
The Design and Implementation of FFTW3

MATTEO FRIGO AND STEVEN G. JOHNSON

Invited Paper

FFTW is an implementation of the discrete Fourier transform
(DFT) that adapts to the hardware in order to maximize perfor-
mance. This paper shows that such an approach can yield an im-
plementation that is competitive with hand-optimized libraries, and
describes the software structure that makes our current FFTW3 ver-
sion flexible and adaptive. We further discuss a new algorithm for
real-data DFTs of prime size, a new way of implementing DFTs by
means of machine-specific single-instruction, multiple-data (SIMD)
instructions, and how a special-purpose compiler can derive opti-
mized implementations of the discrete cosine and sine transforms
automatically from a DFT algorithm.

Keywords—Adaptive software, cosine transform, fast Fourier
transform (FFT), Fourier transform, Hartley transform, I/O tensor.

I. INTRODUCTION

FFTW [1] is a widely used free-software library that
computes the discrete Fourier transform (DFT) and its
various special cases. Its performance is competitive even
with vendor-optimized programs, but unlike these programs,
FFTW is not tuned to a fixed machine. Instead, FFTW
uses a planner to adapt its algorithms to the hardware in
order to maximize performance. The input to the planner
is a problem, a multidimensional loop of multidimensional
DFTs. The planner applies a set of rules to recursively
decompose a problem into simpler subproblems of the same
type. “Sufficiently simple” problems are solved directly by
optimized, straight-line code that is automatically generated
by a special-purpose compiler. This paper describes the
overall structure of FFTW as well as the specific improve-
ments in FFTW3, our latest version.

Manuscript received November 24, 2003; revised October 15, 2004.
The work of M. Frigo was supported in part by the Defense Advanced
Research Projects Agency (DARPA) under Contract NBCH30390004.
The work of S. G. Johnson was supported in part by the Materials Research
Science and Engineering Center program of the National Science Founda-
tion under Award DMR-9400334.

M. Frigo is with the IBM Austin Research Laboratory, Austin, TX 78758
USA (e-mail: Athena@fftw.org).

S. G. Johnson is with the Massachusetts Institute of Technology, Cam-
bridge, MA 02139 USA.

Digital Object Identifier 10.1109/JPROC.2004.840301

FFTW is fast, but its speed does not come at the expense of
flexibility. In fact, FFTW is probably the most flexible DFT
library available.

• FFTW is written in portable C and runs well on many
architectures and operating systems.

• FFTW computes DFTs in time for any
length . (Most other DFT implementations are either
restricted to a subset of sizes or they become
for certain values of , for example, when is prime.)

• FFTW imposes no restrictions on the rank (dimension-
ality) of multidimensional transforms. (Most other im-
plementations are limited to one-dimensional (1-D), or
at most two-dimensional (2-D) and three-dimensional
data.)

• FFTW supports multiple and/or strided DFTs; for ex-
ample, to transform a three-component vector field or a
portion of a multidimensional array. (Most implemen-
tations support only a single DFT of contiguous data.)

• FFTW supports DFTs of real data, as well as of real
symmetric/antisymmetric data [also called the discrete
cosine transform (DCT) and the discrete sine transform
(DST)].

The interaction of the user with FFTW occurs in two
stages: planning, in which FFTW adapts to the hardware,
and execution, in which FFTW performs useful work for
the user. To compute a DFT, the user first invokes the
FFTW planner, specifying the problem to be solved. The
problem is a data structure that describes the “shape” of the
input data—array sizes and memory layouts—but does not
contain the data itself. In return, the planner yields a plan,
an executable data structure that accepts the input data and
computes the desired DFT. Afterwards, the user can execute
the plan as many times as desired.

The FFTW planner works by measuring the actual run-
time of many different plans and by selecting the fastest one.
This process is analogous to what a programmer would do
by hand when tuning a program to a fixed machine, but in
FFTW’s case no manual intervention is required. Because
of the repeated performance measurements, however, the
planner tends to be time-consuming. In performance-critical

0018-9219/$20.00 © 2005 IEEE

216 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

applications, many transforms of the same size are typically
required and, therefore, a large one-time cost is usually
acceptable. Otherwise, FFTW provides a mode of operation
where the planner quickly returns a “reasonable” plan that
is not necessarily the fastest.

The planner generates plans according to rules that
recursively decompose a problem into simpler subprob-
lems. When the problem becomes “sufficiently simple,”
FFTW produces a plan that calls a fragment of optimized
straight-line code that solves the problem directly. These
fragments are called codelets in FFTW’s lingo. You can
envision a codelet as computing a “small” DFT, but many
variations and special cases exist. For example, a codelet
might be specialized to compute the DFT of real input (as
opposed to complex). FFTW’s speed depends, therefore, on
two factors. First, the decomposition rules must produce a
space of plans that is rich enough to contain “good” plans
for most machines. Second, the codelets must be fast, since
they ultimately perform all the real work.

FFTW’s codelets are generated automatically by a spe-
cial-purpose compiler called . Most users do not
interact with at all: the standard FFTW distribution
contains a set of about 150 pregenerated codelets that cover
the most common uses. Users with special needs can use

to generate their own codelets. is useful
because of the following features. From a high-level mathe-
matical description of a DFT algorithm, derives an
optimized implementation automatically. From a complex
DFT algorithm, automatically derives an optimized
algorithm for the real-input DFT. We take advantage of
this property to implement real-data DFTs (Section VII),
as well as to exploit machine-specific single-instruction
multiple-data (SIMD) instructions (Section IX). Similarly,

automatically derives codelets for the DCT and
DST (Section VIII). We summarize in Section VI,
while a full description appears in [2].

We have produced three major implementations of
FFTW, each building on the experience of the previous
system. FFTW1 (1997) [3] introduced the idea of generating
codelets automatically and of letting a planner search for the
best combination of codelets. FFTW2 (1998) incorporated
a new version of [2]. did not change much
in FFTW3 (2003), but the runtime structure was completely
rewritten to allow for a much larger space of plans. This
paper describes the main ideas common to all FFTW sys-
tems, the runtime structure of FFTW3, and the modifications
to since FFTW2.

Previous work on adaptive systems includes [3]–[11]. In
particular, SPIRAL [9], [10] is another system focused on
optimization of Fourier transforms and related algorithms,
but it has distinct differences from FFTW. SPIRAL searches
at compile time over a space of mathematically equivalent
formulas expressed in a “tensor-product” language, whereas
FFTW searches at runtime over the formalism discussed in
Section IV, which explicitly includes low-level details, such
as strides and memory alignments, that are not as easily ex-
pressed using tensor products. SPIRAL generates machine-
dependent code, whereas FFTW’s codelets are machine in-

dependent. FFTW’s search uses dynamic programming [12,
Ch. 16], while the SPIRAL project has experimented with a
wider range of search strategies, including machine-learning
techniques [13].

The remainder of this paper is organized as follows. We
begin with a general overview of fast Fourier transforms
(FFTs) in Section II. Then, in Section III, we compare the
performance of FFTW and other DFT implementations.
Section IV describes the space of plans explored by FFTW
and how the FFTW planner works. Section V describes
our experiences in the practical usage of FFTW. Section VI
summarizes how works. Section VII explains how
FFTW computes DFTs of real data. Section VIII describes
how generates DCT and DST codelets, as well as
how FFTW handles these transforms in the general case.
Section IX tells how FFTW exploits SIMD instructions.

II. FFT OVERVIEW

The (forward, 1-D) DFT of an array of complex num-
bers is the array given by

(1)

where and . Imple-
mented directly, (1) would require operations; FFTs
are algorithms to compute the same result. The
most important FFT (and the one primarily used in FFTW)
is known as the “Cooley–Tukey” algorithm, after the two
authors who rediscovered and popularized it in 1965 [14],
although it had been previously known as early as 1805 by
Gauss as well as by later reinventors [15]. The basic idea be-
hind this FFT is that a DFT of a composite size
can be reexpressed in terms of smaller DFTs of sizes
and —essentially, as a 2-D DFT of size where
the output is transposed. The choices of factorizations of ,
combined with the many different ways to implement the
data reorderings of the transpositions, have led to numerous
implementation strategies for the Cooley–Tukey FFT, with
many variants distinguished by their own names [16], [17].
FFTW implements a space of many such variants, as de-
scribed later, but here we derive the basic algorithm, identify
its key features, and outline some important historical varia-
tions and their relation to FFTW.

The Cooley–Tukey algorithm can be derived as follows.
If can be factored into , (1) can be rewritten by
letting and . We then have

(2)

Thus, the algorithm computes DFTs of size (the inner
sum), multiplies the result by the so-called twiddle factors

, and finally computes DFTs of size (the outer
sum). This decomposition is then continued recursively. The
literature uses the term radix to describe an or that

FRIGO AND JOHNSON: THE DESIGN AND IMPLEMENTATION OF FFTW3 217

is bounded (often constant); the small DFT of the radix is
traditionally called a butterfly.

Many well-known variations are distinguished by the
radix alone. A decimation in time (DIT) algorithm uses

as the radix, while a decimation in frequency (DIF)
algorithm uses as the radix. If multiple radices are used,
e.g., for composite but not a prime power, the algorithm
is called mixed radix. A peculiar blending of radix 2 and 4
is called split radix, which was proposed to minimize the
count of arithmetic operations [16]. (Unfortunately, as we
argue in this paper, minimal-arithmetic, fixed-factorization
implementations tend to no longer be optimal on recent
computer architectures.) FFTW implements both DIT and
DIF, is mixed-radix with radices that are adapted to the
hardware, and often uses much larger radices (radix-32 is
typical) than were once common. (On the other end of the
scale, a “radix” of roughly has been called a four-step
FFT [18], and we have found that one step of such a radix
can be useful for large sizes in FFTW; see Section IV-D1.)

A key difficulty in implementing the Cooley–Tukey FFT
is that the dimension corresponds to discontiguous inputs

in but contiguous outputs in , and vice versa for
. This is a matrix transpose for a single decomposition

stage, and the composition of all such transpositions is a
(mixed-base) digit-reversal permutation (or bit-reversal, for
radix-2). The resulting necessity of discontiguous memory
access and data reordering hinders efficient use of hier-
archical memory architectures (e.g., caches), so that the
optimal execution order of an FFT for given hardware is
nonobvious, and various approaches have been proposed.

One ordering distinction is between recursion and itera-
tion. As expressed above, the Cooley–Tukey algorithm could
be thought of as defining a tree of smaller and smaller DFTs;
for example, a textbook radix-2 algorithm would divide size

into two transforms of size , which are divided into
four transforms of size , and so on until a base case is
reached (in principle, size 1). This might naturally suggest
a recursive implementation in which the tree is traversed
“depth-first”—one size- transform is solved completely
before processing the other one, and so on. However, most
traditional FFT implementations are nonrecursive (with rare
exceptions [19]) and traverse the tree “breadth-first” [17]—in
the radix-2 example, they would perform (trivial) size-1
transforms, then combinations into size-2 transforms,
then combinations into size-4 transforms, and so on,
thus making passes over the whole array. In contrast,
as we discuss in Section IV-D1, FFTW3 employs an explic-
itly recursive strategy that encompasses both depth-first and
breadth-first styles, favoring the former, since it has some
theoretical and practical advantages.

A second ordering distinction lies in how the digit re-
versal is performed. The classic approach is a single, sepa-
rate digit-reversal pass following or preceding the arithmetic
computations. Although this pass requires only time
[20], it can still be nonnegligible, especially if the data is
out of cache; moreover, it neglects the possibility that data
reordering during the transform may improve memory lo-
cality. Perhaps the oldest alternative is the Stockham auto-

sort FFT [17], [21], which transforms back and forth be-
tween two arrays with each butterfly, transposing one digit
each time, and was popular to improve contiguity of access
for vector computers [22]. Alternatively, an explicitly recur-
sive style, as in FFTW, performs the digit-reversal implic-
itly at the “leaves” of its computation when operating out-of-
place (Section IV-D1). To operate in-place with scratch
storage, one can interleave small matrix transpositions with
the butterflies [23]–[26], and a related strategy in FFTW is
described in Section IV-D3. FFTW can also perform inter-
mediate reorderings that blend its in-place and out-of-place
strategies, as described in Section V-C.

Finally, we should mention that there are many FFTs en-
tirely distinct from Cooley–Tukey. Three notable such algo-
rithms are the prime-factor algorithm for
[27, p. 619], along with Rader’s [28] and Bluestein’s [27],
[29] algorithms for prime . FFTW implements the first two
in its codelet generator for hard-coded (Section VI) and
the latter two for general prime . A new generalization of
Rader’s algorithm for prime-size real-data transforms is also
discussed in Section VII. FFTW does not employ the Wino-
grad FFT [30], which minimizes the number of multiplica-
tions at the expense of a large number of additions. (This
tradeoff is not beneficial on current processors that have spe-
cialized hardware multipliers.)

III. BENCHMARK RESULTS

We have performed extensive benchmarks of FFTW’s
performance, along with that of over 50 other FFT imple-
mentations, on most modern general-purpose processors,
comparing complex and real-data transforms in one to three
dimensions and for both single and double precisions. We
generally found FFTW to be superior to other publicly
available codes and comparable to vendor-tuned libraries.
The complete results can be found in [1]. In this section, we
present data for a small sampling of representative codes for
complex-data 1-D transforms on a few machines.

We show the benchmark results as a series of graphs.
Speed is measured in “MFLOPS,” defined for a transform of
size as , where is the time in microseconds
for one transform, not including one-time initialization
costs. This count of floating-point operations is based
on the asymptotic number of operations for the radix-2
Cooley–Tukey algorithm (see [17, p. 45]), although the
actual count is lower for most DFT implementations. The
MFLOPS measure should, thus, be viewed as a convenient
scaling factor rather than as an absolute indicator of CPU
performance.

Fig. 1 shows the benchmark results for power-of-two
sizes, in double precision, on a 2.8-GHz Pentium IV with
the Intel compilers; in Fig. 2 are results for selected non-
power-of-two sizes of the form on the same
machine; in Fig. 3 are the single-precision power-of-two
results. Note that only the FFTW, MKL (Intel), IPPS (Intel),
and Takahashi libraries on this machine were specifically
designed to exploit the SSE/SSE2 SIMD instructions
(see Section IX); for comparison, we also include FFTW

218 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 1. Comparison of double-precision 1-D complex DFTs,
power-of-two sizes, on a 2.8-GHz Pentium IV. Intel C/Fortran
compilers v. 7.1, optimization flags -O3 -xW (maximum
optimization, enable automatic vectorizer).

Fig. 2. Comparison of double-precision 1-D complex DFTs,
nonpower-of-two sizes, on a 2.8-GHz Pentium IV. Compiler and
flags as in Fig. 1.

(out-of-place) with SIMD disabled (“fftw, no simd”). In
Fig. 4 are the power-of-two double-precision results on a
2-GHz PowerPC 970 (G5) with the Apple 3.3 compiler.
In Fig. 5 are the power-of-two double-precision results on
an 833-MHz Alpha EV6 with the Compaq compilers, and in
Fig. 6 are the single-precision results on the same machine.

In addition to FFTW v. 3.0.1, the other codes benchmarked
are as follows (some for only one precision or machine):
arprec, “four-step” FFT implementation [18] (from the C++
ARPREC library, 2002); cxml, the vendor-tuned Compaq
Extended Math Library on Alpha; fftpack, the Fortran library
from [22]; green, free code by J. Green (C, 1998); mkl, the
Intel Math Kernel Library v. 6.1 (DFTI interface) on the
Pentium IV; ipps, the Intel Integrated Performance Primi-
tives, Signal Processing, v. 3.0 on the Pentium IV; numerical
recipes, the C routine from [31]; ooura, a free code
by T. Ooura (C and Fortran, 2001); singleton, a Fortran FFT
[32]; sorensen, a split-radix FFT [33]; takahashi, the FFTE

Fig. 3. Comparison of single-precision 1-D complex DFTs,
power-of-two sizes, on a 2.8-GHz Pentium IV. Compiler and flags
as in Fig. 1. Note that fftpack, which was originally designed for
vectorizing compilers (or vice versa), benefits somewhat from the
automatic vectorization in this case.

Fig. 4. Comparison of double-precision 1-D complex DFTs,
power-of-two sizes, on a 2-GHz PowerPC 970 (G5). Apple gcc
v. 3.3, g77 v. 3.4 20031105 (experimental). Optimization flags
-O3 -mcpu = 970 -mtune = 970. The Apple vDSP library uses
separate real/imaginary arrays to store complex numbers and,
therefore, its performance is not strictly comparable with the other
codes, which use an array of real/imaginary pairs.

library v. 3.2 by D. Takahashi (Fortran, 2004) [34]; and vdsp,
the Apple vDSP library on the G5.

We now offer some remarks to aid the interpretation of the
performance results. The performance of all routines drops
for large problems, reflecting the cache hierarchy of the ma-
chine. Performance is low for small problems as well, be-
cause of the overhead of calling a routine to do little work.
FFTW is the only library that exploits SIMD instructions for
nonpower-of-two sizes, which gives it an advantage on the
Pentium IV for this case. IPPS is limited to in-place con-
tiguous inputs, whereas MKL and FFTW allow for strided
input. Assuming contiguous input gives some speed advan-
tage on a machine such as the Pentium IV, where index com-
putation is somewhat slow.

FRIGO AND JOHNSON: THE DESIGN AND IMPLEMENTATION OF FFTW3 219

Fig. 5. Comparison of double-precision 1-D complex DFTs,
power-of-two sizes, on an 833-MHz Alpha EV6. Compaq C
V6.2–505. Compaq Fortran X1.0.1–1155. Optimization flags:
-newc -w0 -O5 -ansi_alias -ansi_args -fp_reorder
-tune host -arch host.

Fig. 6. Comparison of single-precision 1-D complex DFTs,
power-of-two sizes, on an 833-MHz Alpha EV6. Compilers and
flags as in Fig. 5.

IV. STRUCTURE OF FFTW3

In this section, we discuss in detail how FFTW works.
Specifically, we discuss how FFTW represents the problem
to be solved (Sections IV-A and IV-B), the set of plans
that the planner considers during its search (Sections IV-C
and IV-D), and the internal operation of the planner
(Section IV-E). For simplicity, this section considers com-
plex DFTs only; we discuss real DFTs in Section VII.

Of these components, the representation of the problem to
be solved is a critical choice. Indeed, we view our definition
of a “problem” as a fundamental contribution of this paper.
Because only problems that can be expressed can be solved,
the representation of a problem determines an upper bound
to the space of plans that the planner can explore; therefore,
it ultimately constrains FFTW’s performance.

A. Representation of Problems in FFTW

DFT problems in FFTW are expressed in terms of struc-
tures called I/O tensors, which in turn are described in terms
of ancillary structures called I/O dimensions. (I/O tensors are
unrelated to the tensor-product notation of SPIRAL.) In this
section, we define these terms precisely.

An I/O dimension is a triple , where is a
nonnegative integer called the length, is an integer called
the input stride, and is an integer called the output stride.
An I/O tensor is a set of I/O dimen-
sions. The nonnegative integer is called the rank of
the I/O tensor. A DFT problem, denoted by ,
consists of two I/O tensors and and two pointers
and . Roughly speaking, this describes nested loops of

-dimensional DFTs with input data starting at memory
location and output data starting at . We now give a
more precise definition by induction on , yielding a set
of assignments from input to output. Conceptually, all of the
right-hand sides of these assignments are evaluated before
writing their values to the left-hand sides, a fiction that de-
fines the behavior precisely, e.g., when . (See also the
examples in Section IV-B.)

, with , is the -dimensional DFT,
defined as follows. Let ; for
all output indexes , yield the assignment

where each input index is summed from 0 to ,
is a primitive th root of unity as in Section II, and
denotes the complex number at memory location
(with pointer arithmetic in units of complex numbers).
By convention, we define the zero-dimensional problem

to yield the assignment .
is recursively defined as a

“loop” of problems: for all , yield all assign-
ments in .

If two assignments write to the same memory location, the
DFT problem is undefined. Such nonsensical problems are
not normally encountered in practice, however, as discussed
in Section IV-B.

One property of this definition is the fact that an I/O tensor
is equivalent to . That is, length-1 DFT dimen-

sions and length-1 loops can be eliminated. FFTW, therefore,
internally canonicalizes I/O tensors by removing all I/O di-
mensions where . (Similarly, all I/O tensors of the form

are equivalent.)
We call the size of the problem. The rank of a problem

is defined to be the rank of its size (i.e., the dimensionality of
the DFT). Similarly, we call the vector size of the problem,
and the vector rank of a problem is correspondingly defined
to be the rank of its vector size. One unusual feature of FFTW
is that the vector rank is arbitrary: FFTW is not restricted to
vector sizes of rank 1. Intuitively, the vector size can be inter-
preted as a set of “loops” wrapped around a single DFT, and
we, therefore, refer to a single I/O dimension of as a vector
loop. (Alternatively, one can view the problem as defining

220 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

a multidimensional DFT over a vector space.) The problem
does not specify the order of execution of these loops, how-
ever; therefore, FFTW is free to choose the fastest or most
convenient order.

An I/O tensor for which for all is said to be
in place. Occasionally, the need arises to replace input strides
with output strides and vice versa. We define to
be the I/O tensor . Similarly, we
define to be the I/O tensor

.
The two pointers and specify the memory addresses

of the input and output arrays, respectively. If , we
say that the problem is in place, otherwise the problem is
out of place. FFTW uses explicit pointers for three reasons.
First, we can distinguish in-place from out-of-place prob-
lems, which is important because many FFT algorithms
are inherently either in place or out of place, but not both.
Second, SIMD instructions usually impose constraints
on the memory alignment of the data arrays; from the
pointer, FFTW determines whether SIMD instructions are
applicable. Third, performance may depend on the actual
memory address of the data, in addition to the data layout,
so an explicit pointer is in principle necessary for maximum
performance.

B. DFT Problem Examples

The I/O tensor representation is sufficiently general to
cover many situations that arise in practice, including some
that are not usually considered to be instances of the DFT.
We consider a few examples here.

An 2-D matrix is typically stored in C using
row-major format: size- contiguous arrays for each row,
stored as consecutive blocks starting from a pointer

(for input/output). This memory layout is described
by the in-place I/O tensor .
Performing the 2-D DFT of this array corresponds
to the rank-2, vector-rank-0 problem: .
The transform data can also be noncontiguous; for ex-
ample, one could transform an subset of the
matrix, with , starting at the upper-left corner, by:

.
Another possibility is the rank-1, vector-rank-1 problem

that performs a “loop” of 1-D DFTs of size
operating on all the contiguous rows of the matrix:

. Conversely, to per-
form 1-D DFTs of the (discontiguous) columns of the matrix,
one would use: ; if

, for example, this could be thought of as the size-
1-D DFT of a three-component “vector field” (with “vector
components” stored contiguously).

Additionally, the rank-0, vector-rank-2 problem
denotes a copy (loop of rank-0 DFTs)

of complex numbers from to . (If , the
runtime cost of this copy is zero.) Moreover, this is equiv-
alent to the problem —it is
possible to combine vector loops that, together, denote a
constant-offset sequence of memory locations, and FFTW,
thus, canonicalizes all such vector loops internally.

Generally, rank-0 transforms may describe some
in-place permutation, such as a matrix transposition, if

. For example, to transpose the ma-
trix to , both stored in row-major order starting
at , one would use the rank-0, vector-rank-2 problem:

(these two vector
loops cannot be combined into a single loop).

Finally, one can imagine problems where the different
DFTs in the vector loop or a multidimensional trans-
form operate on overlapping data. For example, the “2-D”

transforms a “ma-
trix” whose subsequent rows overlap in elements.
The behavior of FFTW is undefined in such cases, which
are, in any case, prohibited by the ordinary user interface
(Section V-A).

C. Space of Plans in FFTW

The FFTW planner, when given a problem, explores a
space of valid plans for that problem and selects the plan
(a particular composition of algorithmic steps in a specified
order of execution) that happens to execute fastest. Many
plans exist that solve a given problem, however. Which plans
does FFTW consider, exactly? This section addresses this
and related questions.

Roughly speaking, to solve a general DFT problem, one
must perform three tasks. First, one must reduce a problem
of arbitrary vector rank to a set of loops nested around a
problem of vector rank 0, i.e., a single (possibly multidimen-
sional) DFT. Second, one must reduce the multidimensional
DFT to a sequence of rank-1 problems, i.e., 1-D DFTs. Third,
one must solve the rank-1, vector rank-0 problem by means
of some DFT algorithm such as Cooley–Tukey. These three
steps need not be executed in the stated order, however, and
in fact, almost every permutation and interleaving of these
three steps leads to a correct DFT plan. The choice of the set
of plans explored by the planner is critical for the usability
of the FFTW system: the set must be large enough to contain
the fastest possible plans, but it must be small enough to keep
the planning time acceptable.

The remainder of this section enumerates the class of plans
considered by the current FFTW planner. This particular set
of plans is reasonably simple, it can express a wide variety
of algorithms, and it seems to perform well on most architec-
tures. We do not claim that this set is the absolute optimum:
many more possibilities exist that are a topic of future re-
search, and the space of plans will likely change in future
FFTW releases. The plans that we now describe usually per-
form some simple “atomic” operation, and it may not be
apparent how these operations fit together to actually com-
pute DFTs, or why certain operations are useful at all. We
shall discuss these matters in Section IV-D. For now, we ask
for the reader’s patience while we describe the precise set of
plans generated by FFTW.

1) No-Op Plans: The simplest plans are those that
do nothing. FFTW generates no-op plans for problems

in the following two cases.

FRIGO AND JOHNSON: THE DESIGN AND IMPLEMENTATION OF FFTW3 221

• When , that is, no data is to be trans-
formed.

• When , , and the I/O tensor is in
place. In this case, the transform reduces to a copy of
the input array into itself, which requires no work.

It is possible for the user to specify a no-op problem if
one is desired (FFTW solves it really quickly). More often,
however, no-op problems are generated by FFTW itself as a
by-product of buffering plans. (See Section IV-C7.)

2) Rank-0 Plans: The rank-0 problem
denotes a permutation of the input array into the output array.
FFTW does not solve arbitrary rank-0 problems, only the
following two special cases that arise in practice.

• When and , FFTW produces a plan that
copies the input array into the output array. Depending
on the strides, the plan consists of a loop or, possibly,
of a call to the ANSI C function , which is spe-
cialized to copy contiguous regions of memory. (The
case is discussed in Section IV-C1.)

• When , , and the strides denote a ma-
trix-transposition problem, FFTW creates a plan that
transposes the array in place. FFTW implements the
square transposition
by means of the “cache-oblivious” algorithm from [35],
which is fast and, in theory, uses the cache optimally re-
gardless of the cache size. A generalization of this idea
is employed for nonsquare transpositions with a large
common factor or a small difference between the di-
mensions [36], and otherwise the algorithm from [37]
is used.

An important rank-0 problem that is describable but not
currently solvable in place by FFTW is the general in-place
digit-reversal permutation [20], which could be used for
some DFT algorithms.

3) Rank-1 Plans: Rank-1 DFT problems denote ordinary
1-D Fourier transforms. FFTW deals with most rank-1 prob-
lems as follows. (Other kinds of rank-1 plans exist, which
apply in certain special cases such as DFTs of prime size.
See Section IV-C7.)

a) Direct plans: When the DFT rank-1 problem is
“small enough,” FFTW produces a direct plan that
solves the problem directly. This situation occurs for
problems where and

. These plans operate by calling a
fragment of C code (a codelet) specialized to solve problems
of one particular size. In FFTW, codelets are generated
automatically by , but it is possible for a user to add
hand-written machine-specific codelets if desired.

We impose the restriction that because of engi-
neering tradeoffs. Informally speaking, a codelet for
consists of straight-line code, while a codelet for
consists of a vector loop wrapped around straight-line code.
Either codelets implement the loop or they do not—allowing
for both possibilities would require the duplication of the
whole set of codelets. In practice, is more common
than , and therefore FFTW takes the position that
all direct problems have vector rank 1, converting the rank-0

I/O tensor into the rank-1 I/O tensor . We have
not investigated the performance implications of codelets
of higher vector rank. For now, FFTW handles the general
vector-rank case via Section IV-C5.

b) Cooley–Tukey plans: For problems of the form
where , FFTW generates

a plan that implements a radix- Cooley–Tukey algorithm
(Section II). (FFTW generates a plan for each suitable value
of , possibly in addition to a direct plan. The planner then
selects the fastest.)

Of the many known variants of the Cooley–Tukey algo-
rithm, FFTW implements the following two, distinguished
mainly by whether the codelets multiply their inputs or out-
puts by twiddle factors. (Again, if both apply, FFTW tries
both.) As for direct plans, we restrict to be because
of engineering tradeoffs. (In the following, we use and
from (2).)

A decimation in time (DIT) plan uses a radix
(and, thus,): it first solves

, then multiplies the output array by the
twiddle factors, and finally solves

. For performance, the last two steps are
not planned independently, but are fused together in a single
“twiddle” codelet—a fragment of C code that multiplies its
input by the twiddle factors and performs a DFT of size ,
operating in place on . FFTW contains one such codelet
for each .

A decimation in frequency (DIF) plan uses
(and, thus,); it operates backward with re-
spect to a DIT plan. The plan first solves

, then multiplies the
input array by the twiddle factors, and finally solves

. Again, for
performance, the first two steps are fused together in a single
codelet. Because DIF plans destroy the input array, however,
FFTW generates them only if or if the user explicitly
indicates that the input can be destroyed. DIF plans that
do not destroy the input could be devised, but we did not
implement them because our main use of DIF plans is for
in-place transforms (Section IV-D3).

4) Plans for Higher Ranks: These plans reduce a multi-
dimensional DFT problem to problems of lower rank, which
are then solved recursively.

Formally, to solve , where ,
and , FFTW generates a plan that

first solves , and then solves
- - .

In principle, FFTW generates a plan for every suitable
choice of the subsets and , but in practice we impose
certain restrictions on the possible choices in order to reduce
the planning time. (See Section V-B.) A typical heuristic is to
choose two subproblems and of roughly equal rank,
where each input stride in is smaller than any input stride
in .

5) Plans for Higher Vector Ranks: These plans extract a
vector loop to reduce a DFT problem to a problem of lower
vector rank, which is then solved recursively.

222 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Formally, to solve , where
, FFTW generates a loop that, for

all such that , invokes a plan for
.

Any of the vector loops of could be extracted in this
way, leading to a number of possible plans. To reduce the
loop permutations that the planner must consider, how-
ever, FFTW only considers the vector loop that has either
the smallest or the largest ; this often corresponds to the
smallest or largest as well, or commonly vice versa (which
makes the best loop order nonobvious).

6) Indirect Plans: Indirect plans transform a DFT
problem that requires some data shuffling (or discontiguous
operation) into a problem that requires no shuffling plus a
rank-0 problem that performs the shuffling.

Formally, to solve where , FFTW
generates a plan that first solves , and
then solves - - . This plan
first rearranges the data, then solves the problem in place.
If the problem is in place or the user has indicated that the
input can be destroyed, FFTW also generates a dual plan:
first solve - - , and then solve

(solve in place, then rearrange).
7) Other Plans: For completeness, we now briefly men-

tion the other kinds of plans that are implemented in FFTW.
Buffering plans solve a problem out of place to a tempo-

rary buffer and then copy the result to the output array. These
plans serve two purposes. First, it may be inconvenient or im-
possible to solve a DFT problem without using extra memory
space, and these plans provide the necessary support for these
cases (e.g., in-place transforms). Second, if the I/O arrays are
noncontiguous in memory, operating on a contiguous buffer
might be faster because of better interaction with caches and
the rest of the memory subsystem. Similarly, buffered DIT (or
DIF) plans apply the twiddle codelets of Section IV-C3b by
copying a batch of inputs to a contiguous buffer, executing
the codelets, and copying back.

Generic plans implement a naive algorithm to solve
1-D DFTs. Similarly, Rader plans implement the algorithm
from [28] to compute 1-D DFTs of prime size in
time (with Rader-DIT plans for the twiddled DFTs of large
prime factors). FFTW also implements Bluestein’s “chirp-z”
algorithm [27], [29].

Real/imaginary plans execute a vector loop of two spe-
cialized real-input DFT plans (Section VII) on the real and
imaginary parts of the input, and then combine the results.
This can be more efficient if, for example, the real and imag-
inary parts are stored by the user in separate arrays (a gener-
alization of the storage format that we omitted above).

Parallel (multithreaded) plans are achieved by a special
variant of Section IV-C5 that executes the vector loop in par-
allel, along with a couple of extra plans to execute twiddle-
codelet loops in parallel. Although shared- and distributed-
memory parallel versions of FFTW exist, we do not further
describe them in this paper.

D. Discussion

Although it may not be immediately apparent, the com-
bination of the recursive rules in Section IV-C can produce

Fig. 7. Two possible decompositions for a size-30 DFT, both for
the arbitrary choice of DIT radices 3 then 2 then 5, and prime-size
codelets. Items grouped by a “f” result from the plan for a single
subproblem. In the depth-first case, the vector rank was reduced to
zero as per Section IV-C5 before decomposing subproblems, and
vice versa in the breadth-first case.

a number of useful algorithms. To illustrate these compo-
sitions, we discuss in particular three issues: depth- versus
breadth-first, loop reordering, and in-place transforms. More
possibilities and explicit examples of plans that are “discov-
ered” in practice are discussed in Section V-C.

1) Depth-First and Breadth-First FFTs: If one views an
FFT algorithm as a directed acyclic graph (dag) of data de-
pendencies (e.g., the typical “butterfly” diagram), most tradi-
tional Cooley–Tukey FFT implementations traverse the tree
in “breadth-first” fashion (Section II). In contrast, FFTW1
and FFTW2 traversed the dag in “depth-first” order, due to
their explicitly recursive implementation. That is, they com-
pletely solved a single 1-D sub-DFT before moving on to the
next. FFTW3 also evaluates its plans in an explicitly recur-
sive fashion, but, because its problems now include arbitrary
vector ranks, it is able to express both depth- and breadth-first
traversal of the dag (as well as intermediate styles). This is il-
lustrated by an example in Fig. 7 and discussed further below.

Depth-first traversal has theoretical advantages for cache
utilization: eventually, the sub-DFT will fit into cache and
(ideally) require no further cache misses [2], [3], [19], [35],
regardless of the size of the cache. (Although we were
initially motivated, in part, by these results, the point of
FFTW’s self-optimization is that we need not rely on this
or any similar prediction.) Technically, the asymptotically
optimal “cache-oblivious” recursive algorithm would use a
radix of for a transform of size , analogous to the
“four-step” algorithm [18], [38], but we have found that a
bounded radix generally works better in practice, except for
at most a single step of radix- .

A depth-first style is also used for the multidimensional
plans of Section IV-C4, where in this case the planner can
(and often does) choose the optimal cache-oblivious algo-
rithm: it breaks the transform into subproblems of roughly
equal rank. In contrast, an iterative, “breadth-first” approach
might perform all of the 1-D transforms for the first dimen-
sion, then all of the 1-D transforms for the second dimen-
sion, and so on, which has extremely poor cache performance
compared to grouping the dimensions into smaller multidi-
mensional transforms.

Because its subproblems contain a vector loop that can be
executed in a variety of orders, however, FFTW3 can also

FRIGO AND JOHNSON: THE DESIGN AND IMPLEMENTATION OF FFTW3 223

express breadth-first traversal. For example, if the rule of
Section IV-C4 were applied repeatedly to first reduce the
rank to one, and then the vector ranks were reduced by ap-
plying the loop rule of Section IV-C5 to the subproblems,
the plan would implement the breadth-first multidimensional
approach described above. Similarly, a 1-D algorithm resem-
bling the traditional breadth-first Cooley–Tukey would re-
sult from applying Section IV-C3b to completely factorize
the problem size before applying the loop rule to reduce the
vector ranks. As described in Section V-B, however, by de-
fault we limit the types of breadth-first-style plans considered
in order to reduce planner time, since they appear to be sub-
optimal in practice as well as in theory.

Even with the breadth-first execution style described
above, though, there is still an important difference between
FFTW and traditional iterative FFTs: FFTW has no sep-
arate bit-reversal stage. For out-of-place transforms, the
reordering occurs implicitly in the strides of Section IV-C3b
(which are transferred to the strides of the nested vector
loops in a recursive breadth-first plan); in any case, the
“leaves” of the recursion (direct plans) transform the input
directly to its correct location in the output, while the twiddle
codelets operate in place. This is an automatic benefit of a
recursive implementation. (Another possibility would be a
Stockham-style transform, from Section II, but this is not
currently implemented in FFTW.)

2) Vector Recursion: Another example of the effect of
loop reordering is a style of plan that we sometimes call
vector recursion (unrelated to “vector-radix” FFTs [16]).
The basic idea is that, if you have a loop (vector-rank 1)
of transforms, where the vector stride is smaller than the
transform size, it is advantageous to push the loop toward
the leaves of the transform decomposition, while other-
wise maintaining recursive depth-first ordering, rather than
looping “outside” the transform; i.e., apply the usual FFT
to “vectors” rather than numbers. Limited forms of this
idea have appeared for computing multiple FFTs on vector
processors (where the loop in question maps directly to a
hardware vector) [22] and in another restricted form as an
undocumented feature of FFTW2. Such plans are among
the many possible compositions of our recursive rules:
one or more steps of the Cooley–Tukey decomposition
(Section IV-C3b) can execute before the low-stride vector
loop is extracted (Section IV-C5), but with other loops still
extracted before decomposition. The low-stride vector loop
need not, however, be pushed all the way to the leaves of
the decomposition, and it is not unusual for the loop to be
executed at some intermediate level instead.

For example, low-stride vector loops appear in the
decomposition of a typical multidimensional transform
(Section IV-C4): along some dimensions, the transforms are
contiguous (stride 1) but the vector loop is not, while along
other dimensions the vector stride is one but the transforms
are discontiguous, and in this latter case vector recursion is
often preferred. As another example, Cooley–Tukey itself
produces a unit input-stride vector loop at the top-level DIT
decomposition, but with a large output stride; this difference
in strides makes it nonobvious whether vector recursion is

advantageous for the subproblem, but for large transforms
we often observe the planner to choose this possibility.

3) In-Place Plans: In-place 1-D transforms can be
obtained by two routes from the possibilities described
in Section IV-C: via combination of DIT and DIF plans
(Section IV-C3b) with transposes (Section IV-C2) or via
buffering (Section IV-C7).

The transpose-based strategy for an in-place transform of
size is outlined as follows. First, the transform is decom-
posed via a radix- DIT plan into a vector of transforms
of size , then these are decomposed in turn by a radix-
DIF plan into a vector (rank 2) of transforms of size .
These transforms of size have input and output at different
places/strides in the original array, and so cannot be solved
independently. Instead, an indirect plan (Section IV-C6) is
used to express the subproblem as in-place transforms of
size , followed or preceded by an rank-0 trans-
form. The latter subproblem is easily seen to be in-place

transposes (ideally square, i.e.,). Related strate-
gies for in-place transforms based on small transposes were
described in [23]–[26]; alternating DIT/DIF, without concern
for in-place operation, was also considered in [39] and [40].

As an optimization, we include DIF-transpose codelets
that combine the radix- DIF twiddle codelet (in
a loop of length) with the transpose, for

. (DIF-transpose is to DIF
transpose roughly as [24] is to [25].) Another common
special case is where , in which a size- direct plan
(Section IV-C3a), not a DIF codelet, is required (the twiddle
factors are unity), and the transposes are performed at the
leaves of the plan.

Since the size- transforms must be performed in place, if
they are too large for a direct plan, the transpose scheme can
be used recursively or a buffered plan can be used for this
subproblem. That is, a mixture of these two strategies can
be employed. We emphasize that all of these algorithms are
“discovered” automatically by the planner simply by com-
posing the rules of Section IV-C.

E. FFTW Planner

In this section, we discuss the implementation and opera-
tion of the FFTW planner.

The FFTW planner is a modular piece of code indepen-
dent of the specific problems and plans supported by the
system. In this way, we can reuse the same planner for com-
plex DFTs, real-data DFTs, and other transforms. The sep-
aration between planner and plans is achieved by means of
ancillary entities called solvers, which can be viewed as the
portion of the planner that is problem and plan specific. The
choreography of the planner, solvers, and plans is arranged
as follows.

The planner is first initialized with a list of solvers. Given
a problem, the planner calls each solver in sequence, re-
questing a plan for the problem. Each solver returns either
a pointer to a plan or a null pointer, which indicates that the

224 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

solver cannot create a plan for that problem. The planner se-
lects the fastest plan (by performing explicit time measure-
ments) and returns it to the user. The user calls the plan to
compute Fourier transforms as desired.

A solver can generate a certain class of plans. (Approxi-
mately, one solver exists for each item in the classification
of plans from Section IV-C.) When invoked by the planner,
a solver creates the plan for the given problem (if possible)
and it initializes any auxiliary data required by the plan (such
as twiddle factors). In many cases, creating a plan requires
that a plan for one or more subproblems be available. For ex-
ample, Cooley–Tukey plans require a plan for a smaller DFT.
In these cases, the solver obtains the subplans by invoking the
planner recursively.

By construction, the FFTW planner uses dynamic pro-
gramming [12, Ch. 16]: it optimizes each subproblem locally,
independently of the larger context. Dynamic programming
is not guaranteed to find the fastest plan, because the perfor-
mance of plans is context dependent on real machines: this
is another engineering tradeoff that we make for the sake of
planning speed. The representation of problems discussed in
Section IV-A is well suited to dynamic programming, be-
cause a problem encodes all the information required to solve
it—no reference to a larger context is necessary.

Like most dynamic-programming algorithms, the planner
potentially evaluates the same subproblem multiple times. To
avoid this duplication of work, the FFTW planner uses the
standard solution of memoization: it keeps a table of plans for
already computed problems and it returns the solution from
the table whenever possible. Memoization is accomplished
by FFTW in a slightly unorthodox fashion, however. The
memoization table, which maps problems into plans, con-
tains neither problems nor plans, because these data struc-
tures can be large and we wish to conserve memory. Instead,
the planner stores a 128-bit hash of the problem and a pointer
to the solver that generated the plan in the first place. When
the hash of a problem matches a hash key in the table, the
planner invokes the corresponding solver to obtain a plan.
For hashing, we use the cryptographically strong MD5 algo-
rithm [41]. In the extremely unlikely event of a hash collision,
the planner would still return a valid plan, because the solver
returned by the table lookup would either construct a valid
plan or fail, and in the latter case the planner would continue
the search as usual.

V. FFTW3 IN PRACTICE

In this section, we discuss some of our practical experi-
ences with FFTW, from user-interface design, to planning
time/optimality tradeoffs, to interesting planner choices that
are experimentally observed.

A. User Interface

The internal complexity of FFTW is not exposed to the
user, who only needs to specify her problem for the planner
and then, once a plan is generated, use it to compute any
number of transforms of that size. (See Fig. 8.)

Fig. 8. Example of FFTW’s use. The user must first create a plan,
which can be then used for many transforms of the same size.

Although the user can optionally specify a problem by
its full representation as defined in Section IV, this level of
generality is often only necessary internally to FFTW. In-
stead, we provide a set of interfaces that are totally ordered
by increasing generality, from a single (vector-rank 0) 1-D
unit-stride complex transform (as in Fig. 8), to multidimen-
sional transforms, to vector-rank 1 transforms, all the way
up to the general case. (An alternative proposal has been to
modify an FFT/data “descriptor” with a set of subroutines,
one per degree of freedom, before planning [42].)

With the more advanced interfaces, which allow the user
to specify vector loops and even I/O tensors, it is possible for
the user to define nonsensical problems with DFTs of over-
lapping outputs (Section IV-B). The behavior of FFTW is
undefined in such a case; this is rarely a problem, in prac-
tice, because only more sophisticated users exploit these in-
terfaces, and such users are naturally capable of describing
sensible transforms to perform.

As one additional feature, the user may control tradeoffs
in planning speed versus plan optimality by a flag argument
(e.g., in Fig. 8). These tradeoffs are discussed
below.

B. Planning-Time Tradeoffs

Depending upon the application, it is not always worth-
while to wait for the planner to produce an optimal plan, even
under the dynamic-programming approximation discussed in
Section IV-E, so FFTW provides several other possibilities.
One option is to load from a file the memoization hash table
of Section IV-E, so that the planner need not recompute it.
For problems that have not been planned in advance, var-
ious time-saving approximations can be made in the planner
itself.

In patient mode (used for the benchmarks in Section III),
the planner tries essentially all combinations of the possible
plans, with dynamic programming.

Alternatively, the planner can operate in an impatient
mode that reduces the space of plans by eliminating some
possibilities that appear to inordinately increase planner
time relative to their observed benefits. Most significantly,
only one way to decompose multidimensional or
(Sections IV-C4 and V) is considered, and vector recursion
is disabled (Section IV-D2). Furthermore, the planner makes
an approximation: the time to execute a vector loop of
transforms is taken to be multiplied by the time for one

FRIGO AND JOHNSON: THE DESIGN AND IMPLEMENTATION OF FFTW3 225

Fig. 9. Effect of planner tradeoffs: comparison of patient,
impatient, and estimate modes in FFTW for double-precision 1-D
complex DFTs, power-of-two sizes, on a 2-GHz PowerPC 970
(G5). Compiler and flags as in Fig. 4.

transform. Altogether, impatient mode often requires a
factor of ten less time to produce a plan than the full planner.

Finally, there is an estimate mode that performs no mea-
surements whatsoever, but instead minimizes a heuristic cost
function: the number of floating-point operations plus the
number of “extraneous” loads/stores (such as for copying to
buffers). This can reduce the planner time by several orders
of magnitude, but with a significant penalty observed in plan
efficiency (see below). This penalty reinforces a conclusion
of [3]: there is no longer any clear connection between op-
eration counts and FFT speed, thanks to the complexity of
modern computers. (Because this connection was stronger
in the past, however, past work has often used the count of
arithmetic operations as a metric for comparing
FFT algorithms, and great effort has been expended to prove
and achieve arithmetic lower bounds [16].)

The relative performance of the 1-D complex-data plans
created in patient, impatient, and estimate modes are shown
in Fig. 9 for the PowerPC G5 from Section III. In this
case, estimate mode imposes median and maximum speed
penalties of 20% and 72%, respectively, while impatient
mode imposes a maximum penalty of 11%. In other cases,
however, the penalty from impatient mode can be larger;
for example, it has a 47% penalty for a 1024 1024 2-D
complex-data transform on the same machine, since vector
recursion proves important there for the discontiguous (row)
dimension of the transform.

It is critical to create a new plan for each architec-
ture—there is a substantial performance penalty if plans
from one machine are reused on another machine. To il-
lustrate this point, Fig. 10 displays the effects of using the
optimal plan from one machine on another machine. In
particular, it plots the speed of FFTW for 1-D complex
transforms on the G5 and the Pentium IV. In addition to the
optimal plan chosen by the planner on the same machine,
we plot the speed on the G5 using the optimal plan from the
Pentium IV and vice versa. In both cases, using the wrong

Fig. 10. Effects of tuning FFTW on one machine and running it
on another. The graph shows the performance of 1-D DFTs on two
machines: a 2-GHz PowerPC 970 (G5), and a 2.8-GHz Pentium IV.
For each machine, we report both the speed of FFTW tuned to that
machine and the speed tuned to the other machine.

machine’s plan imposes a speed penalty of 20% or more for
at least one–third of the cases benchmarked, up to a 40% or
34% penalty for the G5 or Pentium IV, respectively.

C. Planner Choices

It is interesting to consider examples of the sometimes un-
expected plans that are actually chosen in practice by the
planner.

For example, consider an out-of-place DFT of size
. On our Pentium IV, the plan has the overall

structure: DIT of radices 32 then 8 then 16, followed by
a direct codelet of size 16. However, the first step actually
uses buffered DIT, and its size-32 vector loop is pushed
down to the direct codelet “leaves” by vector recursion
(Section IV-D2). Moreover, the size-16 direct codelet would
normally have discontiguous input and contiguous output;
instead, an indirect plan is used to first copy input to output,
and then the codelet is executed in-place on contiguous
values. The same size on the G5 yields the plan: radix-4
DIT; followed by an indirect plan to copy and work with a
contiguous size-16384 in-place subplan on the output. The
subplan is: radix-32 DIT; vector-recursion of the size-32
loop through radix-16 DIT; followed by another indirect
plan to perform 16 transposes of size 32 32, and then
512 size-32 direct codelets. The subplan’s usage of indirect
plans fulfills their original purpose of in-place transforms
(Section IV-D3); indirect plans for large out-of-place DFTs
were initially a surprise (and often boosted speed by 20% or
more).

Another surprise was that, whenever possible, the trans-
poses for in-place DFTs are almost always used at the leaves
with a direct codelet, as for the size-16384 subplan of the G5
plan above; our preconception was that the transpose would
be grouped at an intermediate point with an explicit DIF step
(as for the DIF-transpose codelets). As another example, an
in-place size-65536 plan on the Pentium IV uses: radix-4

226 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

DIT, radix-4 DIF-transpose, two radix-16 DIT steps, and fi-
nally an indirect plan that first performs 16 16 transposes
and then uses a size-16 direct codelet.

Regarding vector recursion, we had first guessed that a
low-stride vector loop would always be pushed all the way
to the leaves of the recursion, and an early implementation
enforced this constraint. It turns out that this is often not the
case, however, and the loop is only pushed one or two levels
down, as in the G5 plan above. Indirect plans add another
level of complexity, because often the copy (rank-0) subplan
executes its loops in a different order than the transform sub-
plan. This happens, for example, when the (discontiguous)
columns of a 1024 1024 array are transformed in-place on
the G5, whose resulting plan uses contiguous buffer storing
eight columns at a time, a radix-16 DIT step, an indirect plan
that first copies to the buffer than transforms in place with
a size-64 direct codelet, and then copies back. Because the
vector loop over the columns is stride-1, it is best to push
that loop to the leaves of the copy operations; on the other
hand, the direct codelet operates on contiguous buffers so it
prefers to have the size-16 vector loop innermost. (A similar
effect, with different radices, occurs in the Pentium IV plan
for this problem.)

While “explanations” can usually be fabricated in hind-
sight, we do not really understand the planner’s choices be-
cause we cannot predict what plans will be produced. Indeed,
this is the whole point of implementing a planner.

VI. CODELET GENERATOR

The base cases of FFTW’s recursive plans are its
“codelets,” and these form a critical component of FFTW’s
performance. They consist of long blocks of highly opti-
mized, straight-line code, implementing many special cases
of the DFT that give the planner a large space of plans in
which to optimize. Not only was it impractical to write
numerous codelets by hand, but we also needed to rewrite
them many times in order to explore different algorithms
and optimizations. Thus, we designed a special-purpose
“FFT compiler” called that produces the codelets
automatically from an abstract description. is sum-
marized in this section and described in more detail by [2].

As discussed in Section IV, FFTW uses many kinds of
codelets: “direct” codelets (Section IV-C3a), “twiddle”
codelets in the DIT and DIF variants (Section IV-C3b), and
the more exotic “ DIF-transpose codelets” (Section IV-D3).
(Additional kinds of codelets will be presented in
Sections VII and VIII.)

In principle, all codelets implement some combination
of the Cooley–Tukey algorithm from (2) and/or some other
DFT algorithm expressed by a similarly compact formula.
However, a high-performance implementation of the DFT
must address many more concerns than (2) alone suggests.
For example, (2) contains multiplications by one that are
more efficient to omit. Equation (2) entails a runtime fac-
torization of , which can be precomputed if is known
in advance. Equation (2) operates on complex numbers,
but breaking the complex-number abstraction into real

and imaginary components turns out to expose certain
nonobvious optimizations. Additionally, to exploit the long
pipelines in the current processor, the recursion implicit in
(2) should be unrolled and reordered to a significant degree.
Many further optimizations are possible if the complex input
is known in advance to be purely real (or imaginary). Our
design goal for was to keep the expression of the
DFT algorithm independent of such concerns. This separa-
tion allowed us to experiment with various DFT algorithms
and implementation strategies independently and without
(much) tedious rewriting.

is structured as a compiler whose input consists
of the kind and size of the desired codelet, and whose output
is C code. operates in four phases: creation, simpli-
fication, scheduling, and unparsing.

In the creation phase, produces a representation
of the codelet in the form of a dag. The dag is produced
according to well-known DFT algorithms: Cooley–Tukey
(2), prime-factor [27, p. 619], split-radix [16], and Rader
[28]. Each algorithm is expressed in a straightforward math-
like notation, using complex numbers, with no attempt at
optimization.

In the simplification phase, applies local rewriting
rules to each node of the dag in order to simplify it. This
phase performs algebraic transformations (such as elim-
inating multiplications by one), common-subexpression
elimination, and a few DFT-specific transformations. These
simplifications are sufficiently powerful to derive DFT algo-
rithms specialized for real and/or symmetric data automat-
ically from the complex algorithms. We take advantage of
this property to implement real-data DFTs (Section VII), to
exploit machine-specific “SIMD” instructions (Section IX),
and to generate codelets for DCTs and DSTs (Section VIII).

In the scheduling phase, produces a topological
sort of the dag (a “schedule”). The goal of this phase is to find
a schedule such that a C compiler can subsequently perform
a good register allocation. The scheduling algorithm used by

offers certain theoretical guarantees because it has
its foundations in the theory of cache-oblivious algorithms
[35] (here, the registers are viewed as a form of cache). As
a practical matter, one consequence of this scheduler is that
FFTW’s machine-independent codelets are no slower than
machine-specific codelets generated by SPIRAL [43, Fig. 3].

In the stock implementation, the schedule is fi-
nally unparsed to C. A variation from [44] implements the
rest of a compiler backend and outputs assembly code.

VII. REAL-DATA TRANSFORMS

In this section, we briefly outline how FFTW com-
putes DFTs of real data (a real DFT), and we give a new

-time algorithm to compute the 1-D DFT of real
arrays of prime length .

As is well known, the DFT of a real array of length
has the Hermitian symmetry

(3)

FRIGO AND JOHNSON: THE DESIGN AND IMPLEMENTATION OF FFTW3 227

where denotes the complex conjugate of . (A sim-
ilar symmetry holds for multidimensional arrays as well.)
By exploiting this symmetry, one can save roughly a factor
of two in storage and, by eliminating redundant operations
within the FFT, roughly a factor of two in time as well [45].

The implementation of real-data DFTs in FFTW paral-
lels that of complex DFTs discussed in Section IV. For di-
rect plans, we use optimized codelets generated by ,
which automatically derives specialized real-data algorithms
from the corresponding complex algorithm (Section VI). For
Cooley–Tukey plans, we use a mixed-radix generalization
of [45], which works by eliminating the redundant compu-
tations in a standard Cooley–Tukey algorithm applied to real
data [22], [46], [47].

When the transform length is a prime number, FFTW
uses an adaptation of Rader’s algorithm [28] that reduces
the storage and time requirements roughly by a factor of
two with respect to the complex case. The remainder of this
section describes this algorithm, which to our knowledge
has not been published before.

The algorithm first reduces the real DFT to the discrete
Hartley transform (DHT) by means of the well-known
reduction of [48], and then it executes a DHT variant of
Rader’s algorithm. The DHT was originally proposed by
[48] as a faster alternative to the real DFT, but [45] argued
that a well-implemented real DFT is always more efficient
than an algorithm that reduces the DFT to the DHT. For
prime sizes, however, no real-data variant of Rader’s algo-
rithm appears to be known, and for this case we propose that
a DHT is useful.

To compute DHTs of prime size, recall the definition of
DHT

(4)

where . If is prime, then there
exists a generator of the multiplicative group modulo :
for all , there exists a unique integer

such that . Similarly,
one can write if . For nonzero ,
we can thus rewrite (4) as follows:

(5)

where the summation is a cyclic convolution of a permuta-
tion of the input array with a fixed real sequence. This cyclic
convolution can be computed by means of two real DFTs,
in which case the algorithm takes time, or by
any other method [49]. (FFTW computes convolutions via
DFTs.) The output element , which is the sum of all input
elements, cannot be computed via (5) and must be calculated
separately.

An adaptation of Bluestein’s prime-size algorithm to the
DHT also exists [50], but the known method does not exhibit
asymptotic savings over the complex-data algorithm.

VIII. TRIGONOMETRIC TRANSFORMS

Along with the DHT, there exist a number of other useful
transforms of real inputs to real outputs, namely, DFTs of
real-symmetric (or anti-symmetric) data, otherwise known
as DCTs and DSTs, types I–VIII [27], [51]–[53]. We collec-
tively refer to these transforms as trigonometric transforms.
Types I–IV are equivalent to (double-length) DFTs of even
size with the different possible half-sample shifts in the input
and/or output. Types V–VIII [52] are similar, except that their
“logical” DFTs are of odd size; these four types seem to see
little practical use, so we do not implement them. (In order
to make the transforms unitary, additional factors of mul-
tiplying some terms are required, beyond an overall normal-
izaton of . Some authors include these factors, breaking
the direct equivalence with the DFT.)

Each type of symmetric DFT has two kinds of plans in
FFTW: direct plans (using specialized codelets generated
by), and general-length plans that re-express a
rank-1 transform of length in terms of a real-input DFT
plus pre/post-processing. (Here, denotes the number of
nonredundant real inputs.)

In the rest of this section, we show how
generates the codelets required by trigonometric direct
plans (Section VIII-A), and we discuss how FFTW im-
plements trigonometric transforms in the general case
(Section VIII-B).

A. Automatic Generation of Trigonometric-Transform
Codelets

does not employ any special trigonometric-trans-
form algorithm. Instead, it takes the position that all these
transforms are just DFTs in disguise. For example, a DCT-IV
can be reduced to a DFT as follows. Consider the definition
of the DCT-IV

1
2

1
2

This definition can be rewritten in this way

In other words, the outputs of a DCT-IV of length are just a
subset of the outputs of a DFT of length whose inputs have
been made suitably symmetric and interleaved with zeros.
Similar reductions apply to all other kinds of trigonometric
transforms.

Consequently, to generate code for a trigonometric trans-
form, first reduces it to a DFT and then it generates
a dag for the DFT, imposing the necessary symmetries, set-
ting the appropriate inputs to zero, and pruning the dag to

228 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

the appropriate subset of the outputs. The symbolic simpli-
cations performed by are powerful enough to elimi-
nate all redundant computations, thus producing a special-
ized DCT/DST algorithm. This strategy requires no prior
knowledge of trigonometric-transform algorithms and is ex-
ceptionally easy to implement.

Historically, the generator of FFTW2 (1999) implemented
experimental, undocumented support for the DCT/DST I and
II in this way. Vuduc and Demmel independently rediscov-
ered that could derive trigonometric transforms from
the complex DFT while implementing ideas similar to those
described in this section [54].

B. General Trigonometric Transforms

Type II and III trigonometric transforms of length are
computed using a trick from [22] and [55] to re-express
them in terms of a size- real-input DFT. Types I and IV are
more difficult, because we have observed that convenient
algorithms to embed them in an equal-length real-input
DFT have poor numerical properties: the type-I algorithm
from [22] and [31] and the type-IV algorithm from [56]
both have (root mean square) relative errors that seem
to grow as . We have not performed a detailed error
analysis, but we believe the problem is due to the fact that
both of these methods multiply the data by a bare cosine (as
opposed to a unit-magnitude twiddle factor), with a resulting
loss of relative precision near the cosine zero. Instead, to
compute a type-IV trigonometric transform, we use one of
two algorithms: for even , we use the method from [57] to
express it as pair of type-III problems of size , which are
solved as above; for odd , we use a method from [58] to
re-express the type-IV problem as a size- real-input DFT
(with a complicated reindexing that requires no twiddle
factors at all). For the type-I DCT/DST, however, we could
not find any accurate algorithm to re-express the transform
in terms of an equal-length real-input DFT; thus, we resort
to the “slow” method of embedding it in a real-input DFT
of length . All of our methods are observed to achieve the
same error as the Cooley–Tukey FFT [59].

One can also compute symmetric DFTs by directly spe-
cializing the Cooley–Tukey algorithm, removing redundant
operations as we did for real inputs, to decompose the trans-
form into smaller symmetric transforms [53], [56], [57].
Such a recursive strategy, however, would require eight new
sets of codelets to handle the different types of DCT and
DST, and we judged the cost in code size to be unacceptable.

IX. HOW FFTW3 USES SIMD

This section discusses how FFTW exploits special SIMD
instructions, which perform the same operation in parallel on
a data vector. These instructions are implemented by many
recent microprocessors, such as the Intel Pentium III (SSE)
and IV (SSE2), the AMD K6 and successors (3DNow!), and
some PowerPC models (AltiVec). The design of FFTW3 al-
lowed us to efficiently support such instructions simply by
plugging in new types of codelets, without disturbing the
overall structure.

SIMD instructions are superficially similar to “vector pro-
cessors,” which are designed to perform the same operation
in parallel on an all elements of a data array (a “vector”). The
performance of “traditional” vector processors was best for
long vectors that are stored in contiguous memory locations,
and special algorithms were developed to implement the
DFT efficiently on this kind of hardware [22], [26]. Unlike
in vector processors, however, the SIMD vector length is
small and fixed (usually two or four). Because microproces-
sors depend on caches for performance, one cannot naively
use SIMD instructions to simulate a long-vector algorithm:
while on vector machines long vectors generally yield
better performance, the performance of a microprocessor
drops as soon as the data vectors exceed the capacity of the
cache. Consequently, SIMD instructions are better seen as
a restricted form of instruction-level parallelism than as a
degenerate flavor of vector parallelism, and different DFT
algorithms are required.

In FFTW, we experimented with two new schemes to im-
plement SIMD DFTs. The first scheme, initially developed
by S. Kral, involves a variant of that automatically
extracts SIMD parallelism from a sequential DFT program
[44]. The major problem with this compiler is that it is ma-
chine specific: it outputs assembly code, exploiting the pecu-
liarities of the target instruction set.

The second scheme relies on an abstraction layer
consisting of C macros in the style of [60], and it is,
therefore, semiportable (the C compiler must support SIMD
extensions in order for this scheme to work). To understand
this SIMD scheme, consider first a machine with length-2
vectors, such as the Pentium IV using the SSE2 instruction
set (which can perform arithmetic on pairs of double-preci-
sion floating-point numbers). We view a complex DFT as a
pair of real DFTs

DFT DFT DFT (6)

where and are two real arrays. Our algorithm computes
the two real DFTs in parallel using SIMD instructions, and
then it combines the two outputs according to (6).

This SIMD algorithm has two important properties. First,
if the data is stored as an array of complex numbers, as op-
posed to two separate real and imaginary arrays, the SIMD
loads and stores always operate on correctly aligned con-
tiguous locations, even if the complex numbers themselves
have a nonunit stride. Second, because the algorithm finds
two-way parallelism in the real and imaginary parts of a
single DFT (as opposed to performing two DFTs in parallel),
we can completely parallelize DFTs of any size, not just even
sizes or powers of two.

This SIMD algorithm is implemented in the codelets:
FFTW contains SIMD versions of both direct and twiddle
codelets (as defined in Section IV-C3). It may seem strange
to implement the complex DFT in terms of the real DFT,
which requires much more involved algorithms. Our codelet
generator , however, derives real codelets automat-
ically from complex algorithms, so this is not a problem
for us.

FRIGO AND JOHNSON: THE DESIGN AND IMPLEMENTATION OF FFTW3 229

On machines that support vectors of length 4, we view
SIMD data as vectors of two complex numbers, and each
codelet executes two iterations of its loop in parallel. (A sim-
ilar strategy of codelets that operate on 2-vectors was argued
in [11] to have benefits even without SIMD.) The source
of this two-way parallelism is the codelet loop, which can
arise from the Cooley–Tukey decomposition of a single 1-D
DFT, the decomposition of a multidimensional DFT, or a
user-specified vector loop. Four-way SIMD instructions are
problematic, because the input or the output are not gener-
ally stride-1, and arbitrary-stride SIMD memory operations
are more expensive than stride-1 operations. Rather than re-
lying on special algorithms that preserve unit stride, however,
FFTW relies on the planner to find plans that minimize the
number of arbitrary-stride memory accesses.

Although compilers that perform some degree of auto-
matic vectorization are common for SIMD architectures,
these typically require simple loop-based code, and we are
not aware of any that is effective at vectorizing FFTW, nor
indeed of any automatically vectorized code that is compet-
itive on these two-way and four-way SIMD architectures.

X. CONCLUSION

For many years, research on FFT algorithms focused
on the question of finding the best single algorithm, or
the best strategy for implementing an algorithm such as
Cooley–Tukey. Unfortunately, because computer hardware
is continually changing, the answer to this question has been
continually changing as well. Instead, we believe that a more
stable answer may be possible by changing the question:
instead of asking what is the best algorithm, one should
ask what is the smallest collection of simple algorithmic
fragments whose composition spans the optimal algorithm
on as many computer architectures as possible.

FFTW is a step in that direction, but is not the ultimate
answer; several open problems remain. Besides the obvious
point that many possible algorithmic choices remain to be
explored, we do not believe our existing algorithmic frag-
ments to be as simple or as general as they should. The key
to almost every FFT algorithm lies in two elements: strides
(reindexing) and twiddle factors. We believe that our current
formalism for problems expresses strides well, but we do
not know how to express twiddle factors properly. Because
of this limitation, we are currently forced to distinguish
between decimation-in-time and decimation-in-frequency
Cooley–Tukey, which causes redundant coding. Our ulti-
mate goal (for version) is to eliminate this redundancy
so that we can express many possible rearrangements of the
twiddle factors.

ACKNOWLEDGMENT

The authors would like to thank F. Franchetti and S. Kral
for their efforts in developing experimental SIMD versions of
FFTW. The authors would also like to thank G. Allen and the
University of Texas for providing access to a PowerPC 970,
J. D. Joannopoulos for his unfailing encouragement of this

project, and the anonymous reviewers for helpful suggestions
that improved the quality of this paper.

REFERENCES

[1] M. Frigo and S. G. Johnson. (2004) FFTW Web page. [Online].
Available: http://www.fftw.org/

[2] M. Frigo, “A fast Fourier transform compiler,” in Proc. ACM SIG-
PLAN’99 Conf. Programming Language Design and Implementa-
tion (PLDI), vol. 34, 1999, pp. 169–180.

[3] M. Frigo and S. G. Johnson, “FFTW: An adaptive software architec-
ture for the FFT,” in Proc. IEEE Int. Conf. Acoustics, Speech, and
Signal Processing, vol. 3, 1998, pp. 1381–1384.

[4] G. Jayasumana, “Searching for the best Cooley–Tukey FFT algo-
rithms,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Pro-
cessing, vol. 4, 1987, pp. 2408–2411.

[5] H. Massalin, “Superoptimizer: A look at the smallest program,” in
Proc. 2nd Int. Conf. Architectural Support for Programming Lan-
guages and Operating System (ASPLOS), 1987, pp. 122–127.

[6] J. Bilmes, K. Asanović, C.-W. Chin, and J. Demmel, “Optimizing
matrix multiply using PHiPAC: A portable, high-performance, ANSI
C coding methodology,” presented at the Int. Conf. Supercomputing,
Vienna, Austria, 1997.

[7] R. Whaley and J. Dongarra, “Automatically Tuned Linear Algebra
Software,” Comput. Sci. Dept., Univ. Tennessee, Knoxville, Tech.
Rep. CS-97-366, 1997.

[8] S. K. S. Gupta, C. Huang, P. Sadayappan, and R. W. Johnson, “A
framework for generating distributed-memory parallel programs for
block recursive algorithms,” J. Parallel Distrib. Comput., vol. 34, no.
2, pp. 137–153, May 1996.

[9] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, D.
Padua, M. M. Veloso, and R. W. Johnson, “SPIRAL: A generator for
platform-adapted libraries of signal processing algorithms,” J. High
Perform. Comput. Applicat., vol. 18, no. 1, pp. 21–45, 2004.

[10] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W.
Singer, J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen,
R. W. Johnson, and N. Rizzolo, “SPIRAL: Code generation for DSP
transforms,” Proc. IEEE, vol. 93, no. 2, pp. 232–275, Feb. 2005.

[11] K. S. Gatlin, “Portable high performance programming via architec-
ture-cognizant divide-and-conquer algorithms,” Ph.D. dissertation,
Univ. California, San Diego, 2000.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. Cambridge, MA: MIT Press, 1990.

[13] B. Singer and M. Veloso, “Learning to construct fast signal pro-
cessing implementations,” J. Mach. Learn. Res., vol. 3, pp. 887–919,
2002.

[14] J. W. Cooley and J. W. Tukey, “An algorithm for the machine com-
putation of the complex Fourier series,” Math. Comput., vol. 19, pp.
297–301, Apr. 1965.

[15] M. T. Heideman, D. H. Johnson, and C. S. Burrus, “Gauss and the
history of the fast Fourier transform,” IEEE ASSP Mag., vol. 1, no.
4, pp. 14–21, Oct. 1984.

[16] P. Duhamel and M. Vetterli, “Fast Fourier transforms: A tutorial re-
view and a state of the art,” Signal Process., vol. 19, pp. 259–299,
Apr. 1990.

[17] C. van Loan, Computational Frameworks for the Fast Fourier Trans-
form. Philadelphia, PA: SIAM, 1992.

[18] D. H. Bailey, “FFT’s in external or hierarchical memory,” J. Super-
comput., vol. 4, no. 1, pp. 23–35, May 1990.

[19] R. C. Singleton, “On computing the fast Fourier transform,”
Commun. ACM, vol. 10, pp. 647–654, 1967.

[20] A. H. Karp, “Bit reversal on uniprocessors,” SIAM Rev., vol. 38, no.
1, pp. 1–26, 1996.

[21] T. G. Stockham, “High speed convolution and correlation,” in Proc.
AFIPS Spring Joint Computer Conf., vol. 28, 1966, pp. 229–233.

[22] P. N. Swarztrauber, “Vectorizing the FFTs,” in Parallel Computa-
tions, G. Rodrigue, Ed. New York: Academic, 1982, pp. 51–83.

[23] H. W. Johnson and C. S. Burrus, “An in-place in-order radix-2 FFT,”
in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing,
1984, pp. 28A.2.1–28A.2.4.

[24] C. Temperton, “Self-sorting in-place fast Fourier transforms,” SIAM
J. Sci. Stat. Comput., vol. 12, no. 4, pp. 808–823, 1991.

[25] Z. Qian, C. Lu, M. An, and R. Tolimieri, “Self-sorting in-place FFT
algorithm with minimum working space,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 42, no. 10, pp. 2835–2836, Oct. 1994.

230 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

[26] M. Hegland, “A self-sorting in-place fast Fourier transform algo-
rithm suitable for vector and parallel processing,” Numerische Math-
ematik, vol. 68, no. 4, pp. 507–547, 1994.

[27] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time
Signal Processing, 2nd ed. Upper Saddle River, NJ: Prentice-Hall,
1999.

[28] C. M. Rader, “Discrete Fourier transforms when the number of data
samples is prime,” Proc. IEEE, vol. 56, no. 6, pp. 1107–1108, Jun.
1968.

[29] L. I. Bluestein, “A linear filtering approach to the computation of the
discrete Fourier transform,” in Northeast Electronics Research and
Engineering Meeting Rec., vol. 10, 1968, pp. 218–219.

[30] S. Winograd, “On computing the discrete Fourier transform,” Math.
Comput., vol. 32, no. 1, pp. 175–199, Jan. 1978.

[31] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C: The Art of Scientific Computing, 2nd
ed. New York: Cambridge Univ. Press, 1992.

[32] R. C. Singleton, “An algorithm for computing the mixed radix fast
Fourier transform,” IEEE Trans. Audio Electroacoust., vol. AU-17,
no. 2, pp. 93–103, Jun. 1969.

[33] H. V. Sorensen, M. T. Heideman, and C. S. Burrus, “On computing
the split-radix FFT,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-34, no. 1, pp. 152–156, Feb. 1986.

[34] D. Takahashi, “A blocking algorithm for FFT on cache-based
processors,” in Lecture Notes in Computer Science, High-Per-
formance Computing and Networking. Heidelberg, Germany:
Springer-Verlag, 2001, vol. 2110, pp. 551–554.

[35] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran,
“Cache-oblivious algorithms,” in Proc. 40th Ann. Symp. Founda-
tions of Computer Science (FOCS ’99), 1999, pp. 285–297.

[36] M. Dow, “Transposing a matrix on a vector computer,” Parallel
Comput., vol. 21, no. 12, pp. 1997–2005, 1995.

[37] E. G. Cate and D. W. Twigg, “Algorithm 513: Analysis of in-situ
transposition,” ACM Trans. Math. Softw. (TOMS), vol. 3, no. 1, pp.
104–110, 1977.

[38] W. M. Gentleman and G. Sande, “Fast Fourier transforms—For fun
and profit,” in Proc. AFIPS Fall Joint Computer Conf., vol. 29, 1966,
pp. 563–578.

[39] K. Nakayama, “An improved fast Fourier transform algorithm
using mixed frequency and time decimations,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 36, no. 2, pp. 290–292, Feb. 1988.

[40] A. Saidi, “Decimation-in-time-frequency FFT algorithm,” in Proc.
IEEE Int. Conf. Acoustics, Speech, and Signal Processing, vol. 3,
1994, pp. 453–456.

[41] R. Rivest, “The MD5 message-digest algorithm,” Network Working
Group, Request for Comments (RFC) 1321, Apr. 1992.

[42] P. T. P. Tang, “A comprehensive DFT API for scientific computing,”
in The Architecture of Scientific Software. ser. IFIP Conference
Proceedings, R. F. Boisvert and P. T. P. Tang, Eds. Ottawa, ON,
Canada: Kluwer, 2001, vol. 188, pp. 235–256.

[43] J. Xiong, D. Padua, and J. Johnson, “SPL: A language and com-
piler for DSP algorithms,” in Proc. ACM SIGPLAN’01 Conf. Pro-
gramming Language Design and Implementation (PLDI), 2001, pp.
298–308.

[44] F. Franchetti, S. Kral, J. Lorenz, and C. Ueberhuber, “Efficient
utilization of SIMD extensions,” Proc. IEEE, vol. 93, no. 2, pp.
409–425, Feb. 2005.

[45] H. V. Sorensen, D. L. Jones, M. T. Heideman, and C. S. Burrus,
“Real-valued fast Fourier transform algorithms,” IEEE Trans.
Acoust., Speech, Signal Process., vol. ASSP-35, no. 6, pp. 849–863,
Jun. 1987.

[46] C. Temperton, “Fast mixed-radix real Fourier transforms,” J.
Comput. Phys., vol. 52, pp. 340–350, 1983.

[47] G. D. Bergland, “A fast Fourier transform algorithm for real-valued
series,” Commun. ACM, vol. 11, no. 10, pp. 703–710, 1968.

[48] R. N. Bracewell, The Hartley Transform. New York: Oxford Univ.
Press, 1986.

[49] H. J. Nussbaumer, Fast Fourier Transform and Convolution Algo-
rithms, 2nd ed. New York: Springer-Verlag, 1982.

[50] J.-I. Guo, “An efficient design for one-dimensional discrete Hartley
transform using parallel additions,” IEEE Trans. Signal Process.,
vol. 48, no. 10, pp. 2806–2813, Oct. 2000.

[51] Z. Wang, “Fast algorithms for the discrete W transform and for the
discrete Fourier transform,” IEEE Trans. Acoust., Speech, Signal
Process., vol. ASSP-32, no. 4, pp. 803–816, Aug. 1984.

[52] S. A. Martucci, “Symmetric convolution and the discrete sine and
cosine transforms,” IEEE Trans. Signal Process., vol. 42, no. 5, pp.
1038–1051, May 1994.

[53] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Ad-
vantages, Applications. Boston, MA: Academic, 1990.

[54] R. Vuduc and J. Demmel, “Code generators for automatic tuning
of numerical kernels: Experiences with FFTW,” presented at the
Semantics, Application, and Implementation of Code Generators
Workshop, Montreal, QC, Canada, 2000.

[55] J. Makhoul, “A fast cosine transform in one and two dimensions,”
IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-28, no. 1,
pp. 27–34, Feb. 1980.

[56] S. C. Chan and K. L. Ho, “Direct methods for computing discrete
sinusoidal transforms,” IEE Proc. F, vol. 137, no. 6, pp. 433–442,
1990.

[57] Z. Wang, “On computing the discrete Fourier and cosine trans-
forms,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-33,
no. 4, pp. 1341–1344, Oct. 1985.

[58] S. C. Chan and K. L. Ho, “Fast algorithms for computing the dis-
crete cosine transform,” IEEE Trans. Circuits Syst. II: Analog Digit.
Signal Process., vol. 39, no. 3, pp. 185–190, Mar. 1992.

[59] J. C. Schatzman, “Accuracy of the discrete Fourier transform and
the fast Fourier transform,” SIAM J. Sci. Comput., vol. 17, no. 5, pp.
1150–1166, 1996.

[60] F. Franchetti, H. Karner, S. Kral, and C. W. Ueberhuber, “Architec-
ture independent short vector FFTs,” in Proc. IEEE Int. Conf. Acous-
tics, Speech, and Signal Processing, vol. 2, 2001, pp. 1109–1112.

Matteo Frigo received the Ph.D. degree from
the Department of Electrical Engineering and
Computer Science, Massachusetts Institute of
Technology (MIT), Cambridge, in 1999.

He is currently with the IBM Austin Research
Laboratory, Austin, TX. Besides FFTW, his
research interests include the theory and
implementation of Cilk (a multithreaded system
for parallel programming), cache-oblivious
algorithms, and software radios. In addition, he
has implemented a gas analyzer that is used for

clinical tests on lungs.
Dr. Frigo is a Joint Recipient (with S. G. Johnson) of the 1999

J. H. Wilkinson Prize for Numerical Software, in recognition of their work
on FFTW.

Steven G. Johnson received the B.S. de-
gree in computer science, the B.S. degree in
mathematics, and the Ph.D. degree from the
Department of Physics from the Massachusetts
Institute of Technology (MIT), Cambridge, in
1995, 1995, and 2001, respectively.

He joined the faculty of applied mathematics
at MIT in 2004. His recent work, besides FFTW,
has focused on the theory of photonic crystals:
electromagnetism in nanostructured media. This
has ranged from general research in semianalyt-

ical and numerical methods for electromagnetism, to the design of integrated
optical devices, to the development of optical fibers that guide light within
an air core to circumvent limits of solid materials. His Ph.D. thesis was
published as a book, Photonic Crystals: The Road from Theory to Practice
(Norwell, MA: Kluwer), in 2002.

FRIGO AND JOHNSON: THE DESIGN AND IMPLEMENTATION OF FFTW3 231

	toc
	The Design and Implementation of FFTW3
	MATTEO FRIGO and STEVEN G. JOHNSON
	I. I NTRODUCTION
	II. FFT O VERVIEW
	III. B ENCHMARK R ESULTS

	Fig.€1. Comparison of double-precision 1-D complex DFTs, power-o
	Fig.€2. Comparison of double-precision 1-D complex DFTs, nonpowe
	Fig.€3. Comparison of single-precision 1-D complex DFTs, power-o
	Fig.€4. Comparison of double-precision 1-D complex DFTs, power-o
	Fig.€5. Comparison of double-precision 1-D complex DFTs, power-o
	Fig.€6. Comparison of single-precision 1-D complex DFTs, power-o
	IV. S TRUCTURE OF FFTW3
	A. Representation of Problems in FFTW
	B. DFT Problem Examples
	C. Space of Plans in FFTW
	1) No-Op Plans: The simplest plans are those that do nothing. FF
	2) Rank-0 Plans: The rank-0 problem $ {\rm dft}(\{ \}, {\bf V},
	3) Rank-1 Plans: Rank-1 DFT problems denote ordinary 1-D Fourier
	4) Plans for Higher Ranks: These plans reduce a multidimensional
	5) Plans for Higher Vector Ranks: These plans extract a vector l
	6) Indirect Plans: Indirect plans transform a DFT problem that r
	7) Other Plans: For completeness, we now briefly mention the oth

	D. Discussion

	Fig.€7. Two possible decompositions for a size-30 DFT, both for
	1) Depth-First and Breadth-First FFTs: If one views an FFT algor
	2) Vector Recursion: Another example of the effect of loop reord
	3) In-Place Plans: In-place 1-D transforms can be obtained by tw
	E. FFTW Planner
	V. FFTW3 IN P RACTICE
	A. User Interface

	Fig.€8. Example of FFTW's use. The user must first create a plan
	B. Planning-Time Tradeoffs

	Fig.€9. Effect of planner tradeoffs: comparison of patient, impa
	Fig.€10. Effects of tuning FFTW on one machine and running it on
	C. Planner Choices
	VI. ${\tt genfft}$ C ODELET G ENERATOR
	VII. R EAL -D ATA T RANSFORMS
	VIII. T RIGONOMETRIC T RANSFORMS
	A. Automatic Generation of Trigonometric-Transform Codelets
	B. General Trigonometric Transforms

	IX. H OW FFTW3 U SES SIMD
	X. C ONCLUSION
	M. Frigo and S. G. Johnson . (2004) FFTW Web page . [Online] . A
	M. Frigo, A fast Fourier transform compiler, in Proc. ACM SIGPLA
	M. Frigo and S. G. Johnson, FFTW: An adaptive software architect
	G. Jayasumana, Searching for the best Cooley Tukey FFT algorithm
	H. Massalin, Superoptimizer: A look at the smallest program, in
	J. Bilmes, K. Asanovi, C.-W. Chin, and J. Demmel, Optimizing mat
	R. Whaley and J. Dongarra, Automatically Tuned Linear Algebra So
	S. K. S. Gupta, C. Huang, P. Sadayappan, and R. W. Johnson, A fr
	M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, D.
	M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B.
	K. S. Gatlin, Portable high performance programming via architec
	T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
	B. Singer and M. Veloso, Learning to construct fast signal proce
	J. W. Cooley and J. W. Tukey, An algorithm for the machine compu
	M. T. Heideman, D. H. Johnson, and C. S. Burrus, Gauss and the h
	P. Duhamel and M. Vetterli, Fast Fourier transforms: A tutorial
	C. van Loan, Computational Frameworks for the Fast Fourier Trans
	D. H. Bailey, FFT's in external or hierarchical memory, J. Super
	R. C. Singleton, On computing the fast Fourier transform, Commun
	A. H. Karp, Bit reversal on uniprocessors, SIAM Rev., vol. 38,
	T. G. Stockham, High speed convolution and correlation, in Proc.
	P. N. Swarztrauber, Vectorizing the FFTs, in Parallel Computatio
	H. W. Johnson and C. S. Burrus, An in-place in-order radix-2 FFT
	C. Temperton, Self-sorting in-place fast Fourier transforms, SIA
	Z. Qian, C. Lu, M. An, and R. Tolimieri, Self-sorting in-place F
	M. Hegland, A self-sorting in-place fast Fourier transform algor
	A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Si
	C. M. Rader, Discrete Fourier transforms when the number of data
	L. I. Bluestein, A linear filtering approach to the computation
	S. Winograd, On computing the discrete Fourier transform, Math.
	W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterli
	R. C. Singleton, An algorithm for computing the mixed radix fast
	H. V. Sorensen, M. T. Heideman, and C. S. Burrus, On computing t
	D. Takahashi, A blocking algorithm for FFT on cache-based proces
	M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, Cache
	M. Dow, Transposing a matrix on a vector computer, Parallel Comp
	E. G. Cate and D. W. Twigg, Algorithm 513: Analysis of in-situ t
	W. M. Gentleman and G. Sande, Fast Fourier transforms For fun an
	K. Nakayama, An improved fast Fourier transform algorithm using
	A. Saidi, Decimation-in-time-frequency FFT algorithm, in Proc. I
	R. Rivest, The MD5 message-digest algorithm, Network Working Gro
	P. T. P. Tang, A comprehensive DFT API for scientific computing,
	J. Xiong, D. Padua, and J. Johnson, SPL: A language and compiler
	F. Franchetti, S. Kral, J. Lorenz, and C. Ueberhuber, Efficient
	H. V. Sorensen, D. L. Jones, M. T. Heideman, and C. S. Burrus, R
	C. Temperton, Fast mixed-radix real Fourier transforms, J. Compu
	G. D. Bergland, A fast Fourier transform algorithm for real-valu
	R. N. Bracewell, The Hartley Transform . New York: Oxford Univ.
	H. J. Nussbaumer, Fast Fourier Transform and Convolution Algorit
	J.-I. Guo, An efficient design for one-dimensional discrete Hart
	Z. Wang, Fast algorithms for the discrete W transform and for th
	S. A. Martucci, Symmetric convolution and the discrete sine and
	K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Adv
	R. Vuduc and J. Demmel, Code generators for automatic tuning of
	J. Makhoul, A fast cosine transform in one and two dimensions, I
	S. C. Chan and K. L. Ho, Direct methods for computing discrete s
	Z. Wang, On computing the discrete Fourier and cosine transforms
	S. C. Chan and K. L. Ho, Fast algorithms for computing the discr
	J. C. Schatzman, Accuracy of the discrete Fourier transform and
	F. Franchetti, H. Karner, S. Kral, and C. W. Ueberhuber, Archite

