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» Consider a sequence of random variables Xp, X1, X5, ... each
taking values in the same state space, which for now we take
to be a finite set that we label by {0,1,..., M}.

> Interpret X, as state of the system at time n.

» Sequence is called a Markov chain if we have a fixed
collection of numbers Pj; (one for each pair
i,j €{0,1,..., M}) such that whenever the system is in state
i, there is probability P that system will next be in state j.

> Precisely,
P{Xn+1 :j|Xn = i,Xn_l = in—l, e ,Xl = il,Xo = io} = P,J

» Kind of an “almost memoryless” property. Probability
distribution for next state depends only on the current state
(and not on the rest of the state history).
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Simple example

» For example, imagine a simple weather model with two states:
rainy and sunny.

> If it's rainy one day, there's a .5 chance it will be rainy the
next day, a .5 chance it will be sunny.

» If it's sunny one day, there's a .8 chance it will be sunny the
next day, a .2 chance it will be rainy.

> In this climate, sun tends to last longer than rain.

» Given that it is rainy today, how many days to | expect to
have to wait to see a sunny day?

» Given that it is sunny today, how many days to | expect to
have to wait to see a rainy day?

» Over the long haul, what fraction of days are sunny?
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Matrix representation

» To describe a Markov chain, we need to define P for any
i,je{0,1,...,M}.

> It is convenient to represent the collection of transition
probabilities Pj; as a matrix:

P]_o P]_l P]_M
A= '
P[\/[O P/\/]]_ P[\/[/\/]

» For this to make sense, we require P; > 0 for all /,j and

Zj:o Pjj = 1 for each /. That is, the rows sum to one.
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Transitions via matrices

» Suppose that p; is the probability that system is in state i at
time zero.

» What does the following product represent?

POO PO]_ “ e POM

P]_O Pl]_ “ e P]_M
(po P - Pm) ‘

PMO PM]_ “ e PMM

> Answer: the probability distribution at time one.

» How about the following product?

(P p1 - pm )A”

» Answer: the probability distribution at time n.
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Powers of transition matrix

> We write P,.(J.") for the probability to go from state / to state j
over n steps.

» From the matrix point of view

P(gg) P(g;) e P(g',:/); Poo Por ... Pom "
P p - po Po Pui ... P
pm - pln) o pm Pvo P - Pum

> If Ais the one-step transition matrix, then A" is the n-step
transition matrix.
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» What does it mean if all of the rows are identical?
» Answer: state sequence X; consists of i.i.d. random variables.
» What if matrix is the identity?

> Answer: states never change.

v

What if each Pj; is either one or zero?

» Answer: state evolution is deterministic.
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Simple example
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Simple example

» Consider the simple weather example: If it's rainy one day,
there's a .5 chance it will be rainy the next day, a .5 chance it
will be sunny. If it's sunny one day, there's a .8 chance it will
be sunny the next day, a .2 chance it will be rainy.

> Let rainy be state zero, sunny state one, and write the

transition matrix by
b5 5
a=(33)

.64 .35

2 _

#= (% %)
.285719 .714281
285713 .714287

» Note that

» Can compute A0 = <
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Does relationship status have the Markov property?

.

In a relationship

N4

> It’s comphcated

Single

NN

Marrled “ Engaged

» Can we assign a probability to each arrow?

» Markov model implies time spent in any state (e.g., a
marriage) before leaving is a geometric random variable.

» Not true... Can we make a better model with more states?
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Ergodic Markov chains

>

Say Markov chain is ergodic if some power of the transition
matrix has all non-zero entries.

Turns out that if chain has this property, then

i = limp_e0 P,.(j”) exists and the m; are the unique
non-negative solutions of 7; = Z,’Y’:O 7k Pij that sum to one.
This means that the row vector

7r:(7r0 T ... 77,\/,)

is a left eigenvector of A with eigenvalue 1, i.e., TA = 7.
We call 7 the stationary distribution of the Markov chain.

One can solve the system of linear equations

T = Z,’Y’ZO 7k Pyj to compute the values 7;. Equivalent to
considering A fixed and solving wA = 7. Or solving
(A—I)m = 0. This determines 7 up to a multiplicative
constant, and fact that ) m; = 1 determines the constant.
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Simple example

5 5
> If A= < P '8),thenwe know

A= ( m)(g :g>—(7r0 m)=n.

» This means that .5mg + .2m = mg and .5mg + .87 = 71 and
we also know that mg 4+ 71 = 1. Solving these equations gives
mo=2/Tand 7 =5/7,som=(2/7T 5/7).

» |ndeed,

TA=(2/7 5/7)(:2 :g>:(2/7 5/7)=m.

» Recall that

a0 _ (285710 714281\ _ (2/7 5/7\ _ (=
T\ 285713 714287 ) T\ 2/7 5/7 ) \ «
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