18.440 Midterm 2 Solutions, Fall 2009

1.

(a) $P\{X<a\}=a^{2}$ for $a \in(0,1)$ and thus $F_{X}(a)=a^{2}$. Differentiating gives

$$
f_{X}(a)= \begin{cases}2 a & a \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

(b) $\mathbb{E}[X]=\int_{0}^{1} f_{X}(x) x d x=\int_{0}^{1} 2 x^{2} d x=2 / 3$.
(c) The pair (X, Y) is uniformly distributed on the triangle $\{(x, y): x \in[0,1], y \in[0,1], x>y\}$. Thus, conditioned on X, Y is uniform on $[0, X]$, so $\mathbb{E}[Y \mid X]=X / 2$.
(d) $\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]=\mathbb{E}\left[A_{1} A_{2}\right]-\mathbb{E}[X](\mathbb{E}[1-X])=$ $1 / 4-2 / 9=1 / 36$.
2.
(a) As derived in lecture and on problem sets, the collection of two Poisson processes (the earthquake and the flood processes) may be constructed equivalently by first taking a Poisson point process of rate $2+3=5$ and then independently declaring each point in the process to be an earthquake with probability $3 / 5$ (and a flood otherwise). Thus, the number N of earthquakes before the first flood satisfies $P\{N=k\}=(3 / 5)^{k}(2 / 5)$.
(b) One may recall that the sum of independent rate one exponentials is a gamma distribution with $\alpha=2$ and $\lambda=1$: the density is thus

$$
f(t)= \begin{cases}e^{-\lambda t} t^{\alpha-1} \lambda^{\alpha} / \Gamma[\alpha]=e^{-t} t & t \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

This can also be derived directly by letting X and Y denote the two exponential random variables and writing

$$
f_{X+Y}(t)=\int_{x=0}^{t} f_{X}(x) f_{Y}(t-x) d x=\int_{x=0}^{t} e^{-x} e^{-(t-x)} d x=t e^{-t}
$$

(c)

$$
\begin{aligned}
& \operatorname{Cov}(\min \{E, F, M\}, M)=\operatorname{Cov}(\min \{E, F, M\}, \min \{E, F, M\}) \\
&+ \operatorname{Cov}(\min \{E, F, M\}, M-\min \{E, F, M\})
\end{aligned}
$$

The memoryless property of exponentials implies that $\min \{E, F, M\}$ and $M-\min \{E, F, M\}$ are independent, so this becomes $\operatorname{Var}(\min \{E, F, M\})$. This is the variance of an exponential of rate 6 , which is $1 / 36$.
3.
(a) $\mathbb{E}\left[X^{2} Y^{2}\right]-\mathbb{E}[X Y]^{2}=\mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right]-\mathbb{E}[X]^{2} \mathbb{E}[Y]^{2}=\mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right]=\frac{1}{3}$.
(b) $\mathbb{E}\left[e^{t X} e^{t Y}\right]=\mathbb{E}\left[e^{t X}\right] \mathbb{E}\left[e^{t Y}\right]=e^{t^{2} / 2} \frac{e^{t}-1}{t}$.
4.
(a) $\operatorname{Cov}(X, Y)=\operatorname{Cov}\left(\sum_{i=1}^{60} X_{i}, \sum_{j=41}^{100} X_{j}\right)=\sum_{i=41}^{60} \operatorname{Cov}\left(X_{i}, X_{i}\right)=20$. Since $\operatorname{Var}(X)=\operatorname{Var}(Y)=60$, we have $\rho(X, Y)=20 / \sqrt{60 \cdot 60}=1 / 3$.
(b) Let $Z=\sum_{i=61}^{100} X_{i}$. Then X and Z are independent with joint density $f(a, b)=\frac{1}{\sqrt{2 \pi} \sqrt{60}} e^{-a^{2} / 120} \frac{1}{\sqrt{2 \pi} \sqrt{40}} e^{-b^{2} / 80}$. Conditioning on $X+Z=x$ restricts us to the line $a+b=x$, so the conditional density for X will be (for some constant C)

$$
f(a)=C f(a, x-a)=C e^{-a^{2} / 120} e^{-(x-a)^{2} / 80},
$$

where C is chosen so that $\int_{-\infty}^{\infty} f(a) d a=1$.
5.
(a) If X_{i} is the multiplicative factor during the i th year, then $\mathbb{E}\left[X_{i}\right]=2 \cdot .4+.5 \cdot .6=1.1$ and $\mathbb{E} \prod X_{i}=1.1^{100} \sim 13780.6$.
(b) We need to get at least 50 "up" steps. Mean number is 40 , variance is $100(.6 \cdot .4)=24$. So, very roughly, the chance is $1-\Phi(10 / \sqrt{24}) \sim .96$. Despite high expectation, investment usually loses money.

