18.440 Practice Midterm Two: 50 minutes, 100 points Carefully and clearly show your work on each problem (without writing anything that is technically not true) and put a box around each of your final computations.

1. (20 points) Let X and Y be independent Poisson random variables with parameter 1. Compute the following. (Give a correct formula involving sums - does not need to be in closed form.)
(a) The probability mass function for X given that $X+Y=5$.
(b) The conditional expectation of Y^{2} given that $X=2 Y$.
(c) The probability mass function for $X-2 Y$ given that $X>2 Y$.
(d) The probability that $X=Y$.
2. (15 points) Solve the following:
(a) Let X be a normal random variable with parameters $\left(\mu, \sigma^{2}\right)$ and Y an exponential random variable with parameter λ. Write down the probability density function for $X+Y$.
(b) Compute the moment generating function and characteristic function for the uniform random variable on $[0,5]$.
(c) Let X_{1}, \ldots, X_{n} be independent exponential random variables of parameter λ. Let Y be the second largest of the X_{i}. Compute the mean and variance of Y.
3. (10 points)
(a) Suppose that the pair (X, Y) is uniformly distributed on the disc $x^{2}+y^{2} \leq 1$. Find f_{X}, f_{Y}.
(b) Find also $f_{X^{2}+Y^{2}}$ and $f_{\max (x, y)}$.
(c) Find the conditional probability density for X given $Y=y$ for $y \in[-1,1]$.
(d) Compute $\mathbb{E}\left[X^{2}+Y^{2}\right]$.
4. (10 points) Suppose that X_{i} are independent random variables which take the values 2 and .5 each with probability $1 / 2$. Let $X=\prod_{i=1}^{n} X_{i}$.
(a) Compute $\mathbb{E} X$.
(b) Estimate the $P\{X>1000\}$ if $n=100$.
5. (20 points) Suppose X is an exponential random variable with parameter $\lambda_{1}=1, Y$ is an exponential random variable with $\lambda_{2}=2$, and Z is an exponential random variable with parameter $\lambda_{3}=3$. Assume X and Y and Z are independent and compute the following:
(a) The probability density function f_{X+Y}
(b) $\operatorname{Cov}(X Y, X+Y)$
(c) $\mathbb{E}[\max \{X, Y, Z\}]$
(d) $\operatorname{Var}[\min \{X, Y, Z\}]$
(e) The correlation coefficient $\rho(\min \{X, Y, Z\}, \max \{X, Y, Z\})$.
6. (10 points) Suppose X_{1}, \ldots, X_{10} be independent standard normal random variables. For each $i \in\{2,3, \ldots, 9\}$ we say that i is a local maximum if $X_{i}>X_{i+1}$ and $X_{i}>X_{i-1}$. Let N be the number of local maxima. Compute
(a) The expectation of N.
(b) The variance of N.
(c) The correlation coefficient $\rho\left(N, X_{1}\right)$.
7. (15 points) Give the name and an explicit formula for the density or mass function of $\sum_{i=1}^{n} X_{i}$ when the X_{i} are
(a) Independent normal with parameter μ, σ^{2}.
(b) Independent exponential with parameter λ.
(c) Independent geometric with parameter p.
(d) Independent Poisson with parameter λ
(e) Independent Bernoulli with parameter p.
