18.600: Lecture 21 Joint distributions functions Scott Sheffield MIT #### Outline Distributions of functions of random variables Joint distributions Independent random variables **Examples** #### Outline Distributions of functions of random variables Joint distributions Independent random variables Examples Suppose $P\{X \le a\} = F_X(a)$ is known for all a. Write $Y = X^3$. What is $P\{Y \le 27\}$? - Suppose $P\{X \le a\} = F_X(a)$ is known for all a. Write $Y = X^3$. What is $P\{Y \le 27\}$? - Answer: note that $Y \le 27$ if and only if $X \le 3$. Hence $P\{Y \le 27\} = P\{X \le 3\} = F_X(3)$. - Suppose $P\{X \le a\} = F_X(a)$ is known for all a. Write $Y = X^3$. What is $P\{Y \le 27\}$? - Answer: note that $Y \le 27$ if and only if $X \le 3$. Hence $P\{Y \le 27\} = P\{X \le 3\} = F_X(3)$. - Generally $F_Y(a) = P\{Y \le a\} = P\{X \le a^{1/3}\} = F_X(a^{1/3})$ - ▶ Suppose $P\{X \le a\} = F_X(a)$ is known for all a. Write $Y = X^3$. What is $P\{Y \le 27\}$? - Answer: note that $Y \le 27$ if and only if $X \le 3$. Hence $P\{Y \le 27\} = P\{X \le 3\} = F_X(3)$. - Generally $F_Y(a) = P\{Y \le a\} = P\{X \le a^{1/3}\} = F_X(a^{1/3})$ - ▶ This is a general principle. If X is a continuous random variable and g is a strictly increasing function of x and Y = g(X), then $F_Y(a) = F_X(g^{-1}(a))$. - ▶ Suppose $P\{X \le a\} = F_X(a)$ is known for all a. Write $Y = X^3$. What is $P\{Y \le 27\}$? - Answer: note that $Y \le 27$ if and only if $X \le 3$. Hence $P\{Y \le 27\} = P\{X \le 3\} = F_X(3)$. - Generally $F_Y(a) = P\{Y \le a\} = P\{X \le a^{1/3}\} = F_X(a^{1/3})$ - ▶ This is a general principle. If X is a continuous random variable and g is a strictly increasing function of x and Y = g(X), then $F_Y(a) = F_X(g^{-1}(a))$. - ▶ How can we use this to compute the probability density function f_Y from f_X ? - ▶ Suppose $P\{X \le a\} = F_X(a)$ is known for all a. Write $Y = X^3$. What is $P\{Y \le 27\}$? - Answer: note that $Y \le 27$ if and only if $X \le 3$. Hence $P\{Y \le 27\} = P\{X \le 3\} = F_X(3)$. - Generally $F_Y(a) = P\{Y \le a\} = P\{X \le a^{1/3}\} = F_X(a^{1/3})$ - ▶ This is a general principle. If X is a continuous random variable and g is a strictly increasing function of x and Y = g(X), then $F_Y(a) = F_X(g^{-1}(a))$. - ▶ How can we use this to compute the probability density function f_Y from f_X ? - ▶ If $Z = X^2$, then what is $P\{Z \le 16\}$? #### Outline Distributions of functions of random variables Joint distributions Independent random variables **Examples** #### Outline Distributions of functions of random variables Joint distributions Independent random variables Examples ▶ If X and Y assume values in $\{1, 2, ..., n\}$ then we can view $A_{i,j} = P\{X = i, Y = j\}$ as the entries of an $n \times n$ matrix. - ▶ If X and Y assume values in $\{1, 2, ..., n\}$ then we can view $A_{i,j} = P\{X = i, Y = j\}$ as the entries of an $n \times n$ matrix. - Let's say I don't care about Y. I just want to know $P\{X = i\}$. How do I figure that out from the matrix? - ▶ If X and Y assume values in $\{1, 2, ..., n\}$ then we can view $A_{i,j} = P\{X = i, Y = j\}$ as the entries of an $n \times n$ matrix. - Let's say I don't care about Y. I just want to know $P\{X = i\}$. How do I figure that out from the matrix? - Answer: $P\{X = i\} = \sum_{j=1}^{n} A_{i,j}$. - ▶ If X and Y assume values in $\{1, 2, ..., n\}$ then we can view $A_{i,j} = P\{X = i, Y = j\}$ as the entries of an $n \times n$ matrix. - Let's say I don't care about Y. I just want to know $P\{X = i\}$. How do I figure that out from the matrix? - Answer: $P\{X = i\} = \sum_{j=1}^{n} A_{i,j}$. - $\blacktriangleright \text{ Similarly, } P\{Y=j\} = \sum_{i=1}^n A_{i,j}.$ - ▶ If X and Y assume values in $\{1, 2, ..., n\}$ then we can view $A_{i,j} = P\{X = i, Y = j\}$ as the entries of an $n \times n$ matrix. - Let's say I don't care about Y. I just want to know $P\{X = i\}$. How do I figure that out from the matrix? - Answer: $P\{X = i\} = \sum_{i=1}^{n} A_{i,j}$. - ► Similarly, $P{Y = j} = \sum_{i=1}^{n} A_{i,j}$. - ▶ In other words, the probability mass functions for X and Y are the row and columns sums of A_{i,j}. - ▶ If X and Y assume values in $\{1, 2, ..., n\}$ then we can view $A_{i,j} = P\{X = i, Y = j\}$ as the entries of an $n \times n$ matrix. - Let's say I don't care about Y. I just want to know $P\{X = i\}$. How do I figure that out from the matrix? - Answer: $P\{X = i\} = \sum_{j=1}^{n} A_{i,j}$. - ► Similarly, $P{Y = j} = \sum_{i=1}^{n} A_{i,j}$. - In other words, the probability mass functions for X and Y are the row and columns sums of A_{i,j}. - Given the joint distribution of X and Y, we sometimes call distribution of X (ignoring Y) and distribution of Y (ignoring X) the marginal distributions. - ▶ If X and Y assume values in $\{1, 2, ..., n\}$ then we can view $A_{i,j} = P\{X = i, Y = j\}$ as the entries of an $n \times n$ matrix. - Let's say I don't care about Y. I just want to know $P\{X = i\}$. How do I figure that out from the matrix? - Answer: $P\{X = i\} = \sum_{j=1}^{n} A_{i,j}$. - ► Similarly, $P{Y = j} = \sum_{i=1}^{n} A_{i,j}$. - In other words, the probability mass functions for X and Y are the row and columns sums of A_{i,j}. - ▶ Given the joint distribution of X and Y, we sometimes call distribution of X (ignoring Y) and distribution of Y (ignoring X) the marginal distributions. - ▶ In general, when X and Y are jointly defined discrete random variables, we write $p(x, y) = p_{X,Y}(x, y) = P\{X = x, Y = y\}$. ▶ Given random variables X and Y, define $F(a,b) = P\{X \le a, Y \le b\}$. - ▶ Given random variables X and Y, define $F(a,b) = P\{X \le a, Y \le b\}.$ - ▶ The region $\{(x,y): x \le a, y \le b\}$ is the lower left "quadrant" centered at (a,b). - ▶ Given random variables X and Y, define $F(a,b) = P\{X \le a, Y \le b\}$. - ▶ The region $\{(x,y): x \le a, y \le b\}$ is the lower left "quadrant" centered at (a,b). - ▶ Refer to $F_X(a) = P\{X \le a\}$ and $F_Y(b) = P\{Y \le b\}$ as **marginal** cumulative distribution functions. - ► Given random variables X and Y, define $F(a,b) = P\{X \le a, Y \le b\}$. - ▶ The region $\{(x,y): x \le a, y \le b\}$ is the lower left "quadrant" centered at (a,b). - ▶ Refer to $F_X(a) = P\{X \le a\}$ and $F_Y(b) = P\{Y \le b\}$ as **marginal** cumulative distribution functions. - ▶ Question: if I tell you the two parameter function F, can you use it to determine the marginals F_X and F_Y? - ► Given random variables X and Y, define $F(a,b) = P\{X \le a, Y \le b\}$. - ▶ The region $\{(x,y): x \le a, y \le b\}$ is the lower left "quadrant" centered at (a,b). - ▶ Refer to $F_X(a) = P\{X \le a\}$ and $F_Y(b) = P\{Y \le b\}$ as **marginal** cumulative distribution functions. - Question: if I tell you the two parameter function F, can you use it to determine the marginals F_X and F_Y? - Answer: Yes. $F_X(a) = \lim_{b \to \infty} F(a, b)$ and $F_Y(b) = \lim_{a \to \infty} F(a, b)$. Suppose we are given the joint distribution function $F(a,b) = P\{X \le a, Y \le b\}.$ - Suppose we are given the joint distribution function $F(a,b) = P\{X \le a, Y \le b\}.$ - ▶ Can we use F to construct a "two-dimensional probability density function"? Precisely, is there a function f such that $P\{(X,Y) \in A\} = \int_A f(x,y) dxdy$ for each (measurable) $A \subset \mathbb{R}^2$? - Suppose we are given the joint distribution function $F(a,b) = P\{X \le a, Y \le b\}.$ - ▶ Can we use F to construct a "two-dimensional probability density function"? Precisely, is there a function f such that $P\{(X,Y) \in A\} = \int_A f(x,y) dxdy$ for each (measurable) $A \subset \mathbb{R}^2$? - Let's try defining $f(x,y) = \frac{\partial}{\partial x} \frac{\partial}{\partial y} F(x,y)$. Does that work? - Suppose we are given the joint distribution function $F(a,b) = P\{X \le a, Y \le b\}.$ - ▶ Can we use F to construct a "two-dimensional probability density function"? Precisely, is there a function f such that $P\{(X,Y) \in A\} = \int_A f(x,y) dxdy$ for each (measurable) $A \subset \mathbb{R}^2$? - ▶ Let's try defining $f(x,y) = \frac{\partial}{\partial x} \frac{\partial}{\partial y} F(x,y)$. Does that work? - ▶ Suppose first that $A = \{(x,y) : x \leq a, \leq b\}$. By definition of F, fundamental theorem of calculus, fact that F(a,b) vanishes as either a or b tends to $-\infty$, we indeed find $\int_{-\infty}^{b} \int_{-\infty}^{a} \frac{\partial}{\partial x} \frac{\partial}{\partial y} F(x,y) dx dy = \int_{-\infty}^{b} \frac{\partial}{\partial y} F(a,y) dy = F(a,b).$ - Suppose we are given the joint distribution function $F(a,b) = P\{X \le a, Y \le b\}.$ - ▶ Can we use F to construct a "two-dimensional probability density function"? Precisely, is there a function f such that $P\{(X,Y) \in A\} = \int_A f(x,y) dxdy$ for each (measurable) $A \subset \mathbb{R}^2$? - ▶ Let's try defining $f(x,y) = \frac{\partial}{\partial x} \frac{\partial}{\partial y} F(x,y)$. Does that work? - ▶ Suppose first that $A = \{(x,y) : x \le a, \le b\}$. By definition of F, fundamental theorem of calculus, fact that F(a,b) vanishes as either a or b tends to $-\infty$, we indeed find $\int_{-\infty}^{b} \int_{-\infty}^{a} \frac{\partial}{\partial x} \frac{\partial}{\partial y} F(x,y) dx dy = \int_{-\infty}^{b} \frac{\partial}{\partial y} F(a,y) dy = F(a,b).$ - ► From this, we can show that it works for strips, rectangles, general open sets, etc. #### Outline Distributions of functions of random variables Joint distributions Independent random variables **Examples** #### Outline Distributions of functions of random variables Joint distributions Independent random variables Examples $$P\{X \in A, Y \in B\} = P\{X \in A\}P\{Y \in B\}.$$ ▶ We say X and Y are independent if for any two (measurable) sets A and B of real numbers we have $$P{X \in A, Y \in B} = P{X \in A}P{Y \in B}.$$ ▶ Intuition: knowing something about *X* gives me no information about *Y*, and vice versa. $$P\{X \in A, Y \in B\} = P\{X \in A\}P\{Y \in B\}.$$ - Intuition: knowing something about X gives me no information about Y, and vice versa. - When X and Y are discrete random variables, they are independent if $P\{X=x,Y=y\}=P\{X=x\}P\{Y=y\}$ for all x and y for which $P\{X=x\}$ and $P\{Y=y\}$ are non-zero. $$P{X \in A, Y \in B} = P{X \in A}P{Y \in B}.$$ - Intuition: knowing something about X gives me no information about Y, and vice versa. - ▶ When X and Y are discrete random variables, they are independent if $P\{X = x, Y = y\} = P\{X = x\}P\{Y = y\}$ for all x and y for which $P\{X = x\}$ and $P\{Y = y\}$ are non-zero. - ► What is the analog of this statement when *X* and *Y* are continuous? $$P\{X \in A, Y \in B\} = P\{X \in A\}P\{Y \in B\}.$$ - ▶ Intuition: knowing something about *X* gives me no information about *Y*, and vice versa. - ▶ When X and Y are discrete random variables, they are independent if $P\{X = x, Y = y\} = P\{X = x\}P\{Y = y\}$ for all x and y for which $P\{X = x\}$ and $P\{Y = y\}$ are non-zero. - ► What is the analog of this statement when *X* and *Y* are continuous? - ▶ When X and Y are continuous, they are independent if $f(x,y) = f_X(x)f_Y(y)$. # Sample problem: independent normal random variables ▶ Suppose that *X* and *Y* are independent normal random variables with mean zero and variance one. - ▶ Suppose that *X* and *Y* are independent normal random variables with mean zero and variance one. - ▶ What is the probability that (X, Y) lies in the unit circle? That is, what is $P\{X^2 + Y^2 \le 1\}$? - ▶ Suppose that *X* and *Y* are independent normal random variables with mean zero and variance one. - ▶ What is the probability that (X, Y) lies in the unit circle? That is, what is $P\{X^2 + Y^2 \le 1\}$? - First, any guesses? - ▶ Suppose that *X* and *Y* are independent normal random variables with mean zero and variance one. - ▶ What is the probability that (X, Y) lies in the unit circle? That is, what is $P\{X^2 + Y^2 \le 1\}$? - First, any guesses? - ▶ Probability *X* is within one standard deviation of its mean is about .68. So (.68)² is an upper bound. - ▶ Suppose that *X* and *Y* are independent normal random variables with mean zero and variance one. - ▶ What is the probability that (X, Y) lies in the unit circle? That is, what is $P\{X^2 + Y^2 \le 1\}$? - ► First, any guesses? - ▶ Probability *X* is within one standard deviation of its mean is about .68. So (.68)² is an upper bound. - $f(x,y) = f_X(x)f_Y(y) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}\frac{1}{\sqrt{2\pi}}e^{-y^2/2} = \frac{1}{2\pi}e^{-r^2/2}$ - ▶ Suppose that *X* and *Y* are independent normal random variables with mean zero and variance one. - ▶ What is the probability that (X, Y) lies in the unit circle? That is, what is $P\{X^2 + Y^2 \le 1\}$? - ► First, any guesses? - ▶ Probability *X* is within one standard deviation of its mean is about .68. So (.68)² is an upper bound. - $f(x,y) = f_X(x)f_Y(y) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}\frac{1}{\sqrt{2\pi}}e^{-y^2/2} = \frac{1}{2\pi}e^{-r^2/2}$ - ▶ Using polar coordinates, we want $\int_0^1 (2\pi r) \frac{1}{2\pi} e^{-r^2/2} dr = -e^{-r^2/2} \Big|_0^1 = 1 e^{-1/2} \approx .39.$ #### Outline Distributions of functions of random variables Joint distributions Independent random variables **Examples** #### Outline Distributions of functions of random variables Joint distributions Independent random variables Examples ▶ Roll a die repeatedly and let X be such that the first even number (the first 2, 4, or 6) appears on the Xth roll. - ▶ Roll a die repeatedly and let X be such that the first even number (the first 2, 4, or 6) appears on the Xth roll. - ▶ Let Y be the the number that appears on the Xth roll. - ▶ Roll a die repeatedly and let X be such that the first even number (the first 2, 4, or 6) appears on the Xth roll. - ▶ Let Y be the the number that appears on the Xth roll. - ► Are X and Y independent? What is their joint law? - ▶ Roll a die repeatedly and let X be such that the first even number (the first 2, 4, or 6) appears on the Xth roll. - ▶ Let Y be the the number that appears on the Xth roll. - ▶ Are X and Y independent? What is their joint law? - ▶ If $j \ge 1$, then $$P\{X = j, Y = 2\} = P\{X = j, Y = 4\}$$ $$= P\{X = j, Y = 6\} = (1/2)^{j-1}(1/6) = (1/2)^{j}(1/3).$$ - ▶ Roll a die repeatedly and let X be such that the first even number (the first 2, 4, or 6) appears on the Xth roll. - ▶ Let Y be the the number that appears on the Xth roll. - ▶ Are X and Y independent? What is their joint law? - ▶ If $j \ge 1$, then $$P\{X = j, Y = 2\} = P\{X = j, Y = 4\}$$ $$= P\{X = j, Y = 6\} = (1/2)^{j-1}(1/6) = (1/2)^{j}(1/3).$$ Can we get the marginals from that? ▶ On a certain hiking trail, it is well known that the lion, tiger, and bear attacks are independent Poisson processes with respective λ values of .1/hour, .2/hour, and .3/hour. - ▶ On a certain hiking trail, it is well known that the lion, tiger, and bear attacks are independent Poisson processes with respective λ values of .1/hour, .2/hour, and .3/hour. - ▶ Let $T \in \mathbb{R}$ be the amount of time until the first animal attacks. Let $A \in \{\text{lion}, \text{tiger}, \text{bear}\}$ be the species of the first attacking animal. - ▶ On a certain hiking trail, it is well known that the lion, tiger, and bear attacks are independent Poisson processes with respective λ values of .1/hour, .2/hour, and .3/hour. - ▶ Let $T \in \mathbb{R}$ be the amount of time until the first animal attacks. Let $A \in \{\text{lion}, \text{tiger}, \text{bear}\}$ be the species of the first attacking animal. - ▶ What is the probability density function for T? How about E[T]? - ▶ On a certain hiking trail, it is well known that the lion, tiger, and bear attacks are independent Poisson processes with respective λ values of .1/hour, .2/hour, and .3/hour. - ▶ Let $T \in \mathbb{R}$ be the amount of time until the first animal attacks. Let $A \in \{\text{lion}, \text{tiger}, \text{bear}\}$ be the species of the first attacking animal. - ▶ What is the probability density function for T? How about E[T]? - ► Are *T* and *A* independent? - ▶ On a certain hiking trail, it is well known that the lion, tiger, and bear attacks are independent Poisson processes with respective λ values of .1/hour, .2/hour, and .3/hour. - ▶ Let $T \in \mathbb{R}$ be the amount of time until the first animal attacks. Let $A \in \{\text{lion}, \text{tiger}, \text{bear}\}$ be the species of the first attacking animal. - ▶ What is the probability density function for T? How about E[T]? - ► Are *T* and *A* independent? - Let T_1 be the time until the first attack, T_2 the subsequent time until the second attack, etc., and let A_1, A_2, \ldots be the corresponding species. - ▶ On a certain hiking trail, it is well known that the lion, tiger, and bear attacks are independent Poisson processes with respective λ values of .1/hour, .2/hour, and .3/hour. - ▶ Let $T \in \mathbb{R}$ be the amount of time until the first animal attacks. Let $A \in \{\text{lion}, \text{tiger}, \text{bear}\}$ be the species of the first attacking animal. - ▶ What is the probability density function for T? How about E[T]? - Are T and A independent? - Let T_1 be the time until the first attack, T_2 the subsequent time until the second attack, etc., and let A_1, A_2, \ldots be the corresponding species. - ▶ Are all of the *T_i* and *A_i* independent of each other? What are their probability distributions? ▶ Lion, tiger, and bear attacks are independent Poisson processes with λ values .1/hour, .2/hour, and .3/hour. - Lion, tiger, and bear attacks are independent Poisson processes with λ values .1/hour, .2/hour, and .3/hour. - ▶ Distribution of time T_{tiger} till first tiger attack? - Lion, tiger, and bear attacks are independent Poisson processes with λ values .1/hour, .2/hour, and .3/hour. - ▶ Distribution of time T_{tiger} till first tiger attack? - Exponential $\lambda_{\text{tiger}} = .2/\text{hour}$. So $P\{T_{\text{tiger}} > a\} = e^{-.2a}$. - Lion, tiger, and bear attacks are independent Poisson processes with λ values .1/hour, .2/hour, and .3/hour. - Distribution of time T_{tiger} till first tiger attack? - Exponential $\lambda_{\mathrm{tiger}} = .2/\mathrm{hour}$. So $P\{T_{\mathrm{tiger}} > a\} = e^{-.2a}$. - ▶ How about $E[T_{\text{tiger}}]$ and $Var[T_{\text{tiger}}]$? - Lion, tiger, and bear attacks are independent Poisson processes with λ values .1/hour, .2/hour, and .3/hour. - Distribution of time T_{tiger} till first tiger attack? - Exponential $\lambda_{\text{tiger}} = .2/\text{hour}$. So $P\{T_{\text{tiger}} > a\} = e^{-.2a}$. - ▶ How about $E[T_{\text{tiger}}]$ and $Var[T_{\text{tiger}}]$? - ► $E[T_{\rm tiger}] = 1/\lambda_{\rm tiger} = 5$ hours, ${\rm Var}[T_{\rm tiger}] = 1/\lambda_{\rm tiger}^2 = 25$ hours squared. - Lion, tiger, and bear attacks are independent Poisson processes with λ values .1/hour, .2/hour, and .3/hour. - Distribution of time T_{tiger} till first tiger attack? - Exponential $\lambda_{\text{tiger}} = .2/\text{hour}$. So $P\{T_{\text{tiger}} > a\} = e^{-.2a}$. - ▶ How about $E[T_{\text{tiger}}]$ and $Var[T_{\text{tiger}}]$? - ► $E[T_{\rm tiger}] = 1/\lambda_{\rm tiger} = 5$ hours, ${\rm Var}[T_{\rm tiger}] = 1/\lambda_{\rm tiger}^2 = 25$ hours squared. - Time until 5th attack by any animal? - Lion, tiger, and bear attacks are independent Poisson processes with λ values .1/hour, .2/hour, and .3/hour. - Distribution of time T_{tiger} till first tiger attack? - Exponential $\lambda_{\text{tiger}} = .2/\text{hour}$. So $P\{T_{\text{tiger}} > a\} = e^{-.2a}$. - ▶ How about $E[T_{\text{tiger}}]$ and $Var[T_{\text{tiger}}]$? - ► $E[T_{\rm tiger}] = 1/\lambda_{\rm tiger} = 5$ hours, ${\rm Var}[T_{\rm tiger}] = 1/\lambda_{\rm tiger}^2 = 25$ hours squared. - ► Time until 5th attack by any animal? - ▶ Γ distribution with $\alpha = 5$ and $\lambda = .6$. - Lion, tiger, and bear attacks are independent Poisson processes with λ values .1/hour, .2/hour, and .3/hour. - Distribution of time T_{tiger} till first tiger attack? - Exponential $\lambda_{\text{tiger}} = .2/\text{hour}$. So $P\{T_{\text{tiger}} > a\} = e^{-.2a}$. - ▶ How about $E[T_{\text{tiger}}]$ and $Var[T_{\text{tiger}}]$? - ► $E[T_{\rm tiger}] = 1/\lambda_{\rm tiger} = 5$ hours, ${\rm Var}[T_{\rm tiger}] = 1/\lambda_{\rm tiger}^2 = 25$ hours squared. - Time until 5th attack by any animal? - ▶ Γ distribution with $\alpha = 5$ and $\lambda = .6$. - ▶ X, where Xth attack is 5th bear attack? - Lion, tiger, and bear attacks are independent Poisson processes with λ values .1/hour, .2/hour, and .3/hour. - Distribution of time T_{tiger} till first tiger attack? - Exponential $\lambda_{\text{tiger}} = .2/\text{hour}$. So $P\{T_{\text{tiger}} > a\} = e^{-.2a}$. - ▶ How about $E[T_{\text{tiger}}]$ and $Var[T_{\text{tiger}}]$? - ► $E[T_{\rm tiger}] = 1/\lambda_{\rm tiger} = 5$ hours, ${\rm Var}[T_{\rm tiger}] = 1/\lambda_{\rm tiger}^2 = 25$ hours squared. - ► Time until 5th attack by any animal? - ▶ Γ distribution with $\alpha = 5$ and $\lambda = .6$. - ▶ X, where Xth attack is 5th bear attack? - ▶ Negative binomial with parameters p = 1/2 and n = 5. - Lion, tiger, and bear attacks are independent Poisson processes with λ values .1/hour, .2/hour, and .3/hour. - Distribution of time T_{tiger} till first tiger attack? - Exponential $\lambda_{\mathrm{tiger}} = .2/\mathrm{hour}$. So $P\{T_{\mathrm{tiger}} > a\} = e^{-.2a}$. - ▶ How about $E[T_{\text{tiger}}]$ and $Var[T_{\text{tiger}}]$? - ► $E[T_{\rm tiger}] = 1/\lambda_{\rm tiger} = 5$ hours, ${\rm Var}[T_{\rm tiger}] = 1/\lambda_{\rm tiger}^2 = 25$ hours squared. - Time until 5th attack by any animal? - ▶ Γ distribution with $\alpha = 5$ and $\lambda = .6$. - ▶ X, where Xth attack is 5th bear attack? - ▶ Negative binomial with parameters p = 1/2 and n = 5. - Can hiker breathe sigh of relief after 5 attack-free hours? Drop a needle of length one on a large sheet of paper (with evenly spaced horizontal lines spaced at all integer heights). - Drop a needle of length one on a large sheet of paper (with evenly spaced horizontal lines spaced at all integer heights). - What's the probability the needle crosses a line? - ▶ Drop a needle of length one on a large sheet of paper (with evenly spaced horizontal lines spaced at all integer heights). - What's the probability the needle crosses a line? - Need some assumptions. Let's say vertical position X of lowermost endpoint of needle modulo one is uniform in [0,1] and independent of angle θ , which is uniform in $[0,\pi]$. Crosses line if and only there is an integer between the numbers X and $X + \sin \theta$, i.e., $X \leq 1 \leq X + \sin \theta$. - ▶ Drop a needle of length one on a large sheet of paper (with evenly spaced horizontal lines spaced at all integer heights). - What's the probability the needle crosses a line? - Need some assumptions. Let's say vertical position X of lowermost endpoint of needle modulo one is uniform in [0,1] and independent of angle θ , which is uniform in $[0,\pi]$. Crosses line if and only there is an integer between the numbers X and $X + \sin \theta$, i.e., $X \le 1 \le X + \sin \theta$. - ▶ Draw the box $[0,1] \times [0,\pi]$ on which (X,θ) is uniform. What's the area of the subset where $X \ge 1 \sin \theta$?