Fall 2012 18.440 Final Exam: 100 points
Carefully and clearly show your work on each problem (without writing anything that is technically not true) and put a box around each of your final computations.

1. (10 points) Lisa's truck has three states: broken (in Lisa's possession), working (in Lisa's possession), and in the shop. Denote these states B, W, and S .
(i) Each morning the truck starts out B , it has a $1 / 2$ chance of staying B and a $1 / 2$ chance of switching to S by the next morning.
(ii) Each morning the truck starts out W, it has $9 / 10$ chance of staying W, and a $1 / 10$ chance of switching to B by the next morning.
(iii) Each morning the truck starts out S, it has a $1 / 2$ chance of staying S and a $1 / 2$ chance of switching to W by the next morning.

Answer the following
(a) Write the three-by-three Markov transition matrix for this problem.

ANSWER: Ordering the states B, W, S, we may write the Markov chain matrix as

$$
M=\left(\begin{array}{ccc}
.5 & 0 & .5 \\
.1 & .9 & 0 \\
0 & .5 & .5
\end{array}\right)
$$

(b) If the truck starts out W on one morning, what is the probability that it will start out B two days later? ANSWER: $(9 / 10)(1 / 10)+(1 / 10)(1 / 2)=.09+.05=.14$
(c) Over the long term, what fraction of mornings does the truck start out in each of the three states, B, S, and W ? ANSWER: We find the stationarity probability vector $\pi=\left(\pi_{B}, \pi_{W}, \pi_{S}\right)=(1 / 7,5 / 7,1 / 7)$ by solving $\pi M=\pi$ (with components of π summing to 1).
2. (10 points) Suppose that $X_{1}, X_{2}, X_{3}, \ldots$ is an infinite sequence of independent random variables which are each equal to 1 with probability $1 / 2$ and -1 with probability $1 / 2$. Write $Y_{n}=\sum_{i=1}^{n} X_{i}$. Answer the following:
(a) What is the probability that Y_{n} reaches 10 before the first time that
it reaches -30 ? ANSWER: Probability p satisfies
$10 p+(-30)(1-p)=0$, so $40 p=30$ and $p=3 / 4$.
(b) In which of the cases below is the sequence Z_{n} a martingale? (Just circle the corresponding letters.)
(i) $Z_{n}=X_{n}+Y_{n}$ ANSWER: NO
(ii) $Z_{n}=\prod_{i=1}^{n}\left(2 X_{i}+1\right)$ ANSWER: YES
(iii) $Z_{n}=\prod_{i=1}^{n}\left(-X_{i}+1\right)$ ANSWER: YES
(iv) $Z_{n}=\sum_{i=1}^{n} Y_{i}$ ANSWER: NO
(v) $Z_{n}=\sum_{i=2}^{n} X_{i} X_{i-1}$ ANSWER: YES
3. (10 points) Ten people throw their hats into a box and then randomly redistribute the hats among themselves (each person getting one hat, all 10 ! permutations equally likely). Let N be the number of people who get their own hats back. Compute the following:
(a) $E\left[N^{2}\right]$ ANSWER: Let N_{i} be 1 if i th person gets own hat, zero otherwise. Then
$E\left[\left(\sum N_{i}\right)^{2}\right]=\sum_{i=1}^{10} \sum_{j=1}^{10} E\left[N_{i} N_{j}\right]=90(1 / 90)+10(1 / 10)=2$.
(b) $P(N=8)$ ANSWER: There are $\binom{10}{2}$ ways to pick a pair of people to have swapped hats. So answer is $\binom{10}{2} / 10$!.
4. (10 points) When Harry's cell phone is on, the times when he receives new text messages form a Poisson process with parameter $\lambda_{T}=3 /$ minute. The times at which he receives new email messages form an independent Poisson process with parameter $\lambda_{E}=1 /$ minute. He receives personal messages on Facebook as an independent Poisson process with rate $\lambda_{F}=2 /$ minute.
(a) After catching up on existing messages one morning, Harry begins to wait for new messages to arrive. Let X be the amount of time (in minutes) that Harry has to wait to receive his first text message. Write down the probability density function for X. ANSWER: time is exponential with parameter $\lambda_{T}=3$, so density function is $f(x)=3 e^{-3 x}$ for $x \geq 0$.
(b) Compute the probability that Harry receives 10 new messages total (including email, text, and Facebook) during his first two minutes of waiting. ANSWER: Number total in two minutes is Poisson with rate $\lambda=2\left(\lambda_{E}+\lambda_{T}+\lambda_{F}\right)=12$. So answer is $\lambda^{k} e^{-\lambda} / k!=12^{10} e^{-12} / 10!$.
(c) Let Y be the amount of time elapsed before the third email message. Compute $\operatorname{Var}(Y)$. ANSWER: Variance of time till email message is $1 / \lambda_{E}^{2}=1$. Memoryless property and additivity of variance of independent sums gives $\operatorname{Var}(S)=3$.
(d) What is the probability that Harry receives no messages of any kind during his first five minutes of waiting? ANSWER: Time till first message is exponential with parameter 6. Probability this time exceeds 5 is e^{-30}.
5. (10 points) Suppose that X and Y have a joint density function f given by

$$
f(x, y)= \begin{cases}1 / \pi & x^{2}+y^{2}<1 \\ 0 & x^{2}+y^{2} \geq 1\end{cases}
$$

(a) Compute the probability density function f_{X} for X. ANSWER:

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y= \begin{cases}\frac{1}{\pi} 2 \sqrt{1-x^{2}} & -1 \leq x \leq-1 \\ 0 & \text { otherwise }\end{cases}
$$

(b) Express $E[\sin (X Y)]$ as a double integral. (You don't have to explicitly evaluate the integral.) ANSWER:

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{1}{\pi} \sin (x y) d y d x
$$

6. (10 points) Let X be the number on a standard die roll (i.e., each of $\{1,2,3,4,5,6\}$ is equally likely) and Y the number on an independent standard die roll. Write $Z=X+Y$.
(a) Compute the conditional probability $P[X=6 \mid Z=8]$. ANSWER: $1 / 5$
(b) Compute the conditional expectation $E[Y \mid Z]$ as a function of Z (for $Z \in\{2,3,4, \ldots, 12\})$. ANSWER:
$Z=E[Z \mid Z]=E[X+Y \mid Z]=E[X \mid Z]+E[Y \mid Z]$. By symmetry, $E[X \mid Z]=E[Y \mid Z]=Z / 2$.
7. (10 points) Suppose that X_{i} are i.i.d. random variables, each of which assumes a value in $\{-1,0,1\}$, each with probability $1 / 3$.
(a) Compute the moment generating function for X_{1}. ANSWER: $E e^{t X_{1}}=\left(e^{-t}+1+e^{t}\right) / 3$.
(b) Compute the moment generating function for the sum $\sum_{i=1}^{n} X_{i}$.

ANSWER: $\left(e^{-t}+1+e^{t}\right)^{n} / 3^{n}$
8. (10 points) Let X and Y be independent random variables. Suppose X takes values in $\{1,2\}$ each with probability $1 / 2$ and Y takes values in $\{1,2,3,4\}$ each with probability $1 / 4$. Write $Z=X+Y$.
(a) Compute the entropies $H(X)$ and $H(Y)$. ANSWER: $\log 2=1$ and $\log 4=2$.
(b) Compute $H(X, Z)$. ANSWER: $\log 2+\log 4=\log 8=3$.
(c) Compute $H(X+Y)$. ANSWER:

$$
\sum_{i=1}^{6} P(X+Y=i)(-\log P(X+Y=i))=2 \cdot \frac{1}{8} \log 8+3 \cdot \frac{1}{4} \log 4=6 / 8+6 / 4=9 / 4
$$

9. (10 points) Let X be a normal random variable with mean 0 and variance 1 .
(a) Compute $\mathbb{E}\left[e^{X}\right]$. ANSWER:

$$
\begin{gathered}
E\left(e^{X}\right)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} e^{x} d x=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\left(x^{2}-2 x+1\right) / 2+1 / 2} d x= \\
e^{1 / 2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-(x-1)^{2} / 2} d x=e^{1 / 2} .
\end{gathered}
$$

(b) Compute $\mathbb{E}\left[e^{X} 1_{X>0}\right]$. ANSWER:

$$
\begin{aligned}
E\left(e^{X} 1_{X>0}\right) & =\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} e^{x} d x \\
& =\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\left(x^{2}-2 x+1\right) / 2+1 / 2} d x \\
& =e^{1 / 2} \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-(x-1)^{2} / 2} d x \\
& =e^{1 / 2} \int_{-1}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x=e^{1 / 2}(1-\Phi(-1))=e^{1 / 2} \Phi(1),
\end{aligned}
$$

where $\Phi(a)=\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$.
(c) Compute $\mathbb{E}\left[X^{2}+2 X-5\right]$. ANSWER:
$E\left[X^{2}\right]+2 E[X]-5=1+0-5=-4$.
10. (10 points) Let X be uniformly distributed random variable on $[0,1]$.
(a) Compute the variance of X. ANSWER: $E\left[X^{2}\right]=\int_{0}^{1} x^{2} d x=1 / 3$ and $E[X]=1 / 2$ so $\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}=1 / 12$.
(b) Compute the variance of $3 X+5$. ANSWER: $9 \operatorname{Var}[X]=3 / 4$.
(c) If X_{1}, \ldots, X_{n} are independent copies of X, and $Z=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$, then what is the cumulative distribution function F_{Z} ? ANSWER:
$F_{Z}(a)=P\{Z \leq a\}=\prod_{i=1}^{n} P\left\{X_{i} \leq a\right\}=F_{X_{1}}(a)^{n}= \begin{cases}0 & a<0 \\ a^{n} & a \in[0,1] \\ 1 & a>1\end{cases}$

