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Recall: DeMoivre-Laplace limit theorem

» Let X; be an i.i.d. sequence of random variables. Write

Sn=11Xn
» Suppose each X; is 1 with probability p and 0 with probability
g=1-p.
» DeMoivre-Laplace limit theorem:
) S,—np
lim P{a < < b} — ®d(b) — ®(a).

n—oo

» Here ®(b) — ®(a) = P{a < Z < b} when Z is a standard
normal random variable.
5\;;7”5 describes “number of standard deviations that S, is

above or below its mean”.

» Question: Does a similar statement hold if the X; are i.i.d. but
have some other probability distribution?

» Central limit theorem: Yes, if they have finite variance.



» Say we roll 10° ordinary dice independently of each other.



» Say we roll 10° ordinary dice independently of each other.

» Let X; be the number on the ith die. Let X = 2}261 X; be the
total of the numbers rolled.



» Say we roll 100 ordinary dice independently of each other.

» Let X; be the number on the ith die. Let X = 2}261 X; be the
total of the numbers rolled.

» What is E[X]?



» Say we roll 10° ordinary dice independently of each other.

» Let X; be the number on the ith die. Let X = 2}261 X; be the
total of the numbers rolled.

» What is E[X]?
» 10°/6



» Say we roll 10° ordinary dice independently of each other.

Let X; be the number on the ith die. Let X = 2}261 X; be the
total of the numbers rolled.

What is E[X]?
10°/6
What is Var[X]?

v

v

v

v



» Say we roll 10° ordinary dice independently of each other.

» Let X; be the number on the ith die. Let X = 2,1261 X; be the
total of the numbers rolled.

» What is E[X]?
» 10°/6

» What is Var[X]?
» 10° . (35/12)



» Say we roll 10° ordinary dice independently of each other.

» Let X; be the number on the ith die. Let X = 2,1261 X; be the
total of the numbers rolled.

» What is E[X]?

» 10°/6

» What is Var[X]?

» 10° . (35/12)

» How about SD[X]?



» Say we roll 10° ordinary dice independently of each other.

» Let X; be the number on the ith die. Let X = 2,1261 X; be the
total of the numbers rolled.

» What is E[X]?

» 10°/6

» What is Var[X]?

» 10° . (35/12)

» How about SD[X]?

> 1000+/35/12



» Say we roll 10° ordinary dice independently of each other.

» Let X; be the number on the ith die. Let X = 2,1261 X; be the
total of the numbers rolled.

» What is E[X]?

» 10°/6

» What is Var[X]?

» 10° . (35/12)

» How about SD[X]?

> 1000+/35/12

» What is the probability that X is less than a standard
deviations above its mean?



» Say we roll 10° ordinary dice independently of each other.

» Let X; be the number on the ith die. Let X = 2,1261 X; be the
total of the numbers rolled.

» What is E[X]?

» 10°/6

» What is Var[X]?

» 10° . (35/12)

» How about SD[X]?

> 1000+/35/12

» What is the probability that X is less than a standard
deviations above its mean?

> Central limit theorem: should be about —L- [ e™*"/2dx.
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» Suppose earthquakes in some region are a Poisson point
process with rate \ equal to 1 per year.

» Let X be the number of earthquakes that occur over a
ten-thousand year period. Should be a Poisson random
variable with rate 10000.

» What is E[X]?

» 10000

» What is Var[X]?

» 10000

» How about SD[X]?
» 100

» What is the probability that X is less than a standard
deviations above its mean?

» Central limit theorem: should be about \/% ffoo e*/2dx.
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Recall: characteristic functions

» Let X be a random variable.
» The characteristic function of X is defined by
B(t) = dx(t) := E[e™X]. Like M(t) except with i thrown in.
» Recall that by definition e’ = cos(t) + isin(t).
» Characteristic functions are similar to moment generating
functions in some ways.

> For example, ¢px1y = ¢pxdy, just as Mxy = MxMy, if X
and Y are independent.

» And ¢.x(t) = ¢x(at) just as M,x(t) = Mx(at).
» And if X has an mth moment then E[X™]| = i’"d)g(m)(O).

» Characteristic functions are well defined at all t for all random
variables X.
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» Say X, converge in distribution or converge in law to X if
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continuous.

> Recall: the weak law of large numbers can be rephrased as the
statement that A, w converges in law to u (i.e.,
to the random variable that is equal to p with probability one)
as n — oo.

» The central limit theorem can be rephrased as the statement

that B, %fﬁ%"" converges in law to a standard

normal random variable as n — oc.
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v

Lévy’s continuity theorem (see Wikipedia): if

lim ¢x,(t) = ox(t)

n—o00

for all t, then X, converge in law to X.

By this theorem, we can prove the central limit theorem by
showing lim,_, ¢p, (t) = e~t/2 for all t.

Moment generating function continuity theorem: if
moment generating functions Mx, (t) are defined for all t and

n and lim,_,o Mx, (t) = Mx(t) for all ¢, then X, converge in
law to X.

By this theorem, we can prove the central limit theorem by
. . 2
showing lim, oo Mg, (t) = et/2 for all t.
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Proof of central limit theorem with moment generating

functions

» Write Y = %= “ Then Y has mean zero and variance 1.

» Write My(t) = E[etY] and g(t) = log My(t). So
My (t) = o800
» We know g(0) = 0. Also M{,(0) = E[Y] =0 and
M{,(0) = E[Y?] = Var[Y] = 1.
» Chain rule: M, (0) = g’(0)e8®) = g’(0) = 0 and
MY(0) = £"(0)e5 + g/ (075 = g(0) =1,
» So g is a nice function with g(0) = g’(0) = 0 and g”(0) = 1.
Taylor expansion' g(t) = t?/2 4 o(t?) for t near zero.
» Now B, is f times the sum of n independent copies of Y.

> So Mg, (t) = (My(t/y/n))" = "),

)=
» But e” (%) "(\%)2/2 = etz/z, in sense that LHS tends to
et’/2 as n tends to infinity.



Proof of central limit theorem with characteristic functions

» Moment generating function proof only applies if the moment
generating function of X exists.



Proof of central limit theorem with characteristic functions

» Moment generating function proof only applies if the moment
generating function of X exists.

» But the proof can be repeated almost verbatim using
characteristic functions instead of moment generating
functions.



Proof of central limit theorem with characteristic functions

» Moment generating function proof only applies if the moment
generating function of X exists.

» But the proof can be repeated almost verbatim using
characteristic functions instead of moment generating
functions.

» Then it applies for any X with finite variance.
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» Example: if height is determined by lots of little mostly
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» The central limit theorem is actually fairly robust. Variants of
the theorem still apply if you allow the X; not to be identically
distributed, or not to be completely independent.

» We won't formulate these variants precisely in this course.

» But, roughly speaking, if you have a lot of little random terms
that are “mostly independent” — and no single term
contributes more than a “small fraction” of the total sum —
then the total sum should be “approximately” normal.

» Example: if height is determined by lots of little mostly
independent factors, then people’s heights should be normally
distributed.

» Not quite true... certain factors by themselves can cause a
person to be a whole lot shorter or taller. Also, individual
factors not really independent of each other.

» Kind of true for homogenous population, ignoring outliers.
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