystal per se need not be included. Nevertheless, the superspace
approach allows one to compute defect modes using the same higher-dimensional
unit cell, which demonstrates the flexibility of this approach and provides an inter-
esting (but not obviously superior) alternative to traditional supercells for defect
states.

Ideally, if one had infinite spatial resolution, a defect in the crystal would be
introduced as a very thin perturbation parallel to the slice direction. As the thick-
ness of this perturbation goes to zero, it intersects the physical slice at greater and
greater intervals in the physical space, corresponding to localized defects that are
separated by arbitrarily large distances. In practice, of course, the thickness of the
perturbation is limited by the spatial resolution, but one can still obtain defects
that are very widely separated—since the associated defect modes are exponen-
tially localized, the coupling between the defects is negligible. In other words, one
effectively has a very large supercell calculation, but expressed in only the unit cell
of the higher-dimensional lattice.
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Figure 1.11. Varying the defect epsilon for resolutions 50 (blue) and 100 (red). The thick-
ness of the defect is fixed to 0.02 lattice constants. The number of spurious modes increases
with the resolution, the true defect state being the lowest of these modes.

As an example, we changed an ε = 2.56 layer to ε = εd at one place in the
Fibonacci quasicrystal. The corresponding superspace dielectric function is shown
in Fig. 1.10., where the defect is introduced as a thin (0.02a) strip of εd parallel to
the slice direction. We compute the bandstructure as a function of the defect di-
electric constant εd, varying it from the normal dielectric εd = 2.56 up to εd = 11.
The thickness of the defect in the unphysical direction was fixed to be ≈ 0.02. The
resulting eigenvalues as a function of εd are shown in Fig. 1.11. for two different
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Figure 1.12. Semi-log plots of the magnetic field magnitude Hz for the lowest (a) and high-
est (b) defect state for the configuration shown in Fig. 1.10.. Insets: Two-dimensional su-
perspace visualizations of the defect states. Note the additional node in the lower figure
(corresponding to an unphysical oscillation).

spatial resolutions of 50 (blue) and 100 (red) pixels/a. When the resolution is 50
the defect is only one pixel thick, the discretization effects might be expected to
be large, although the frequency is within about 2% of the higher-resolution cal-
culation. At the higher resolution, the frequency of the mode is converging (it is
within 0.3% of a resolution-200 calculation, not shown). However, at the higher
resolution there is a second, spurious mode due to the finite thickness (2 pixels)
of the defect layer—this spurious mode is easily identified when the field is plot-
ted Fig. 1.12.(bottom), because it has a sign oscillation perpendicular to the slice
(which would be disallowed if we could make the slice infinitesimally thin).

The defect modes for the resolution 100 are plotted in Fig. 1.12. for both the
real and the spurious modes, versus the physical coordinate (x) and also in the
superspace unit cell (insets). When plotted versus the physical coordinate x on a
semilog scale, we see that the modes are exponentially localized as expected. The
defect mode appears at multiple x values (every ∼ 20a on average) because the
defect has a finite thickness—the physical slice intersects it infinitely many times
(quasiperiodically), as discussed above. The spurious mode (bottom panel) is also
exponentially localized; it has a sign oscillation perpendicular to the slice direction
(inset) which causes it to have additional phase differences between the different
defects.

Nevertheless, as noted above, one may argue that the main advantages of the
superspace approach lie in its ability to capture the gaps and modes of the infinite,
defect-free quasicrystal, rather than the properties of localized defect modes.

1.3.3. Continuously varying the cut angle

The cut-and-project construction of quasicrystals provides a natural way to param-
eterize a family of periodic and quasiperiodic structures, via the cut angle φ. It is
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Figure 1.13. Projected bandstructure vs. cut angle φ, showing different one-dimensional
quasicrystal realizations. The vertical red line indicates the spectrum when the slope is the
golden ratio τ (the spectra of φ and π − φ are equivalent)

interesting to observe how the spectrum and gaps then vary with φ.
As φ is varied continuously from 0◦ to 45◦, the structures vary from period a to

quasi-periodic lattices (for tan φ irrational) to long-period structures (tanφ rational
with a large denominator) to a period a

√
2 crystal. As we change φ, we rotate the

objects in the unit cell, so that they are always extruded along the y direction with a
length equal to the projection of the unit cell onto y [a(sin φ + cos φ)], correspond-
ing the usual cut-and-project construction.34 In this case, the spectrum varies con-
tinuously with φ, where the rational tan φ correspond to “rational approximates”
of the nearby irrational tan φ.36,70 For a general unit cell with a rational tan φ, the
physical spectrum might depend on the slice offset y and hence different from
the total superspace spectrum, but this is not the case for dielectric structures like
the one here, which satisfy a “closeness” condition70 (the edges of the dielectric
rods overlap when projected onto the Y direction). This makes the structure y-
independent even for rational slices.70 The resulting structures are shown in the
bottom panel of Fig. 1.13. for three values of φ.

The corresponding photonic band gaps are shown in the top panel of Fig. 1.13.,
as a continuous function of φ. Only the largest gaps are shown, of course, since
we are unable to resolve the fractal structure to arbitrary resolution. As might be
expected, there are isolated large gaps at φ = 0◦ and φ = 45◦ corresponding to
the simple ABAB · · · periodic structures at those angles (with period a and a/

√
2,

respectively, the latter resulting from two layers per unit cell). The φ = 45◦ gap
is at a higher frequency because of its shorter period, but interestingly it is not
continuously connected to the φ = 0◦ gap.

The reason for this is that the two gaps are dominated by different superspace
reciprocal lattice vectors: (1, 0) · 2π/a for φ = 0◦, and (1, 1) · 2π/a for φ = 45◦.
(In fact, it is possible to calculate, to first order, the locations of the gaps using the
dynamic structure factor S(k,ω) obtained from the projection of the superspace
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lattice.71) For intermediate angles, a number of smaller gaps open and then close.
If we were able to show the spectrum with higher resolution, we would expect to
see increasing numbers of these smaller gaps opening, leading to the well-known
fractal structure that arises e.g. for the Fibonacci crystal.

1.3.4. Smooth superspace structures

Thus far, we have examined dielectric structures in which the permittivity function
attains only two values: such structures are the most realistic for fabrication. How-
ever, for theoretical purposes it can be enlightening to consider cases in which the
sharp boundaries are smoothed out, in order to restrict the number of Fourier com-
ponents appearing in the structure factor (for example, this is useful for examining
the origin of bandgaps in one-dimensional photonic crystals60). The superspace
construction allows one to consider a conceptually interesting class of structures,
involving superspace dielectrics described by smooth functions. In particular, we
examine the case in which the superspace dielectric function is given by:

ε(x, y) = 1+ 4e−(sin
2(x)+sin2(y)) . (1.4)
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Figure 1.14. Bandstructure for the smooth superspace structure ε(x, y) = 1 +

4e−(sin
2(x)+sin2(y)) at two resolutions: thick lines denote 6 pixels / a, and thin lines denote

32 pixels / a. We will demonstrate that the bandstructure for this dielectric converges expo-
nentially in resolution by examining the frequency ωlower, indicated on the figure, which is
at a relative maximum of the lower band edge (colored red) at a fixed k0 ≈ 0.75(2π/a).

The Fourier components of the previous square dielectric scales as εG ∼ |G|−1;
however, the Fourier transform of Eq. (1.4) converges exponentially for large |G|.
This implies72 that the frequencies at the bandgaps will also converge exponen-
tially with the resolution (i.e., the number of reciprocal vectors G retained in the
computation). The bandstructure for the smooth dielectric is shown in Fig. 1.14.;
two resolution are shown, resolution 6 and 32. In order to confirm the exponen-
tial convergence of this bandstructure, we examine the value ωlower(k0) shown
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in Fig. 1.14., which is the extremal value of the band depicted in red. We fix the
value of kx = k0 = 0.075415(2π/a) and increase the resolution, examining the
value of ω at the bottom of this bandgap. The results, shown in Fig. 1.15., confirm
the exponential convergence with resolution. This is an interesting property, which
may be useful for structural optimization, where the exponential convergence al-
lows for efficient optimization with only a few number of grid parameters.
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Figure 1.15. Demonstration of exponential convergence with resolution of a smooth su-
perspace structure. A plot of the error in ωlower from Fig. 1.14. (relative to resolution 32)
shows exponential convergence. The superspace dielectric structure, given by Eq. (1.4), is
shown in the inset.

1.3.5. Optimization of one-dimensional smoothed structures

Previously, we examined the effect of varying the cut angle on the bandstructure.
In this section, we examine the superspace structures that give the largest fractional
photonic bandgaps, for a fixed cut angle. The superspace construction is very con-
venient for this purpose because the entire structure resides within one compact
unit cell. We employ a technique called topology optimization,73–76 specifically
by using the method of moving asymptotes (MMA) algorithm.77,78 Here, each
pixel εi of the dielectric is treated as a free parameter, and allowed to vary freely
between the values εmin = 1 and εmax = 10. We start with the same geome-
try as Fig. 1.1. (although now with a higher index contrast). Above, we saw that
smoothed superspace structures require much lower discretization to reach con-
vergence. However, smoothed structures also have another useful property: a lack
of local minima for optimization. To obtain a smooth structure, we convolve the
initial square of Fig. 1.1. with a Gaussian kernel with standard deviation σ = 0.25.
The resulting smoothed superspace structure is shown on the top left of Fig. 1.16.,
and its bandstructure is shown in the center. A continuous structural change will
change the bandstructure continuously as well, therefore we can uniquely track
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Figure 1.16. Optimization of the fractional bandgap for a 1d quasicrystal: starting with a
smoothed version of the Fibonacci structure (top left), which has the indicated bandstruc-
ture, we allow every pixel to be a free parameter, ranging from 1 ≤ ε ≤ 10. Even though
the cut angle is tan φ = τ, the three structures shown are actually periodic. After optimiza-
tion, all structures exhibit an approximately 67% fractional bandgap, which is the same as
an optimized 1d photonic crystal with the same smoothing parameters.

the evolution of an individual bandgap through the optimization.b We will sepa-
rately optimize the bandgaps labeled 1, 2, and 3 in this figure, using a resolution
of 32 pixels per a (at this resolution, these bandgaps have lower edge 13, 20, and
32, respectively), although lower resolutions provide similar results.

The results of the topology optimization are shown in the different panels
of Fig. 1.16.. What is interesting is that, despite the aperiodic nature of the ini-
tial structure, the optimized structures are periodic, regardless of the cut angle. The
optimization of different bandgaps results in different periodic structures, and is
closely reminiscent of Fig. 1.9.. In fact, this is another manifestation of the 1d struc-
ture inheriting its behavior from the 2d superspace: the band edge states of Fig. 1.9.
have a dominant wavevector that corresponds to a low-order superspace recipro-
cal vector; we expect the optimized structure to strongly couple to this recipro-
cal vector. For all structures, the optimized gap-midgap ratio is approximately
67%. Intuitively, we expect that this result should correspond to the optimized
gap-midgap ratio for a purely 1d periodic structure. Using the same smoothing
parameters and applying the topology optimization to the first bandgap of a 1d
photonic crystal, we again get a 67% gap-midgap ratio, confirming this expecta-
tion; furthermore, the optimized 1d structure corresponds exactly to a quarter-
wave stack (convolved with a σ = 0.25 Gaussian).

bThis is not strictly true when spurious modes are encountered, however for this particular situation
they are absent.
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1.4. Two-dimensional results

The superspace approach can also be applied to higher-dimensional quasicrys-
tal structures. Here, we examine this possibility by focusing on two-dimensional
quasicrystals that can be represented by a four-dimensional superspace. The im-
plementation in a planewave-expansion method is fairly simple: unlike finite-
difference methods, it is straightforward to extend a planewave-expansionmethod
to higher dimensions. This is because the process of differentiation, which for
finite-difference methods requires knowledge of the lattice structure, is simply
achieved by multiplying by k + G in a planewave basis. The actual quasicrys-

tal structure is represented by three matrices.
←→
R Super defines the lattice structure

in the superspace; the rows of this matrix represent the basis vectors;
←→
R X defines

the physical space - the rows of this matrix represent the superspace basis vectors;

finally,
←→
R Y defines the subspace perpendicular to the physical space. As with the

one-dimensional quasicrystals of the previous section, the superspace dielectric is
the Cartesian product of a “physical” profile and a “perpendicular” profile. Here,
we will take the physical profile to be a circle of radius r. The perpendicular pro-
file, defined by cut-and-project, is the projection of the convex hull (i.e., the Voronoi
cell34,35) of the superspace basis vectors onto the perpendicular space; that is, the

convex hull of the set
←→
R T

Y

←→
R Super. We compute the convex hull using Qhull,79 a

freely-available software program.

1.4.1. Octagonal Quasicrystals
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Figure 1.17. Bandstructure for a 3/2 supercell approximate to the octagonal PQC of high
dielectric rods. The real-space structure is shown in the inset, with a unit cell marked by the
dashed red box.

The two-dimensional octagonal quasicrystal is constructed from slicing four-
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dimensional Cartesian space. The Fourier spectrum of the octagonal lattice has
8-fold rotational symmetry.3,36 Since the superspace lattice is Cartesian, the matrix
←→
R Super is simply the 4× 4 identity matrix. The other two matrices are:36

←→
R X =

(

1√
2

1
2 0 − 1

2

0 1
2

1√
2

0

)

(1.5)

and

←→
R Y =

(

1√
2

1
2 0 1

2

0 − 1
2

1√
2
− 1

2

)

. (1.6)

We first compute a bandstructure using a supercell with a rational approxi-
mate; the dielectric for the rational approximate can be constructed by following
the same cut-and-project procedure as for the superspace, with the modification

that
√
2 for

←→
R X is replaced with p/q for integer p and q. The resulting

←→
R Y will

no longer be orthogonal to the physical subspace; rather, it is constructed from

the rows of
←→
R X using Gram-Schmidt orthogonalization. The supercell spectrum

is shown in Fig. 1.17., where a p = 3, q = 2 rational approximate has been used
(the 2d dielectric function has period ≈ 4.12, and is shown in Fig. 1.17.[Inset]). We
see the presence of two large bandgaps (the gap-midgap ratios are ≈ 30% for the
lower gap and ≈ 15% for the upper gap).

Unfortunately, computational limitations restrict the resolution that can be ap-
plied to a four-dimensional planewave expansion; this is because for N pixels per
a the computational resources (both space and time) scale as N6. Therefore, it is
difficult to reach high enough resolution so that the method for eliminating spuri-
ous modes (discussed above) becomes strictly valid. A superspace bandstructure
computation at resolution a/10 is shown in Fig. 1.18. as a mode-density plot. We
identify both of the major bandgaps corresponding to the supercell bandstructure
of Fig. 1.17.. However, due to the low resolution we can only resolve the lower
edge of the first bandgap to high accuracy. It remains to go to a sufficiently high
resolution to fully reproduce this bandstructure using a superspace computation.

1.5. Concluding Remarks

In this chapter, we reviewed both superspace and supercell methods for comput-
ing PQC spectra, both of which offer unique advantages. On the one hand, the
supercell method allows one to control the resolution and supercell approxima-
tion independently of one another, and this flexibility can be exploited to obtain
reasonable accuracy for moderately sized (even discontinuous) structures. On the
other hand, supercell techniques allow one to capture the entire infinite aperiodic
quasicrystal in a single finite computational cell, albeit at only a finite resolution.
In this way, the single convergence parameter of spatial resolution replaces the
combination of resolution and supercell size in traditional supercell calculations,
in some sense uniformly sampling the infinite quasicrystal. In addition to yield-
ing exponential convergence with respect to resolution for smooth structures (and
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Figure 1.18. Mode density plot for the superspace octagonal structure, with the same struc-
tural parameters as Fig. 1.17., for a resolution of 10 pixels per a. At this resolution, the
bandgaps are not fully resolved to high accuracy.

in principle high-order convergence for discontinuous structures using high-order
finite-element methods), the supercell method offers a unique way to visualize and
understand the resulting PQC spectra.
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