18.440 Midterm 2, Fall 2012: 50 minutes, 100 points

1. (10 points) Suppose that a fair die is rolled 18000 times. Each roll turns up a uniformly random member of the set $\{1,2,3,4,5,6\}$ and the rolls are independent of each other. Let X be the total number of times the die comes up 1.
(a) Compute $\operatorname{Var}(X)$. ANSWER: $n p q=18000(5 / 6)(1 / 6)=2500$
(b) Use a normal random variable approximation to estimate the probability that $X<2900$. You may use the function $\Phi(a)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{a} e^{-x^{2} / 2} d x$ in your answer. ANSWER: Standard derivation is $\sqrt{2500}=50$. Probability X more than 2 standard deviations below mean is approximately $\Phi(-2)$.
2. (20 points) Let X_{1}, X_{2}, and X_{3} be independent uniform random variables on $[0,1]$. Write $Y=X_{1}+X_{2}$ and $Z=X_{2}+X_{3}$.
(a) Compute $E\left[X_{1} X_{2} X_{3}\right]$. ANSWER: Independence implies $E\left[X_{1} X_{2} X_{3}\right]=E\left[X_{1}\right] E\left[X_{2}\right] E\left[X_{3}\right]=(1 / 2)^{3}=1 / 8$.
(b) Compute $\operatorname{Var}\left(X_{1}\right)$. ANSWER: $E\left(X_{1}^{2}\right)=\int_{0}^{1} x^{2} d x=1 / 3$, so $\operatorname{Var}\left(X_{1}\right)=E\left(X_{1}^{2}\right)-E\left(X_{1}\right)^{2}=1 / 3-1 / 4=1 / 12$.
(c) Compute the covariance $\operatorname{Cov}(Y, Z)$ and the correlation coefficient $\rho(Y, Z)$. ANSWER: By bilinearity of covariance,

$$
\begin{gathered}
\operatorname{Cov}(Y, Z)=\operatorname{Cov}\left(X_{1}+X_{2}, X_{2}+X_{3}\right) \\
=\operatorname{Cov}\left(X_{1}, X_{2}\right)+\operatorname{Cov}\left(X_{1}, X_{3}\right)+\operatorname{Cov}\left(X_{2}, X_{2}\right)+\operatorname{Cov}\left(X_{2}, X_{3}\right)
\end{gathered}
$$

All terms are zero by independence except
$\operatorname{Cov}\left(X_{2}, X_{2}\right)=\operatorname{Var}\left(X_{2}\right)=1 / 12$. Then $\rho(Y, Z)=\frac{1 / 12}{\sqrt{(2 / 12)(2 / 12)}}=1 / 2$.
(d) Compute and draw a graph of the density function f_{Y}. ANSWER: $f_{Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{X}(y) d y$ where

$$
f_{X}(x)= \begin{cases}1 & x \in(0,1) \\ 0 & x \notin(0,1)\end{cases}
$$

Then

$$
f_{X}(a-y) f_{X}(y)= \begin{cases}1 & a-y \in(0,1), y \in(0,1) \\ 0 & \text { otherwise }\end{cases}
$$

Now $a-y \in(0,1)$ is equivalent to $-y \in(-a, 1-a)$ or equivalently $y \in(a-1, a)$. Thus $f_{Y}(a)$ is equal to the length of the intersection of the intervals $(0,1)$ and $(a-1, a)$. This becomes

$$
f_{Y}(a)= \begin{cases}0 & a<0 \\ a & 0 \leq a<1 \\ 2-a & 1 \leq a<2 \\ 0 a \geq 2 & \end{cases}
$$

3. (20 points) Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are independent uniform random variables on $[0,1]$.
(a) Write $Y=\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. Compute the cumulative distribution function $F_{Y}(a)$ and the density function $f_{Y}(a)$ for $a \in[0,1]$. ANSWER: By independence, $P\left(\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}>\right.$ $a)=P\left(X_{1}>a\right) P\left(X_{2}>a\right) \cdots P\left(X_{n}>a\right)=(1-a)^{n}$ So $F_{Y}(a)=1-(1-a)^{n}$, and $f_{Y}(a)=F_{Y}^{\prime}(a)=n(1-a)^{n-1}$
(b) Compute $P\left(X_{1}<.3\right)$ and $P\left(\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}\right)<.3$.

ANSWER: .3 and $.3^{n}$.
(c) Compute the expectation $E\left[X_{1}+X_{2}+\ldots+X_{n}\right]$. ANSWER: By additivity of expectation, this is $n E\left[X_{1}\right]=n / 2$.
4. (20 points) Aspiring writer Rachel decides to lock herself in her room to think of screenplay ideas. When Rachel is thinking, the moments at which good new ideas occur to her form a Poisson process with parameter $\lambda_{G}=.5 /$ hour. The times when bad new ideas occur to her are a Poisson point process with parameter $\lambda_{B}=1.5$ per hour.
(a) Let T be the amount of time until Rachel has her first idea (good or bad). Write down the probability density function for T.

ANSWER: T is exponential with parameter $\lambda=\lambda_{G}+\lambda_{B}=2$, so $f_{T}(x)=2 e^{-2 x}$.
(b) Compute the probability that Rachel has exactly 3 bad ideas total during her first hour of thinking. ANSWER: Number N of bad ideas is Poisson with rate $1 \cdot \lambda_{B}=1.5$. So $P(N=3)=\frac{(1.5)^{3} e^{-1.5}}{3!}$.
(c) Let S be the amount of time elapsed before the fifth good idea occurs. Compute $\operatorname{Var}(S)$. ANSWER: Variance of time till one good idea is $1 / \lambda_{G}^{2}$. Memoryless property and additivity of variance of independent sums gives $\operatorname{Var}(S)=5 / \lambda_{G}^{2}=20$.
(d) What is the probability that Rachel has no ideas at all during her first three hours of thinking? ANSWER: Time till first idea is exponential with $\lambda=2$. Probability this time exceeds 3 is $e^{-2 \cdot 3}=e^{-6}$.
5. (20 points) Suppose that X and Y have a joint density function f given by

$$
f(x, y)= \begin{cases}1 / \pi & x^{2}+y^{2}<1 \\ 0 & x^{2}+y^{2} \geq 1\end{cases}
$$

(a) Compute the probability density function f_{X} for X. ANSWER:

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y= \begin{cases}\frac{1}{\pi} 2 \sqrt{1-x^{2}} & -1 \leq x \leq-1 \\ 0 & \text { otherwise }\end{cases}
$$

(b) Compute the conditional expectation $E[X \mid Y=.5]$. ANSWER: Probability density for X given $Y=.5$ is uniform on $\left(-\sqrt{1-.5^{2}}, \sqrt{1-.5^{2}}\right)$. So $E[X \mid Y=.5]=0$.
(c) Express $E\left[X^{3} Y^{3}\right]$ as a double integral. (You don't have to explicitly evaluate the integral.) ANSWER:

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{1}{\pi} x^{3} y^{3} d y d x
$$

6. (10 points) Let X and Y be independent normal random variables, each with mean 1 and variance 9 .
(a) Let f be the joint probability density function for the pair (X, Y). Write an explicit formula for f. ANSWER:

$$
f(x, y)=\frac{1}{3 \sqrt{2 \pi}} e^{-(x-1)^{2} / 18} \frac{1}{3 \sqrt{2 \pi}} e^{-(y-1)^{2} / 18}=\frac{1}{18 \pi} e^{-\frac{(x-1)^{2}-(y-1)^{2}}{18}} .
$$

(b) Compute $E\left[X^{2}\right]$ and $E\left[X^{2} Y^{2}\right]$. ANSWER: $\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=E\left[X^{2}\right]-1=9$, so $E\left[X^{2}\right]=10$. By independence $E\left[X^{2} Y^{2}\right]=E\left[X^{2}\right] E\left[Y^{2}\right]=100$.

