18.440 Midterm 2, Spring 2014: 50 minutes, 100 points

1. (20 points) Consider a sequence of independent tosses of a coin that is biased so that it comes up heads with probability $3 / 4$ and tails with probability $1 / 4$. Let X_{i} be 1 if the i th toss comes up heads and 0 otherwise.
(a) Compute $E\left[X_{1}\right]$ and $\operatorname{Var}\left[X_{1}\right]$. ANSWER: $E\left[X_{1}\right]=3 / 4$ and $E\left[X_{1}^{2}\right]=3 / 4$ so

$$
\operatorname{Var}\left[X_{1}\right]=E\left[X^{2}\right]-E[X]^{2}=(3 / 4)-(3 / 4)^{2}=(3 / 4)(1 / 4)=3 / 16
$$

(b) Compute $\operatorname{Var}\left[X_{1}+2 X_{2}+3 X_{3}+4 X_{4}\right]$. ANSWER: Using previous problem, additivity of variance for independent random variables, and general fact that $\operatorname{Var}[a Y]=a^{2} \operatorname{Var}[Y]$, we find that
$\operatorname{Var}\left[X_{1}+2 X_{2}+3 X_{3}+4 X_{4}\right]=(3 / 16)(1+4+9+16)=90 / 16=45 / 8$.
(c) Let Y be the number of heads in the first 4800 tosses of the biased coin, i.e.,

$$
Y=\sum_{i=1}^{4800} X_{i} .
$$

Use a normal random variable to approximate the probability that $Y \geq 3690$. You may use the function $\Phi(a)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{a} e^{-x^{2} / 2} d x$ in your answer. ANSWER: Y has expectation $4800 E\left[X_{1}\right]=3600$. It has variance $4800 \operatorname{Var}\left[X_{1}\right]=900$ and standard deviation 30 . We are are looking for the probability that Y is more than three standard deviations above its mean. This is approximately the probability that standard normal random variable is three standard deviations above its mean, which is $1-\Phi(3)$.
2. (10 points) Suppose that a fair six-sided die is rolled just once. Let $X \in\{1,2,3,4,5,6\}$ be the number that comes up. Let Y be 1 if the number on the die is in $\{1,2,3\}$ and 0 otherwise.
(a) What is the conditional expectation of X given that $Y=0$?

ANSWER: Given that Y is zero, X is conditionally uniform on $\{4,5,6\}$, so the conditional expectation is 5 .
(b) What is the conditional variance of Y given that $X=2$?

ANSWER: Given that X is 2 , the conditional probability that $Y=1$ is one, so the conditional variance is 0 .
3. (20 points) Let X be a uniform random variable on the set $\{-2,-1,0,1,2\}$. That is, X takes each of these values with probability $1 / 5$. Let Y be an independent random variable with the same law as X, and write $Z=X+Y$.
(a) What is the moment generating function $M_{X}(t)$? ANSWER:
$M_{X}(t)=E\left[e^{t X}\right]=\frac{1}{5}\left(e^{-2 t}+e^{-t}+e^{0}+e^{t}+e^{2 t}\right)$.
(b) What is the moment generating function $M_{Z}(t)$? ANSWER:

$$
M_{Z}(t)=M_{X}(t) M_{Y}(t)=\left[\frac{1}{5}\left(e^{-2 t}+e^{-t}+e^{0}+e^{t}+e^{2 t}\right)\right]^{2}
$$

4. (20 points) Two soccer teams, the Lions and the Tigers, begin an infinite soccer games starting at time zero. Suppose that the times at which the Lions score a goal form a Poisson point process with rate $\lambda_{L}=2 /$ hour. Suppose that the times at which the Tigers score a goal form a Poisson point process with rate $\lambda_{T}=3 /$ hour.
(a) Write down the probability density function for the amount of time until the first goal by the Lions. ANSWER: This is an exponential random variable with parameter λ_{L}. So the density function on $[0, \infty)$ is $f(x)=\lambda_{L} e^{-\Lambda_{L} x}=2 e^{-2 x}$.
(c) Write down the probability density function for the amount of time until the first goal by either team is scored. ANSWER: Recall that the minimum of two exponential random variables with parameters λ_{L} and λ_{T} is an exponential random variable with parameter $\lambda_{L}+\Lambda_{T}=5$. So the density function on $[0, \infty)$ is $f(x)=5 e^{-5 x}$
(c) Compute the probability that the Tigers score no goals at all during the first two hours. ANSWER: The probability that an exponential random of parameter λ is at least a is given by $e^{-\lambda a}$. Plugging in $\lambda=3$ and $a=2$ we get e^{-6}.
(d) Compute the probability that the Lions score exactly three goals during the first hour. ANSWER: The number of goals scored by the Lions during the first hour is a Poisson random variable with parameter $\lambda=\lambda_{L}=2$. The probability that this is equal to a given k is given by $e^{-\lambda} \lambda^{k} / k!$. Plugging in $k=3$ and $\lambda=2$ we get

$$
e^{-2} 2^{3} / 3!=\frac{4}{3 e^{2}}
$$

5. (20 points) Let X and Y be independent uniform random variables on $[0,1]$. Write $Z=X+Y$. Write $W=\max \{X, Y\}$.
(a) Compute and draw a graph of the probability density function f_{Z}. ANSWER: This is given by

$$
f_{Z}(x)= \begin{cases}0 & x \leq 0 \\ x & 0<x \leq 1 \\ 2-x & 1<x \leq 2 \\ 0 & x \geq 2\end{cases}
$$

(b) Compute and draw a graph of the cumulative distribution function
F_{W}. ANSWER: $F_{W}(a)= \begin{cases}0 & a<0 \\ a^{2} & 0 \leq a \leq 1 \\ 1 & a>1\end{cases}$
(c) Compute the variances $\operatorname{Var}(X)$, $\operatorname{Var}(Y)$, and $\operatorname{Var}(Z)$. ANSWER: $\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=\int_{0}^{1} x^{2} d x-(1 / 2)^{2}=1 / 3-1 / 4=1 / 12$. Then $\operatorname{Var}(Y)=\operatorname{Var}(X)$ and $\operatorname{Var}(Z)=\operatorname{Var}(X)+\operatorname{Var}(Y)=2 / 12$.
(d) Compute the covariance $\operatorname{Cov}(Y, Z)$ and the correlation coefficient $\rho(Y, Z)$. ANSWER: Using the linearity of covariance in its second argument, we find $\operatorname{Cov}(Y, Z)=\operatorname{Cov}(Y, X)+\operatorname{Cov}(Y, Y)$. The first term is zero (since X and Y are independent) so this becomes $\operatorname{Var}(Y)=1 / 12$. The correlation coefficient is

$$
\frac{\operatorname{Cov}(Y, Z)}{\sqrt{\operatorname{Var}(Y) \operatorname{Var}(Z)}}=\frac{(1 / 12)}{\sqrt{(1 / 12)(2 / 12)}}=1 / \sqrt{2}
$$

6. (10 points) Let X and Y be independent exponential random variables, each with with parameter $\lambda=5$.
(a) Let f be the joint probability density function for the pair (X, Y). Write an explicit formula for f. ANSWER: Since X and Y are independent, $f(x, y)=f_{X}(x) f_{Y}(y)=5 e^{-5 x} \cdot 5 e^{-5 y}=25 e^{-5(x+y)}$.
(b) Compute $E\left[X^{2} Y\right]$. ANSWER: First, note that X^{2} and Y are independent, so this is $E\left[X^{2}\right] E[Y]$. Direct integration gives $E[Y]=1 / \lambda$ and $E\left[X^{2}\right]=2 / \lambda^{2}$, so the answer is $2 / \lambda^{3}=2 / 125$.
