Notes on discontinuous $f(x)$ satisfying
 $f(x+y)=f(x) \cdot f(y)$

Steven G. Johnson

Created February 15, 2007; updated October 22, 2007

1 Introduction

It is well known that exponential functions $f(x)=e^{k x}$, for any $k \in \mathbb{R}$, are isomorphisms from addition to multiplication, i.e. for all $x, y \in \mathbb{R}$:

$$
\begin{equation*}
f(x+y)=f(x) \cdot f(y) \tag{1}
\end{equation*}
$$

In fact, exponentials are the only non-zero anywhere-continuous functions over the reals (\mathbb{R}) with this property. This is proved below, and is a simple enough result that it has been posed as a homework problem [Rud64]. This immediately raises the question, however: is there a discontinuous function satisfying (1)? The answer is yes, but it is surprisingly non-trivial to prove.

I was initially unable to find any published reference to this fact, although I couldn't believe that it was a new result, so I wrote up the proof below. Inquiries with colleagues in the math department proved fruitless, nor was I able to find the needle in the haystack of real-analysis textbooks in the library. Subsequently, however, my friend Yehuda Avniel, revealing an unexpected background in real analysis, pointed out that the existence of such a function is proved in an exercise of Hewitt and Stromberg [HS65]. It turns out to be quite easy to do once you have proved the existence of a Hamel basis for \mathbb{R} / \mathbb{Q} (a construct I was unfamiliar with). In fact, Hewitt and Stromberg show that it is sufficient to assume that $f(x)$ is merely measurable in order to get exponentials (I sketch the proof below).

Nevertheless, I present my construction of a discontinuous $f(x)$ below, in an elementary tutorial-style fashion, in the hope that it will be useful to a student or two. Note that this is not an explicit construction, only a proof that such a function exists; the Hamel basis method of Hewitt and Stromberg is similarly non-constructive. Note also that all of the proofs I know of require the axiom of choice.

2 General properties of $f(x) \neq 0$

Let us begin by proving several useful properties of $f(x)$, only assuming that it is nonzero at some x_{0}.

- If $f\left(x_{0}\right) \neq 0$ for any x_{0}, then $f(x) \neq 0$ for all x. Proof: $f\left(x_{0}\right)=f(x) \cdot f\left(x_{0}-x\right) \neq$ 0.
- $f(0)=1$. Proof: $f(x+0)=f(x)=f(x) \cdot f(0)$, and $f(x) \neq 0$.
- $f(-x)=f(x)^{-1}$ for all x. Proof: $f(-x) \cdot f(x)=f(0)=1$.
- $f(x)>0$ for all x. Proof: $f(x)=f(x / 2)^{2}>0$.
- If $f(x)$ is continuous at $x=y$ for any y, then $f(x)$ is continuous at all x. Consequently, if $f(x)$ is discontinuous anywhere, it is discontinuous everywhere. Proof: $f(x+\delta)-f(x)=f(x-y) \cdot[f(y+\delta)-f(y)] \rightarrow 0$ for $\delta \rightarrow 0$ by continuity at y.

$3 f(q)$ for rational q

We can easily show that we must have $f(q)=e^{k q}$ for some $k \in \mathbb{R}$ and non-zero $f(x)$, whenever $q \in \mathbb{Q}$ (q rational). It suffices to show this for positive rational q since $f(-q)=f(q)^{-1}=e^{-k q}$ and $f(0)=1$ from above.

Proof: Let $q=n / m$ for n and m positive integers. By elementary induction, $f\left(\frac{n}{m}\right)=$ $f\left(\frac{1}{m}+\cdots+\frac{1}{m}\right)=f\left(\frac{1}{m}\right)^{n}$. Therefore, $f\left(\frac{1}{m}\right)^{m}=f(1)$ and so $f\left(\frac{1}{m}\right)=f(1)^{1 / m}$. Thus, we have $f\left(\frac{n}{m}\right)=f(1)^{n / m}$. Since $f(1)>0$ from above, we can write $f(1)=e^{k}$ for some real $k=\ln f(1)$, and thus $f(q)=e^{k q}$ for all $q \in \mathbb{Q}$.

If we were now to assume that $f(x)$ were continuous, it would follow that $f(x)=e^{k x}$ everywhere, since the closure of \mathbb{Q} is \mathbb{R}.

4 Measurable functions

It turns out to be sufficient to assume that $f(x)$ is measurable or Lebesgue integrable, and not identically zero, in order to obtain exponentials from $f(x+y)=f(x) f(y)$. The proof runs as follows. Since $f(x)$ is integrable, we can define $g(x)=\int_{0}^{x} f\left(x^{\prime}\right) d x^{\prime}$. Therefore, $g(x+y)-g(x)=\int_{x}^{x+y} f\left(x^{\prime}\right) d x^{\prime}=\int_{0}^{y} f\left(x^{\prime}+x\right) d x^{\prime}=f(x) g(y)$. Then, if we choose a y such that $g(y) \neq 0$ (which must exist since $f(x)$ is everywhere non-zero, from above), we obtain:

$$
\begin{aligned}
f(x+\boldsymbol{\delta})-f(\boldsymbol{\delta}) & =\frac{[g(x+\boldsymbol{\delta}+y)-g(x+\boldsymbol{\delta})]-[g(x+y)-g(x)]}{g(y)} \\
& =\frac{[g(x+y+\boldsymbol{\delta})-g(x+y)]-[g(x+\boldsymbol{\delta})-g(x)]}{g(y)} \\
& =\frac{f(x+y) g(\boldsymbol{\delta})-f(x) g(\boldsymbol{\delta})}{g(y)}=g(\boldsymbol{\delta}) \frac{f(x+y)-f(x)}{g(y)}
\end{aligned}
$$

and the final expression must go to zero as $\delta \rightarrow 0$, since $g(0)=0$ and $g(x)$ is continuous. Therefore $f(x)$ is continuous, and the result follows from above.

5 A single irrational point

We have now shown that $f(x)=e^{k x}$ for all rational x, and will try to construct a discontinuous function at an irrational x. Let us consider a single irrational point $u_{1} \in \mathbb{R}-\mathbb{Q}$, and suppose that $f\left(u_{1}\right)=e^{\bar{k} u_{1}}$ for some real $\bar{k} \neq k$. It then follows that $f\left(q_{1} u_{1}+q\right)=e^{\bar{k} q_{1} u_{1}+k q}$ for all $q_{1}, q \in \mathbb{Q}$.

Proof: First, $f\left(\frac{n}{m} u_{1}\right)=f\left(u_{1}\right)^{n / m}=e^{k(n / m) u_{1}}$ from the same induction process as in the previous section, for any rational $q_{1}=n / m$. Second, $f\left(q_{1} u_{1}+q\right)=f\left(q_{1} u_{1}\right) \cdot f(q)=$ $e^{\bar{k} q_{1} u_{1}+k q}$.

The consequence of this result is that specifing $f(x)$ for the rationals and a single irrational point u_{1} immediately specifies it for another dense countable set $C_{1}=\left\{q_{1} u_{1}+\right.$ $\left.q \mid q_{1}, q \in \mathbb{Q}, q_{1} \neq 0\right\}$, where C_{1} is purely irrational (disjoint from \mathbb{Q}).

Similarly, if we now pick a second irrational point $u_{2} \in \mathbb{R}-\mathbb{Q}-C_{1}$ and define $f\left(u_{2}\right)=e^{\bar{k} u_{2}}$, we must define $f\left(q_{1} u_{1}+q_{2} u_{2}+q\right)=e^{\bar{k}\left(q_{1} u_{1}+q_{2} u_{2}\right)+k q}$ for all $q_{1}, q_{2}, q \in \mathbb{Q}$.

6 A simplistic, incomplete construction

Now, let us give a simplistic, incomplete construction of a discontinuous $f(x)$ satisfying $f(x+y)=f(x) \cdot f(y)$. Although this construction turns out to be unworkable, it illustrates the essential ideas that we will employ in a more complete form below. The construction is as follows:

1. Start by defining $f(q)=e^{k q}$ for some $k \in \mathbb{R}$ and for all $q \in \mathbb{Q}$.
2. Then, define $f\left(q u_{1}+q^{\prime}\right)=e^{\bar{k} q_{1} u_{1}+k q}$ for some irrational $u_{1} \in \mathbb{R}-\mathbb{Q}$, real $\bar{k} \neq k$, and for all $q_{1}, q \in \mathbb{Q}$, extending our definition to a set $S_{1}=\left\{q_{1} u_{1}+q \mid q_{1}, q \in \mathbb{Q}\right\}$ (with $\mathbb{Q} \subset S_{1}$).
3. Pick another irrational $u_{2} \in \mathbb{R}-S_{1}$, and define $f\left(q_{1} u_{1}+q_{2} u_{2}+q\right)=e^{\bar{k}\left(q_{1} u_{1}+q_{2} u_{2}\right)+k q}$ for all $q_{1}, q_{2}, q \in \mathbb{Q}$, extending our definition to a set $S_{2}=\left\{q_{1} u_{1}+q_{2} u_{2}+q \mid q_{1}, q_{2}, q \in\right.$ \mathbb{Q} \} (with $\mathbb{Q} \subset S_{1} \subset S_{2}$).
4. Pick another irrational $u_{3} \in \mathbb{R}-S_{2}$ with $f\left(u_{3}\right)=e^{\bar{k} u_{3}}$, and so on ad infinitum.

In this way, we gradually cover more and more of \mathbb{R} with our discontinuous $f(x)$ definition, all the while preserving the property that $f(x+y)=f(x) \cdot f(y)$ for all of the points where $f(x)$ is defined.

The problem with this approach, of course, is that we will never cover all of \mathbb{R} in this way. We are defining $f(x)$ over a countable sequence of countable sets, but the union of such a sequence is only countable and thus has measure zero in \mathbb{R} (despite being dense). To actually cover all of \mathbb{R} by this sort of approach, we must generalize our process to one of transfinite induction over an uncountable set. In particular, the uncountable set in question turns out to be a set of equivalence classes on \mathbb{R}.

7 Equivalence classes

The key to defining $f(x)$ seems to be the following equivalence relation on \mathbb{R} :

$$
x \sim y \Longleftrightarrow x=q y+q^{\prime} \text { for some } q, q^{\prime} \in \mathbb{Q}, q \neq 0
$$

It is easy to show that this relation satisfies the usual properties $(x \sim x, x \sim y \Rightarrow y \sim x$, and $x \sim y, y \sim z \Rightarrow x \sim z$), and therefore partitions \mathbb{R} into a set \mathscr{C} of disjoint equivalence classes C. For each equivalence class C we can pick a single element $u(C) \in C$, and all other elements of that class are then given by $u(C) q+q^{\prime}$ for $q, q^{\prime} \in \mathbb{Q}, q \neq 0$. Thus every C is countable, and therefore \mathscr{C} must be uncountable. One special equivalence class $C=\mathbb{Q}$ is given by $u(\mathbb{Q})=0$.

The significance of these equivalence classes, as explained above, is that once we define $f(q)=e^{k q}$ for $q \in \mathbb{Q}$ then the value of $f(x)$ for all $x \in C$ is determined by picking $f[u(C)]$ for a single $u(C) \in C$. Suppose we define $f[u(C)]=e^{\bar{k} \cdot u(C)}$ for some $\bar{k} \in \mathbb{R}$ and $\bar{k} \neq k$. (As notational shorthand, we will denote $u\left(C_{n}\right)$ by u_{n}.) Then for any $x_{n}=q_{n} u_{n}+q_{n}^{\prime} \in C_{n}$ we must have $f\left(x_{n}\right)=e^{\bar{k} q_{n} u_{n}+k q_{n}^{\prime}}$.

However, we cannot pick $u(C)$ for the different equivalent classes independently, because of what happens when we add numbers from two equivalence classes. First, realize:

- Given $x_{1} \in C_{1}$ and $x_{2} \in C_{2}$ for $C_{1} \neq C_{2}$ and $C_{1,2} \neq \mathbb{Q}$, it follows that $x_{1}+x_{2}=$ $x_{3} \in C_{3}$ for $C_{3} \neq C_{1,2}, C_{3} \neq \mathbb{Q}$. Proof: If $C_{3}=C_{1}$ then $x_{3} \sim x_{1}$ and thus $x_{2}=$ $(q-1) x_{1}+q^{\prime}$: if $q=1$ then $x_{2} \sim q^{\prime}$ and $C_{2}=\mathbb{Q}$, while if $q \neq 1$ then $x_{2} \sim x_{1}$ and $C_{1}=C_{2}$. Thus, $C_{3} \neq C_{1,2}$. If $C_{3}=\mathbb{Q}$ then $x_{1}=-x_{2}+q$ and $x_{1} \sim x_{2}\left(C_{1}=C_{2}\right)$.

We thus have $x_{1}+x_{2}=\left(q_{1} u_{1}+q_{1}^{\prime}\right)+\left(q_{2} u_{2}+q_{2}^{\prime}\right)=x_{3}=q_{3} u_{3}+q_{3}^{\prime}$ for some $q_{1,2,3}, q_{1,2,3}^{\prime} \in$ $\mathbb{Q}, q_{1,2,3} \neq 0$, and $u_{1} \neq u_{2} \neq u_{3}$. We must have $f\left(x_{1}+x_{2}\right)=e^{\bar{k}\left(q_{1} u_{1}+q_{2} u_{2}\right)+k\left(q_{1}^{\prime}+q_{2}^{\prime}\right)}=$ $f\left(x_{3}\right)=e^{\bar{k} q_{3} u_{3}+k q_{3}^{\prime}}$. This is only true, however, if $q_{1}^{\prime}+q_{2}^{\prime}=q_{3}^{\prime}$, which implies

$$
q_{1} u_{1}+q_{2} u_{2}=q_{3} u_{3}
$$

for some $q_{3} \in \mathbb{Q}$. That means we cannot pick the $u(C)$'s independently: they must be defined inductively to satisfy this algebraic relation for some q_{3}.

Before we do so, we should first check whether we have run into something obviously impossible. Can we have $x_{3}=q_{1} u_{1}+q_{2} u_{2}=q_{3} u_{3} \sim \bar{x}_{3}=\bar{q}_{1} u_{1}+\bar{q}_{2} u_{2}=$ $\bar{q}_{3} u_{3}+\bar{q}_{3}^{\prime}$ for some $q_{1,2,3}, \bar{q}_{1,2,3}, \bar{q}_{3}^{\prime} \in \mathbb{Q}$ and $\bar{q}_{3}^{\prime} \neq 0$? No. Proof: $\bar{x}_{3}-\frac{\bar{q}_{3}}{q_{3}} x_{3}=\bar{q}_{3}^{\prime}$, but this means $q u_{1}+q^{\prime} u_{2}=\bar{q}_{3}^{\prime}$ for rational $q=\bar{q}_{1}-\frac{\bar{q}_{3}}{q_{3}} q_{1}$ and $q^{\prime}=\bar{q}_{2}-\frac{\bar{q}_{3}}{q_{3}} q_{2}$. If $q \neq 0$ or $q^{\prime} \neq 0$ then $u_{1} \sim u_{2}$, contradicting our assumption that $C_{1} \neq C_{2}$. If $q=q^{\prime}=0$ then $\bar{q}_{3}^{\prime}=0$ and all is well.

8 Transfinite induction

We will proceed to define our $u(C)$ by transfinite induction on \mathscr{C}. First, we must wellorder \mathscr{C}, by invoking the well-ordering theorem on $\mathscr{C}-\{\mathbb{Q}\}$ to choose some wellorder relation " $<$ " on equivalence classes, and then put \mathbb{Q} first by defining $\mathbb{Q}<C$ for
any $C \neq \mathbb{Q}$. (Recall that a well-ordering is one such that every non-empty set has a least element. Since \mathscr{C} is uncountable, the well-ordering theorem requires the axiom of choice.) Then, we will construct $u(C)$ to satisfy the following property by induction:

- Let $\mathscr{C}_{0}=\left\{C \mid \mathbb{Q}<C<C_{0}\right\}$ for some $C_{0} \in \mathscr{C}$. For all finite series $x=\sum_{n} q_{n} u_{n}$ with distinct $u_{n}=u\left(C_{n}\right), C_{n} \in \mathscr{C}_{0}$, and some $q_{n} \in \mathbb{Q}$, then whenever $x \in C \in \mathscr{C}_{0}$ we require $x=q \cdot u(C)$ for some $q \in \mathbb{Q}$.

That is, we assume that the above property is true for all $C<C_{0}$, and then choose $u_{0}=u\left(C_{0}\right)$ so that it still holds when we include C_{0} (i.e. for $\mathscr{C}_{1}=\mathscr{C}_{0} \cup\left\{C_{0}\right\}$). In particular, there are two cases: (i) If $\sum_{n} q_{n} u_{n} \notin C_{0}$ for any q_{n} or u_{n} with $C_{n} \in \mathscr{C}_{0}$, then we choose u_{0} to be any arbitrary element of C_{0}. (ii) Otherwise, we pick $u_{0}=\sum_{n} q_{n} u_{n}$ for any arbitrary series $\sum_{n} q_{n} u_{n} \in C_{0}$. Then the desired property above follows: If we have a $\sum_{n} q_{n}^{\prime} u_{n}^{\prime}=q u_{0}+q^{\prime} \in C_{0}(n \neq 0)$, then by substituting u_{0} and moving it to the left we obtain a sum of the form $\sum_{n} q_{n}^{\prime \prime} u_{n}^{\prime \prime}=q^{\prime}$, which is only possible if $q^{\prime}=0$ (if any $q_{n}^{\prime \prime} \neq 0$, then we will obtain $u_{n} \sim u_{m}$ for some $m \neq n$, or otherwise $u_{n} \in \mathbb{Q}$), similar to the proof at the end of the previous section. On the other hand, if we have $x=q_{0} u_{0}+\sum_{n} q_{n}^{\prime} u_{n}^{\prime} \in C \in \mathscr{C}_{0}$, then $x=\sum_{n} q_{n}^{\prime \prime} u_{n}^{\prime \prime}$ and thus $x=q \cdot u(C)$ by induction. Note that if $q_{0} \neq 0$ then $x \in C$ implies that $\sum_{n} q_{n}^{\prime} u_{n}^{\prime}-q u(C) \in C_{0}$, so we are in case (ii) above.

The base case, for \mathscr{C}_{0} the empty set, is trivial. We define $u(\mathbb{Q})=0$.

9 A discontinuous $f(x)$

Now that we have defined $u(C)$ as above, defining the discontinuous $f(x)$ is easy. Every $x \in \mathbb{R}$ is a member of some equivalence class C, and thus $x=q u(C)+q^{\prime}$ for some $q, q^{\prime} \in \mathbb{Q}, q \neq 0$. Then, $f(x)=e^{\bar{k} q u(C)+k q}$ for some fixed real numbers $\bar{k} \neq k$. This is discontinuous since $f(q)=e^{k q}$ but $f(x) \neq e^{k x}$ for irrational x.

Let us review why this satisfies $f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right) \cdot f\left(x_{2}\right)$ for any $x_{1}, x_{2} \in \mathbb{R}$, where $x_{1}=q_{1} u_{1}+q_{1}^{\prime}$ and $x_{2}=q_{2} u_{2}+q_{2}^{\prime}$ with $u_{1}=u\left(C_{1}\right)$ and $u_{2}=u\left(C_{2}\right)$ for $x_{1} \in C_{1}$ and $x_{2} \in C_{2}$. If $C_{1}=C_{2}$ or $C_{2}=\mathbb{Q}$, then $f\left(x_{1}+x_{2}\right)=e^{\bar{k}\left(q_{1} u_{1}+q_{2} u_{2}\right)+k\left(q_{1}^{\prime}+q_{2}^{\prime}\right)}$ as desired. Otherwise, $x_{1}+x_{2} \in C_{3} \neq C_{1,2}$, and also $q_{1} u_{1}+q_{2} u_{2} \in C_{3}$. By our construction of $u(C)$, however, $u_{3}=u\left(C_{3}\right)$ must then satisfy the property $q_{1} u_{1}+q_{2} u_{2}=q_{3} u_{3}$ for some $q_{3} \in \mathbb{Q}$. Therefore, $x_{1}+x_{2}=q_{3} u_{3}+\left(q_{1}^{\prime}+q_{2}^{\prime}\right)$ and $f\left(x_{1}+x_{2}\right)=e^{\bar{k} q_{3} u_{3}+k\left(q_{1}^{\prime}+q_{2}^{\prime}\right)}=$ $e^{\bar{k}\left(q_{1} u_{1}+q_{2} u_{2}\right)+k\left(q_{1}^{\prime}+q_{2}^{\prime}\right)}=f\left(x_{1}\right) \cdot f\left(x_{2}\right)$.

References

[HS65] Edwin Hewitt and Karl Stromberg, Real and abstract analysis, Springer, 1965, exercise 18.46.
[Rud64] Walter Rudin, Principles of mathematical analysis, McGraw-Hill, New York, 1964.

