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1 Introduction
It is well known that exponential functions f (x) = ekx, for any k ∈R, are isomorphisms
from addition to multiplication, i.e. for all x,y ∈ R:

f (x+ y) = f (x) · f (y). (1)

In fact, exponentials are the only non-zero anywhere-continuous functions over the
reals (R) with this property. This is proved below, and is a simple enough result that it
has been posed as a homework problem [Rud64]. This immediately raises the question,
however: is there a discontinuous function satisfying (1)? The answer is yes, but it is
surprisingly non-trivial to prove.

I was initially unable to find any published reference to this fact, although I couldn’t
believe that it was a new result, so I wrote up the proof below. Inquiries with colleagues
in the math department proved fruitless, nor was I able to find the needle in the haystack
of real-analysis textbooks in the library. Subsequently, however, my friend Yehuda
Avniel, revealing an unexpected background in real analysis, pointed out that the exis-
tence of such a function is proved in an exercise of Hewitt and Stromberg [HS65]. It
turns out to be quite easy to do once you have proved the existence of a Hamel basis
for R/Q (a construct I was unfamiliar with). In fact, Hewitt and Stromberg show that
it is sufficient to assume that f (x) is merely measurable in order to get exponentials (I
sketch the proof below).

Nevertheless, I present my construction of a discontinuous f (x) below, in an el-
ementary tutorial-style fashion, in the hope that it will be useful to a student or two.
Note that this is not an explicit construction, only a proof that such a function exists;
the Hamel basis method of Hewitt and Stromberg is similarly non-constructive. Note
also that all of the proofs I know of require the axiom of choice.

2 General properties of f (x) 6= 0

Let us begin by proving several useful properties of f (x), only assuming that it is
nonzero at some x0.

1



• If f (x0) 6= 0 for any x0, then f (x) 6= 0 for all x. Proof: f (x0) = f (x) · f (x0−x) 6=
0.

• f (0) = 1. Proof : f (x+0) = f (x) = f (x) · f (0), and f (x) 6= 0.

• f (−x) = f (x)−1 for all x. Proof: f (−x) · f (x) = f (0) = 1.

• f (x)> 0 for all x. Proof: f (x) = f (x/2)2 > 0.

• If f (x) is continuous at x = y for any y, then f (x) is continuous at all x. Con-
sequently, if f (x) is discontinuous anywhere, it is discontinuous everywhere.
Proof: f (x+δ )− f (x) = f (x−y) · [ f (y+δ )− f (y)]→ 0 for δ → 0 by continu-
ity at y.

3 f (q) for rational q

We can easily show that we must have f (q) = ekq for some k ∈ R and non-zero f (x),
whenever q ∈ Q (q rational). It suffices to show this for positive rational q since
f (−q) = f (q)−1 = e−kq and f (0) = 1 from above.

Proof: Let q= n/m for n and m positive integers. By elementary induction, f ( n
m ) =

f ( 1
m + · · ·+ 1

m ) = f ( 1
m )

n. Therefore, f ( 1
m )

m = f (1) and so f ( 1
m ) = f (1)1/m. Thus, we

have f ( n
m ) = f (1)n/m. Since f (1) > 0 from above, we can write f (1) = ek for some

real k = ln f (1), and thus f (q) = ekq for all q ∈Q.
If we were now to assume that f (x) were continuous, it would follow that f (x)= ekx

everywhere, since the closure of Q is R.

4 Measurable functions
It turns out to be sufficient to assume that f (x) is measurable or Lebesgue integrable,
and not identically zero, in order to obtain exponentials from f (x + y) = f (x) f (y).
The proof runs as follows. Since f (x) is integrable, we can define g(x) =

∫ x
0 f (x′)dx′.

Therefore, g(x+ y)− g(x) =
∫ x+y

x f (x′)dx′ =
∫ y

0 f (x′+ x)dx′ = f (x)g(y). Then, if we
choose a y such that g(y) 6= 0 (which must exist since f (x) is everywhere non-zero,
from above), we obtain:

f (x+δ )− f (δ ) =
[g(x+δ + y)−g(x+δ )]− [g(x+ y)−g(x)]

g(y)

=
[g(x+ y+δ )−g(x+ y)]− [g(x+δ )−g(x)]

g(y)

=
f (x+ y)g(δ )− f (x)g(δ )

g(y)
= g(δ )

f (x+ y)− f (x)
g(y)

,

and the final expression must go to zero as δ→ 0, since g(0)= 0 and g(x) is continuous.
Therefore f (x) is continuous, and the result follows from above.
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5 A single irrational point
We have now shown that f (x) = ekx for all rational x, and will try to construct a
discontinuous function at an irrational x. Let us consider a single irrational point
u1 ∈ R−Q, and suppose that f (u1) = ek̄u1 for some real k̄ 6= k. It then follows that
f (q1u1 +q) = ek̄q1u1+kq for all q1,q ∈Q.

Proof: First, f ( n
m u1) = f (u1)

n/m = ek̄(n/m)u1 from the same induction process as in
the previous section, for any rational q1 = n/m. Second, f (q1u1+q)= f (q1u1) · f (q)=
ek̄q1u1+kq.

The consequence of this result is that specifing f (x) for the rationals and a single
irrational point u1 immediately specifies it for another dense countable set C1 = {q1u1+
q |q1,q ∈Q, q1 6= 0}, where C1 is purely irrational (disjoint from Q).

Similarly, if we now pick a second irrational point u2 ∈ R−Q−C1 and define
f (u2) = ek̄u2 , we must define f (q1u1+q2u2+q) = ek̄(q1u1+q2u2)+kq for all q1,q2,q∈Q.

6 A simplistic, incomplete construction
Now, let us give a simplistic, incomplete construction of a discontinuous f (x) satisfy-
ing f (x+ y) = f (x) · f (y). Although this construction turns out to be unworkable, it
illustrates the essential ideas that we will employ in a more complete form below. The
construction is as follows:

1. Start by defining f (q) = ekq for some k ∈ R and for all q ∈Q.

2. Then, define f (qu1 +q′) = ek̄q1u1+kq for some irrational u1 ∈ R−Q, real k̄ 6= k,
and for all q1,q ∈Q, extending our definition to a set S1 = {q1u1 +q |q1,q ∈Q}
(with Q⊂ S1).

3. Pick another irrational u2 ∈R−S1, and define f (q1u1+q2u2+q)= ek̄(q1u1+q2u2)+kq

for all q1,q2,q∈Q, extending our definition to a set S2 = {q1u1+q2u2+q |q1,q2,q∈
Q} (with Q⊂ S1 ⊂ S2).

4. Pick another irrational u3 ∈ R−S2 with f (u3) = ek̄u3 , and so on ad infinitum.

In this way, we gradually cover more and more of R with our discontinuous f (x) def-
inition, all the while preserving the property that f (x+ y) = f (x) · f (y) for all of the
points where f (x) is defined.

The problem with this approach, of course, is that we will never cover all of R in
this way. We are defining f (x) over a countable sequence of countable sets, but the
union of such a sequence is only countable and thus has measure zero in R (despite
being dense). To actually cover all of R by this sort of approach, we must generalize
our process to one of transfinite induction over an uncountable set. In particular, the
uncountable set in question turns out to be a set of equivalence classes on R.
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7 Equivalence classes
The key to defining f (x) seems to be the following equivalence relation on R:

x∼ y⇐⇒ x = qy+q′ for some q,q′ ∈Q, q 6= 0.

It is easy to show that this relation satisfies the usual properties (x∼ x, x∼ y⇒ y∼ x,
and x∼ y,y∼ z⇒ x∼ z), and therefore partitions R into a set C of disjoint equivalence
classes C. For each equivalence class C we can pick a single element u(C) ∈ C, and
all other elements of that class are then given by u(C)q+q′ for q,q′ ∈Q, q 6= 0. Thus
every C is countable, and therefore C must be uncountable. One special equivalence
class C =Q is given by u(Q) = 0.

The significance of these equivalence classes, as explained above, is that once we
define f (q) = ekq for q ∈ Q then the value of f (x) for all x ∈ C is determined by
picking f [u(C)] for a single u(C) ∈C. Suppose we define f [u(C)] = ek̄·u(C) for some
k̄ ∈ R and k̄ 6= k. (As notational shorthand, we will denote u(Cn) by un.) Then for any
xn = qnun +q′n ∈Cn we must have f (xn) = ek̄qnun+kq′n .

However, we cannot pick u(C) for the different equivalent classes independently,
because of what happens when we add numbers from two equivalence classes. First,
realize:

• Given x1 ∈ C1 and x2 ∈ C2 for C1 6= C2 and C1,2 6= Q, it follows that x1 + x2 =
x3 ∈ C3 for C3 6= C1,2, C3 6= Q. Proof: If C3 = C1 then x3 ∼ x1 and thus x2 =
(q−1)x1 +q′: if q = 1 then x2 ∼ q′ and C2 =Q, while if q 6= 1 then x2 ∼ x1 and
C1 =C2. Thus, C3 6=C1,2. If C3 =Q then x1 =−x2 +q and x1 ∼ x2 (C1 =C2).

We thus have x1+x2 =(q1u1+q′1)+(q2u2+q′2)= x3 = q3u3+q′3 for some q1,2,3,q′1,2,3 ∈
Q, q1,2,3 6= 0, and u1 6= u2 6= u3. We must have f (x1 + x2) = ek̄(q1u1+q2u2)+k(q′1+q′2) =

f (x3) = ek̄q3u3+kq′3 . This is only true, however, if q′1 +q′2 = q′3, which implies

q1u1 +q2u2 = q3u3

for some q3 ∈ Q. That means we cannot pick the u(C)’s independently: they must be
defined inductively to satisfy this algebraic relation for some q3.

Before we do so, we should first check whether we have run into something ob-
viously impossible. Can we have x3 = q1u1 + q2u2 = q3u3 ∼ x̄3 = q̄1u1 + q̄2u2 =
q̄3u3+ q̄′3 for some q1,2,3, q̄1,2,3, q̄′3 ∈Q and q̄′3 6= 0? No. Proof: x̄3− q̄3

q3
x3 = q̄′3, but this

means qu1 +q′u2 = q̄′3 for rational q = q̄1− q̄3
q3

q1 and q′ = q̄2− q̄3
q3

q2. If q 6= 0 or q′ 6= 0
then u1 ∼ u2, contradicting our assumption that C1 6=C2. If q = q′ = 0 then q̄′3 = 0 and
all is well.

8 Transfinite induction
We will proceed to define our u(C) by transfinite induction on C . First, we must well-
order C , by invoking the well-ordering theorem on C −{Q} to choose some well-
order relation “<” on equivalence classes, and then put Q first by defining Q < C for

4



any C 6= Q. (Recall that a well-ordering is one such that every non-empty set has a
least element. Since C is uncountable, the well-ordering theorem requires the axiom
of choice.) Then, we will construct u(C) to satisfy the following property by induction:

• Let C0 = {C |Q < C < C0} for some C0 ∈ C . For all finite series x = ∑n qnun
with distinct un = u(Cn), Cn ∈ C0, and some qn ∈Q, then whenever x ∈C ∈ C0
we require x = q ·u(C) for some q ∈Q.

That is, we assume that the above property is true for all C < C0, and then choose
u0 = u(C0) so that it still holds when we include C0 (i.e. for C1 = C0 ∪ {C0}). In
particular, there are two cases: (i) If ∑n qnun /∈C0 for any qn or un with Cn ∈ C0, then
we choose u0 to be any arbitrary element of C0. (ii) Otherwise, we pick u0 = ∑n qnun
for any arbitrary series ∑n qnun ∈ C0. Then the desired property above follows: If
we have a ∑n q′nu′n = qu0 + q′ ∈ C0 (n 6= 0), then by substituting u0 and moving it to
the left we obtain a sum of the form ∑n q′′nu′′n = q′, which is only possible if q′ = 0
(if any q′′n 6= 0, then we will obtain un ∼ um for some m 6= n, or otherwise un ∈ Q),
similar to the proof at the end of the previous section. On the other hand, if we have
x = q0u0+∑n q′nu′n ∈C ∈C0, then x = ∑n q′′nu′′n and thus x = q ·u(C) by induction. Note
that if q0 6= 0 then x∈C implies that ∑n q′nu′n−qu(C)∈C0, so we are in case (ii) above.

The base case, for C0 the empty set, is trivial. We define u(Q) = 0.

9 A discontinuous f (x)

Now that we have defined u(C) as above, defining the discontinuous f (x) is easy. Every
x ∈ R is a member of some equivalence class C, and thus x = qu(C) + q′ for some
q,q′ ∈ Q, q 6= 0. Then, f (x) = ek̄qu(C)+kq for some fixed real numbers k̄ 6= k. This is
discontinuous since f (q) = ekq but f (x) 6= ekx for irrational x.

Let us review why this satisfies f (x1 +x2) = f (x1) · f (x2) for any x1,x2 ∈R, where
x1 = q1u1 + q′1 and x2 = q2u2 + q′2 with u1 = u(C1) and u2 = u(C2) for x1 ∈ C1 and
x2 ∈ C2. If C1 = C2 or C2 = Q, then f (x1 + x2) = ek̄(q1u1+q2u2)+k(q′1+q′2) as desired.
Otherwise, x1 + x2 ∈ C3 6= C1,2, and also q1u1 + q2u2 ∈ C3. By our construction of
u(C), however, u3 = u(C3) must then satisfy the property q1u1 +q2u2 = q3u3 for some
q3 ∈ Q. Therefore, x1 + x2 = q3u3 + (q′1 + q′2) and f (x1 + x2) = ek̄q3u3+k(q′1+q′2) =

ek̄(q1u1+q2u2)+k(q′1+q′2) = f (x1) · f (x2).
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