18.440 Final Exam: 100 points

Carefully and clearly show your work on each problem (without writing anything that is technically not true) and put a box around each of your final computations.

1. (10 points) Let X be the number on a standard die roll (i.e., each of $\{1,2,3,4,5,6\}$ is equally likely) and Y the number on an independent standard die roll. Write $Z=X+Y$.
2. Compute the condition probability $P[X=4 \mid Z=6]$. ANSWER: $1 / 5$
3. Compute the conditional expectation $E[Z \mid Y]$ as a function of Y. ANSWER: $Y+7 / 2$.
4. (10 points) Janet is standing outside at time zero when it starts to drizzle. The times at which raindrops hit her are a Poisson point process with parameter $\lambda=2$. In expectation, she is hit by 2 raindrops in each given second.
(a) What is the expected amount of time until she is first hit by a raindrop? ANSWER: $1 / 2$ second
(b) What is the probability that she is hit by exactly 4 raindrops during the first 2 seconds of time? ANSWER: $e^{-2 \lambda}(2 \lambda)^{k} / k!=e^{-4} 4^{4} / 4!$.
5. (10 points) Let X be a random variable with density function f, cumulative distribution function F, variance V and mean M.
(a) Compute the mean and variance of $3 X+3$ in terms of V and M. ANSWER: Mean $3 M+3$, variance $9 V$.
(b) If X_{1}, \ldots, X_{n} are independent copies of X. Compute (in terms of F) the cumulative distribution function for the largest of the X_{i}.
ANSWER: $F(a)^{n}$. This is the probability that all n values are less than a.
6. (10 points) Suppose that X_{i} are i.i.d. random variables, each uniform on $[0,1]$. Compute the moment generating function for the sum $\sum_{i=1}^{n} X_{i}$.
ANSWER: $M_{X_{1}}(a)=E^{a X_{1}}=\int_{0}^{1} e^{a x} d x=\left(e^{a}-1\right) / a$. Moment generating function for sum is $\left(e^{a}-1\right)^{n} / a^{n}$.
7. (10 points) Suppose that X and Y are outcomes of independent standard die rolls (each equal to $\{1,2,3,4,5,6\}$ with equal probability). Write $Z=X+Y$.
(a) Compute the entropies $H(X)$ and $H(Y)$. ANSWER: $\log 6$ and $\log 6$
(b) Compute $H(X, Z)$. ANSWER: $\log 36=2 \log 6$.
(c) Compute $H(10 X+Y)$. ANSWER: $\log 36=2 \log 6$ (since 36 sums all distinct).
(d) Compute $H(Z)+H_{Z}(Y)$. (Hint: you shouldn't need to do any more calculations.) ANSWER: $\log 36$
8. (10 points) Elaine's not-so-trusty old car has three states: broken (in Elaine's possession), working (in Elaine's possession), and in the shop. Denote these states B, W, and S.
(i) Each morning the car starts out B, it has a .5 chance of staying B and a .5 chance of switching to S by the next morning.
(ii) Each morning the car starts out W, it has . 5 chance of staying W, and a .5 chance of switching to B by the next morning.
(iii) Each morning the car starts out S, it has a .5 chance of staying S and a .5 chance of switching to W by the next morning.

Answer the following
(a) Write the three-by-three Markov transition matrix for this problem.

ANSWER: Markov chain matrix is

$$
M=\left(\begin{array}{ccc}
.5 & 0 & .5 \\
.5 & .5 & 0 \\
0 & .5 & .5
\end{array}\right)
$$

(b) If the car starts out B on one morning, what is the probability that it will start out B two days later? ANSWER: $1 / 4$
(c) Over the long term, what fraction of mornings does the car start out in each of the three states, B, S, and W ? ANSWER: Row vector π such that $\pi M=\pi$ (with components of π summing to one) is $\left(\begin{array}{lll}\frac{1}{3} & \frac{1}{3} & \frac{1}{3}\end{array}\right)$.
7. Suppose that $X_{1}, X_{2}, X_{3}, \ldots$ is an infinite sequence of independent random variables which are each equal to 2 with probability $1 / 3$ and .5 with probability $2 / 3$. Let $Y_{0}=1$ and $Y_{n}=\prod_{i=1}^{n} X_{i}$ for $n \geq 1$.
(a) What is the the probability that Y_{n} reaches 8 before the first time that it reaches $\frac{1}{8}$? ANSWER: sequences is martingale, so $1=E Y_{T}=8 p+(1 / 8)(1-p)$. Solving gives $1-8 p=(1-p) / 8$, so $8-64 p=1-p$ and $63 p=7$. Answer is $p=1 / 9$.
(b) Find the mean and variance of $\log Y_{10000}$. ANSWER: Compute for $\log Y_{1}$, multiply by 10000 .
(c) Use the central limit theorem to approximate the probability that $\log Y_{10000}$ (and hence Y_{10000}) is greater than its median value.
ANSWER: About . 5 .
8. (10 points) Eight people toss their hats into a bin and the hats are redistributed, with all of the 8 ! hat permutations being equally likely. Let N be the number of people who get their own hat. Compute the following:
(a) $\mathbb{E}[N]$ ANSWER: 1
(b) $\operatorname{Var}[N]$ ANSWER: 1
9. (10 points) Let X be a normal random variable with mean μ and variance σ^{2}.
(a) $\mathbb{E} e^{X}$. ANSWER: $e^{\mu+\sigma^{2} / 2}$.
(b) Find μ, assuming that $\sigma^{2}=3$ and $E\left[e^{X}\right]=1$. ANSWER: $\mu+\sigma^{2} / 2=0$ so $\mu=-3 / 2$.
10. (10 points)

1. Let X_{1}, X_{2}, \ldots be independent random variables, each equal to 1 with probability $1 / 2$ and -1 with probability $1 / 2$. In which of the cases below is the sequence Y_{n} a martingale? (Just circle the corresponding letters.)
(a) $Y_{n}=X_{n} \mathrm{NO}$
(b) $Y_{n}=1+X_{n} \mathbf{N O}$
(c) $Y_{n}=7 \mathbf{Y E S}$
(d) $Y_{n}=\sum_{i=1}^{n} i X_{i}$ YES
(e) $Y_{n}=\prod_{i=1}^{n}\left(1+X_{i}\right) \mathbf{Y E S}$
2. Let $Y_{n}=\sum_{i=1}^{n} X_{i}$. Which of the following is necessarily a stopping time for Y_{n} ?
(a) The smallest n for which $\left|Y_{n}\right|=5$. YES
(b) The largest n for which $Y_{n}=12$ and $n<100$. NO
(c) The smallest value n for which $n>100$ and $Y_{n}=12$. YES
