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Axioms of probability

I P(A) ∈ [0, 1] for all A ⊂ S .

I P(S) = 1.

I Finite additivity: P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅.
I Countable additivity: P(∪∞i=1Ei ) =

∑∞
i=1 P(Ei ) if Ei ∩ Ej = ∅

for each pair i and j .
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I Neurological: When I think “it will rain tomorrow” the
“truth-sensing” part of my brain exhibits 30 percent of its
maximum electrical activity.

I Frequentist: P(A) is the fraction of times A occurred during
the previous (large number of) times we ran the experiment.

I Market preference (“risk neutral probability”): P(A) is
price of contract paying dollar if A occurs divided by price of
contract paying dollar regardless.

I Personal belief: P(A) is amount such that I’d be indifferent
between contract paying 1 if A occurs and contract paying
P(A) no matter what.
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Axiom breakdown

I What if personal belief function doesn’t satisfy axioms?

I Consider an A-contract (pays 10 if candidate A wins election)
a B-contract (pays 10 dollars if candidate B wins) and an
A-or-B contract (pays 10 if either A or B wins).

I Friend: “I’d say A-contract is worth 1 dollar, B-contract is
worth 1 dollar, A-or-B contract is worth 7 dollars.”

I Amateur response: “Dude, that is, like, so messed up.
Haven’t you heard of the axioms of probability?”

I Cynical professional response: “I fully understand and
respect your opinions. In fact, let’s do some business. You sell
me an A contract and a B contract for 1.50 each, and I sell
you an A-or-B contract for 6.50.”

I Friend: “Wow... you’ve beat by suggested price by 50 cents
on each deal. Yes, sure! You’re a great friend!”

I Axioms breakdowns are money-making opportunities.
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I Neurological: When I think “it will rain tomorrow” the
“truth-sensing” part of my brain exhibits 30 percent of its
maximum electrical activity. Should have P(A) ∈ [0, 1],
maybe P(S) = 1, not necessarily P(A ∪ B) = P(A) + P(B)
when A ∩ B = ∅.

I Frequentist: P(A) is the fraction of times A occurred during
the previous (large number of) times we ran the experiment.
Seems to satisfy axioms...

I Market preference (“risk neutral probability”): P(A) is
price of contract paying dollar if A occurs divided by price of
contract paying dollar regardless. Seems to satisfy axioms,
assuming no arbitrage, no bid-ask spread, complete market...

I Personal belief: P(A) is amount such that I’d be indifferent
between contract paying 1 if A occurs and contract paying
P(A) no matter what. Seems to satisfy axioms with some
notion of utility units, strong assumption of “rationality”...
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Intersection notation

I We will sometimes write AB to denote the event A ∩ B.



Consequences of axioms

I Can we show from the axioms that P(Ac) = 1− P(A)?

I Can we show from the axioms that if A ⊂ B then
P(A) ≤ P(B)?

I Can we show from the axioms that
P(A ∪ B) = P(A) + P(B)− P(AB)?

I Can we show from the axioms that P(AB) ≤ P(A)?

I Can we show from the axioms that if S contains finitely many
elements x1, . . . , xk , then the values(
P({x1}),P({x2}), . . . ,P({xk})

)
determine the value of P(A)

for any A ⊂ S?

I What k-tuples of values are consistent with the axioms?



Consequences of axioms

I Can we show from the axioms that P(Ac) = 1− P(A)?

I Can we show from the axioms that if A ⊂ B then
P(A) ≤ P(B)?

I Can we show from the axioms that
P(A ∪ B) = P(A) + P(B)− P(AB)?

I Can we show from the axioms that P(AB) ≤ P(A)?

I Can we show from the axioms that if S contains finitely many
elements x1, . . . , xk , then the values(
P({x1}),P({x2}), . . . ,P({xk})

)
determine the value of P(A)

for any A ⊂ S?

I What k-tuples of values are consistent with the axioms?



Consequences of axioms

I Can we show from the axioms that P(Ac) = 1− P(A)?

I Can we show from the axioms that if A ⊂ B then
P(A) ≤ P(B)?

I Can we show from the axioms that
P(A ∪ B) = P(A) + P(B)− P(AB)?

I Can we show from the axioms that P(AB) ≤ P(A)?

I Can we show from the axioms that if S contains finitely many
elements x1, . . . , xk , then the values(
P({x1}),P({x2}), . . . ,P({xk})

)
determine the value of P(A)

for any A ⊂ S?

I What k-tuples of values are consistent with the axioms?



Consequences of axioms

I Can we show from the axioms that P(Ac) = 1− P(A)?

I Can we show from the axioms that if A ⊂ B then
P(A) ≤ P(B)?

I Can we show from the axioms that
P(A ∪ B) = P(A) + P(B)− P(AB)?

I Can we show from the axioms that P(AB) ≤ P(A)?

I Can we show from the axioms that if S contains finitely many
elements x1, . . . , xk , then the values(
P({x1}),P({x2}), . . . ,P({xk})

)
determine the value of P(A)

for any A ⊂ S?

I What k-tuples of values are consistent with the axioms?



Consequences of axioms

I Can we show from the axioms that P(Ac) = 1− P(A)?

I Can we show from the axioms that if A ⊂ B then
P(A) ≤ P(B)?

I Can we show from the axioms that
P(A ∪ B) = P(A) + P(B)− P(AB)?

I Can we show from the axioms that P(AB) ≤ P(A)?

I Can we show from the axioms that if S contains finitely many
elements x1, . . . , xk , then the values(
P({x1}),P({x2}), . . . ,P({xk})

)
determine the value of P(A)

for any A ⊂ S?

I What k-tuples of values are consistent with the axioms?



Consequences of axioms

I Can we show from the axioms that P(Ac) = 1− P(A)?

I Can we show from the axioms that if A ⊂ B then
P(A) ≤ P(B)?

I Can we show from the axioms that
P(A ∪ B) = P(A) + P(B)− P(AB)?

I Can we show from the axioms that P(AB) ≤ P(A)?

I Can we show from the axioms that if S contains finitely many
elements x1, . . . , xk , then the values(
P({x1}),P({x2}), . . . ,P({xk})

)
determine the value of P(A)

for any A ⊂ S?

I What k-tuples of values are consistent with the axioms?



Famous 1982 Tversky-Kahneman study (see wikipedia)

I People are told “Linda is 31 years old, single, outspoken, and
very bright. She majored in philosophy. As a student, she was
deeply concerned with issues of discrimination and social
justice, and also participated in anti-nuclear demonstrations.”

I They are asked: Which is more probable?
I Linda is a bank teller.
I Linda is a bank teller and is active in the feminist movement.

I 85 percent chose the second option.

I Could be correct using neurological/emotional definition. Or a
“which story would you believe” interpretation (if witnesses
offering more details are considered more credible).

I But axioms of probability imply that second option cannot be
more likely than first.
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Inclusion-exclusion identity

I Imagine we have n events, E1,E2, . . . ,En.

I How do we go about computing something like
P(E1 ∪ E2 ∪ . . . ∪ En)?

I It may be quite difficult, depending on the application.

I There are some situations in which computing
P(E1 ∪ E2 ∪ . . . ∪ En) is a priori difficult, but it is relatively
easy to compute probabilities of intersections of any collection
of Ei . That is, we can easily compute quantities like
P(E1E3E7) or P(E2E3E6E7E8).

I In these situations, the inclusion-exclusion rule helps us
compute unions. It gives us a way to express
P(E1 ∪ E2 ∪ . . . ∪ En) in terms of these intersection
probabilities.
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Inclusion-exclusion identity

I Can we show from the axioms that
P(A ∪ B) = P(A) + P(B)− P(AB)?

I How about P(E ∪ F ∪ G ) =
P(E ) + P(F ) + P(G )−P(EF )−P(EG )−P(FG ) + P(EFG )?

I More generally,

P(∪ni=1Ei ) =
n∑

i=1

P(Ei )−
∑
i1<i2

P(Ei1Ei2) + . . .

+ (−1)(r+1)
∑

i1<i2<...<ir

P(Ei1Ei2 . . .Eir )

+ . . . + (−1)n+1P(E1E2 . . .En).

I The notation
∑

i1<i2<...<ir
means a sum over all of the

(n
r

)
subsets of size r of the set {1, 2, . . . , n}.
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I Can we show from the axioms that
P(A ∪ B) = P(A) + P(B)− P(AB)?

I How about P(E ∪ F ∪ G ) =
P(E ) + P(F ) + P(G )−P(EF )−P(EG )−P(FG ) + P(EFG )?

I More generally,

P(∪ni=1Ei ) =
n∑

i=1

P(Ei )−
∑
i1<i2

P(Ei1Ei2) + . . .

+ (−1)(r+1)
∑

i1<i2<...<ir

P(Ei1Ei2 . . .Eir )

+ . . . + (−1)n+1P(E1E2 . . .En).

I The notation
∑

i1<i2<...<ir
means a sum over all of the

(n
r

)
subsets of size r of the set {1, 2, . . . , n}.



Inclusion-exclusion proof idea

I Consider a region of the Venn diagram contained in exactly
m > 0 subsets. For example, if m = 3 and n = 8 we could
consider the region E1E2E

c
3 E

c
4 E5E

c
6 E

c
7 E

c
8 .

I This region is contained in three single intersections (E1, E2,
and E5). It’s contained in 3 double-intersections (E1E2, E1E5,
and E2E5). It’s contained in only 1 triple-intersection
(E1E2E5).

I It is counted
(m
1

)
−
(m
2

)
+
(m
3

)
+ . . .±

(m
m

)
times in the

inclusion exclusion sum.

I How many is that?

I Answer: 1. (Follows from binomial expansion of (1− 1)m.)

I Thus each region in E1 ∪ . . . ∪ En is counted exactly once in
the inclusion exclusion sum, which implies the identity.



Inclusion-exclusion proof idea

I Consider a region of the Venn diagram contained in exactly
m > 0 subsets. For example, if m = 3 and n = 8 we could
consider the region E1E2E

c
3 E

c
4 E5E

c
6 E

c
7 E

c
8 .

I This region is contained in three single intersections (E1, E2,
and E5). It’s contained in 3 double-intersections (E1E2, E1E5,
and E2E5). It’s contained in only 1 triple-intersection
(E1E2E5).

I It is counted
(m
1

)
−
(m
2

)
+
(m
3

)
+ . . .±

(m
m

)
times in the

inclusion exclusion sum.

I How many is that?

I Answer: 1. (Follows from binomial expansion of (1− 1)m.)

I Thus each region in E1 ∪ . . . ∪ En is counted exactly once in
the inclusion exclusion sum, which implies the identity.



Inclusion-exclusion proof idea

I Consider a region of the Venn diagram contained in exactly
m > 0 subsets. For example, if m = 3 and n = 8 we could
consider the region E1E2E

c
3 E

c
4 E5E

c
6 E

c
7 E

c
8 .

I This region is contained in three single intersections (E1, E2,
and E5). It’s contained in 3 double-intersections (E1E2, E1E5,
and E2E5). It’s contained in only 1 triple-intersection
(E1E2E5).

I It is counted
(m
1

)
−
(m
2

)
+
(m
3

)
+ . . .±

(m
m

)
times in the

inclusion exclusion sum.

I How many is that?

I Answer: 1. (Follows from binomial expansion of (1− 1)m.)

I Thus each region in E1 ∪ . . . ∪ En is counted exactly once in
the inclusion exclusion sum, which implies the identity.



Inclusion-exclusion proof idea

I Consider a region of the Venn diagram contained in exactly
m > 0 subsets. For example, if m = 3 and n = 8 we could
consider the region E1E2E

c
3 E

c
4 E5E

c
6 E

c
7 E

c
8 .

I This region is contained in three single intersections (E1, E2,
and E5). It’s contained in 3 double-intersections (E1E2, E1E5,
and E2E5). It’s contained in only 1 triple-intersection
(E1E2E5).

I It is counted
(m
1

)
−
(m
2

)
+
(m
3

)
+ . . .±

(m
m

)
times in the

inclusion exclusion sum.

I How many is that?

I Answer: 1. (Follows from binomial expansion of (1− 1)m.)

I Thus each region in E1 ∪ . . . ∪ En is counted exactly once in
the inclusion exclusion sum, which implies the identity.



Inclusion-exclusion proof idea

I Consider a region of the Venn diagram contained in exactly
m > 0 subsets. For example, if m = 3 and n = 8 we could
consider the region E1E2E

c
3 E

c
4 E5E

c
6 E

c
7 E

c
8 .

I This region is contained in three single intersections (E1, E2,
and E5). It’s contained in 3 double-intersections (E1E2, E1E5,
and E2E5). It’s contained in only 1 triple-intersection
(E1E2E5).

I It is counted
(m
1

)
−
(m
2

)
+
(m
3

)
+ . . .±

(m
m

)
times in the

inclusion exclusion sum.

I How many is that?

I Answer: 1. (Follows from binomial expansion of (1− 1)m.)

I Thus each region in E1 ∪ . . . ∪ En is counted exactly once in
the inclusion exclusion sum, which implies the identity.



Inclusion-exclusion proof idea

I Consider a region of the Venn diagram contained in exactly
m > 0 subsets. For example, if m = 3 and n = 8 we could
consider the region E1E2E

c
3 E

c
4 E5E

c
6 E

c
7 E

c
8 .

I This region is contained in three single intersections (E1, E2,
and E5). It’s contained in 3 double-intersections (E1E2, E1E5,
and E2E5). It’s contained in only 1 triple-intersection
(E1E2E5).

I It is counted
(m
1

)
−
(m
2

)
+
(m
3

)
+ . . .±

(m
m

)
times in the

inclusion exclusion sum.

I How many is that?

I Answer: 1. (Follows from binomial expansion of (1− 1)m.)

I Thus each region in E1 ∪ . . . ∪ En is counted exactly once in
the inclusion exclusion sum, which implies the identity.


	Axioms of probability
	Consequences of axioms
	Inclusion exclusion

