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Three short stories

I There are many continuous probability density functions that
come up in mathematics and its applications.

I It is fun to learn their properties, symmetries, and
interpretations.

I Today we’ll discuss three of them that are particularly elegant
and come with nice stories: Gamma distribution, Cauchy
distribution, Beta bistribution.
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Defining gamma function Γ

I Last time we found that if X is exponential with rate 1 and
n ≥ 0 then E [X n] =

∫∞
0 xne−xdx = n!.

I This expectation E [X n] is actually well defined whenever
n > −1. Set α = n + 1. The following quantity is well defined
for any α > 0:
Γ(α) := E [Xα−1] =

∫∞
0 xα−1e−xdx = (α− 1)!.

I So Γ(α) extends the function (α− 1)! (as defined for strictly
positive integers α) to the positive reals.

I Vexing notational issue: why define Γ so that Γ(α) = (α− 1)!
instead of Γ(α) = α!?

I At least it’s kind of convenient that Γ is defined on (0,∞)
instead of (−1,∞).
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Recall: geometric and negative binomials

I The sum X of n independent geometric random variables of
parameter p is negative binomial with parameter (n, p).

I Waiting for the nth heads. What is P{X = k}?
I Answer:

(k−1
n−1

)
pn−1(1− p)k−np.

I What’s the continuous (Poisson point process) version of
“waiting for the nth event”?
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Poisson point process limit

I Recall that we can approximate a Poisson process of rate λ by
tossing N coins per time unit and taking p = λ/N.

I Let’s fix a rational number x and try to figure out the
probability that that the nth coin toss happens at time x (i.e.,
on exactly xNth trials, assuming xN is an integer).

I Write p = λ/N and k = xN. (Note p = λx/k.)

I For large N,
(k−1
n−1

)
pn−1(1− p)k−np is

(k − 1)(k − 2) . . . (k − n + 1)

(n − 1)!
pn−1(1− p)k−np

≈ kn−1

(n − 1)!
pn−1e−xλp =

1

N

((λx)(n−1)e−λxλ

(n − 1)!

)
.
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Defining Γ distribution

I The probability from previous side, 1
N

(
(λx)(n−1)e−λxλ

(n−1)!

)
suggests

the form for a continuum random variable.

I Replace n (generally integer valued) with α (which we will
eventually allow be to be any real number).

I Say that random variable X has gamma distribution with

parameters (α, λ) if fX (x) =

{
(λx)α−1e−λxλ

Γ(α) x ≥ 0

0 x < 0
.

I Waiting time interpretation makes sense only for integer α,
but distribution is defined for general positive α.

I Easiest to remember λ = 1 case, where f (x) = xα−1

(α−1)!e
−x .

I Think of the factor xα−1

(α−1)! as some kind of “volume” of the

set of α-tuples of positive reals that add up to x (or
equivalently and more precisely, as the volume of the set of
(α− 1)-tuples of positive reals that add up to at most x).

I The general λ case is obtained by rescaling the λ = 1 case.
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Cauchy distribution

I A standard Cauchy random variable is a random real
number with probability density f (x) = 1

π
1

1+x2 .

I There is a “spinning flashlight” interpretation. Put a flashlight
at (0, 1), spin it to a uniformly random angle in [−π/2, π/2],
and consider point X where light beam hits the x-axis.

I FX (x) = P{X ≤ x} = P{tan θ ≤ x} = P{θ ≤ tan−1x} =
1
2 + 1

π tan−1 x .

I Find fX (x) = d
dx F (x) = 1

π
1

1+x2 .
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Cauchy distribution: Brownian motion interpretation

I The light beam travels in (randomly directed) straight line.
There’s a windier random path called Brownian motion.

I If you do a simple random walk on a grid and take the grid
size to zero, then you get Brownian motion as a limit.

I We will not give a complete mathematical description of
Brownian motion here, just one nice fact.

I FACT: start Brownian motion at point (x , y) in the upper half
plane. Probability it hits negative x-axis before positive x-axis
is 1

2 + 1
π tan−1 y

x . Linear function of angle between positive
x-axis and line through (0, 0) and (x , y).

I Start Brownian motion at (0, 1) and let X be the location of
the first point on the x-axis it hits. What’s P{X < a}?

I Applying FACT, translation invariance, reflection symmetry:
P{X < x} = P{X > −x} = 1

2 + 1
π tan−1 1

x .

I So X is a standard Cauchy random variable.
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Question: what if we start at (0, 2)?

I Start at (0, 2). Let Y be first point on x-axis hit by Brownian
motion. Again, same probability distribution as point hit by
flashlight trajectory.

I Flashlight point of view: Y has the same law as 2X where X
is standard Cauchy.

I Brownian point of view: Y has same law as X1 + X2 where X1

and X2 are standard Cauchy.

I But wait a minute. Var(Y ) = 4Var(X ) and by independence
Var(X1 + X2) = Var(X1) + Var(X2) = 2Var(X2). Can this be
right?

I Cauchy distribution doesn’t have finite variance or mean.

I Some standard facts we’ll learn later in the course (central
limit theorem, law of large numbers) don’t apply to it.
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Beta distribution: Alice and Bob revisited

I Suppose I have a coin with a heads probability p that I don’t
know much about.

I What do I mean by not knowing anything? Let’s say that I
think p is equally likely to be any of the numbers
{0, .1, .2, .3, .4, . . . , .9, 1}.

I Now imagine a multi-stage experiment where I first choose p
and then I toss n coins.

I Given that number h of heads is a− 1, and b − 1 tails, what’s
conditional probability p was a certain value x?

I P
(
p = x |h = (a− 1)

)
=

1
11 ( n

a−1)x
a−1(1−x)b−1

P{h=(a−1)} which is

xa−1(1− x)b−1 times a constant that doesn’t depend on x .
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Beta distribution

I Suppose I have a coin with a heads probability p that I really
don’t know anything about. Let’s say p is uniform on [0, 1].

I Now imagine a multi-stage experiment where I first choose p
uniformly from [0, 1] and then I toss n coins.

I If I get, say, a− 1 heads and b − 1 tails, then what is the
conditional probability density for p?

I Turns out to be a constant (that doesn’t depend on x) times
xa−1(1− x)b−1.

I 1
B(a,b)x

a−1(1− x)b−1 on [0, 1], where B(a, b) is constant
chosen to make integral one. Can be shown that
B(a, b) = Γ(a)Γ(b)

Γ(a+b) .

I What is E [X ]?

I Answer: a
a+b .
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