18.600: Lecture 17 Continuous random variables

Scott Sheffield

MIT

Outline

Continuous random variables

Expectation and variance of continuous random variables

Uniform random variable on [0,1]

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

Outline

Continuous random variables

Expectation and variance of continuous random variables

Uniform random variable on [0,1]

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

▶ Say X is a **continuous random variable** if there exists a **probability density function** $f = f_X$ on \mathbb{R} such that $P\{X \in B\} = \int_B f(x)dx := \int 1_B(x)f(x)dx$.

- ▶ Say X is a **continuous random variable** if there exists a **probability density function** $f = f_X$ on \mathbb{R} such that $P\{X \in B\} = \int_B f(x)dx := \int 1_B(x)f(x)dx$.
- ▶ We may assume $\int_{\mathbb{R}} f(x) dx = \int_{-\infty}^{\infty} f(x) dx = 1$ and f is non-negative.

- Say X is a **continuous random variable** if there exists a **probability density function** $f = f_X$ on \mathbb{R} such that $P\{X \in B\} = \int_B f(x)dx := \int 1_B(x)f(x)dx$.
- ▶ We may assume $\int_{\mathbb{R}} f(x) dx = \int_{-\infty}^{\infty} f(x) dx = 1$ and f is non-negative.
- ▶ Probability of interval [a, b] is given by $\int_a^b f(x)dx$, the area under f between a and b.

- Say X is a **continuous random variable** if there exists a **probability density function** $f = f_X$ on \mathbb{R} such that $P\{X \in B\} = \int_B f(x)dx := \int 1_B(x)f(x)dx$.
- ▶ We may assume $\int_{\mathbb{R}} f(x) dx = \int_{-\infty}^{\infty} f(x) dx = 1$ and f is non-negative.
- ▶ Probability of interval [a, b] is given by $\int_a^b f(x)dx$, the area under f between a and b.
- Probability of any single point is zero.

- Say X is a **continuous random variable** if there exists a **probability density function** $f = f_X$ on \mathbb{R} such that $P\{X \in B\} = \int_B f(x)dx := \int 1_B(x)f(x)dx$.
- ▶ We may assume $\int_{\mathbb{R}} f(x) dx = \int_{-\infty}^{\infty} f(x) dx = 1$ and f is non-negative.
- ▶ Probability of interval [a, b] is given by $\int_a^b f(x)dx$, the area under f between a and b.
- Probability of any single point is zero.
- ▶ Define **cumulative distribution function** $F(a) = F_X(a) := P\{X < a\} = P\{X \le a\} = \int_{-\infty}^a f(x) dx$.

Suppose
$$f(x) = \begin{cases} 1/2 & x \in [0,2] \\ 0 & x \notin [0,2]. \end{cases}$$

► Suppose
$$f(x) = \begin{cases} 1/2 & x \in [0,2] \\ 0 & x \notin [0,2]. \end{cases}$$

• What is $P\{X < 3/2\}$?

► Suppose
$$f(x) = \begin{cases} 1/2 & x \in [0,2] \\ 0 & x \notin [0,2]. \end{cases}$$

- What is $P\{X < 3/2\}$?
- What is $P\{X = 3/2\}$?

► Suppose
$$f(x) = \begin{cases} 1/2 & x \in [0,2] \\ 0 & x \notin [0,2]. \end{cases}$$

- What is $P\{X < 3/2\}$?
- What is $P\{X = 3/2\}$?
- What is $P\{1/2 < X < 3/2\}$?

► Suppose
$$f(x) = \begin{cases} 1/2 & x \in [0,2] \\ 0 & x \notin [0,2]. \end{cases}$$

- What is $P\{X < 3/2\}$?
- What is $P\{X = 3/2\}$?
- What is $P\{1/2 < X < 3/2\}$?
- ▶ What is $P{X \in (0,1) \cup (3/2,5)}$?

► Suppose
$$f(x) = \begin{cases} 1/2 & x \in [0,2] \\ 0 & x \notin [0,2]. \end{cases}$$

- ▶ What is $P{X < 3/2}$?
- What is $P\{X = 3/2\}$?
- What is $P\{1/2 < X < 3/2\}$?
- ▶ What is $P{X \in (0,1) \cup (3/2,5)}$?
- ▶ What is *F*?

► Suppose
$$f(x) = \begin{cases} 1/2 & x \in [0,2] \\ 0 & x \notin [0,2]. \end{cases}$$

- What is $P\{X < 3/2\}$?
- What is $P\{X = 3/2\}$?
- ▶ What is $P\{1/2 < X < 3/2\}$?
- ▶ What is $P{X \in (0,1) \cup (3/2,5)}$?
- ▶ What is *F*?

$$F(a) = F_X(a) = \begin{cases} 0 & a \le 0 \\ a/2 & 0 < a < 2 \\ 1 & a \ge 2 \end{cases}$$

► Suppose
$$f(x) = \begin{cases} 1/2 & x \in [0,2] \\ 0 & x \notin [0,2]. \end{cases}$$

- What is $P\{X < 3/2\}$?
- What is $P\{X = 3/2\}$?
- What is $P\{1/2 < X < 3/2\}$?
- ▶ What is $P{X \in (0,1) \cup (3/2,5)}$?
- ▶ What is *F*?

$$F(a) = F_X(a) = \begin{cases} 0 & a \le 0 \\ a/2 & 0 < a < 2 \\ 1 & a \ge 2 \end{cases}$$

▶ In general $P(a \le x \le b) = F(b) - F(x)$.

► Suppose
$$f(x) = \begin{cases} 1/2 & x \in [0,2] \\ 0 & x \notin [0,2]. \end{cases}$$

- ▶ What is $P{X < 3/2}$?
- What is $P\{X = 3/2\}$?
- What is $P\{1/2 < X < 3/2\}$?
- ▶ What is $P{X \in (0,1) \cup (3/2,5)}$?
- ▶ What is *F*?

$$F(a) = F_X(a) = \begin{cases} 0 & a \le 0 \\ a/2 & 0 < a < 2 \\ 1 & a \ge 2 \end{cases}$$

- ▶ In general $P(a \le x \le b) = F(b) F(x)$.
- ▶ We say that X is **uniformly distributed on** [0,2].

► Suppose
$$f(x) = \begin{cases} x/2 & x \in [0,2] \\ 0 & 0 \notin [0,2]. \end{cases}$$

► Suppose
$$f(x) = \begin{cases} x/2 & x \in [0,2] \\ 0 & 0 \notin [0,2]. \end{cases}$$

▶ What is $P{X < 3/2}$?

► Suppose
$$f(x) = \begin{cases} x/2 & x \in [0,2] \\ 0 & 0 \notin [0,2]. \end{cases}$$

- ▶ What is $P{X < 3/2}$?
- What is $P\{X = 3/2\}$?

► Suppose
$$f(x) = \begin{cases} x/2 & x \in [0,2] \\ 0 & 0 \notin [0,2]. \end{cases}$$

- What is $P\{X < 3/2\}$?
- What is $P\{X = 3/2\}$?
- What is $P\{1/2 < X < 3/2\}$?

► Suppose
$$f(x) = \begin{cases} x/2 & x \in [0,2] \\ 0 & 0 \notin [0,2]. \end{cases}$$

- What is $P\{X < 3/2\}$?
- What is $P\{X = 3/2\}$?
- What is $P\{1/2 < X < 3/2\}$?
- ▶ What is F?

► Suppose
$$f(x) = \begin{cases} x/2 & x \in [0,2] \\ 0 & 0 \notin [0,2]. \end{cases}$$

- ▶ What is $P{X < 3/2}$?
- What is $P\{X = 3/2\}$?
- What is $P\{1/2 < X < 3/2\}$?
- ▶ What is *F*?

$$F_X(a) = \begin{cases} 0 & a \le 0 \\ a^2/4 & 0 < a < 2 \\ 1 & a \ge 2 \end{cases}$$

Outline

Continuous random variables

Expectation and variance of continuous random variables

Uniform random variable on [0,1]

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

Outline

Continuous random variables

Expectation and variance of continuous random variables

Uniform random variable on [0,1]

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

▶ Recall that when X was a discrete random variable, with $p(x) = P\{X = x\}$, we wrote

$$E[X] = \sum_{x: p(x) > 0} p(x)x.$$

▶ Recall that when X was a discrete random variable, with $p(x) = P\{X = x\}$, we wrote

$$E[X] = \sum_{x: p(x) > 0} p(x)x.$$

► How should we define E[X] when X is a continuous random variable?

▶ Recall that when X was a discrete random variable, with $p(x) = P\{X = x\}$, we wrote

$$E[X] = \sum_{x: p(x) > 0} p(x)x.$$

- ► How should we define *E*[*X*] when *X* is a continuous random variable?
- Answer: $E[X] = \int_{-\infty}^{\infty} f(x)x dx$.

▶ Recall that when X was a discrete random variable, with $p(x) = P\{X = x\}$, we wrote

$$E[X] = \sum_{x: p(x) > 0} p(x)x.$$

- ► How should we define E[X] when X is a continuous random variable?
- Answer: $E[X] = \int_{-\infty}^{\infty} f(x)xdx$.
- ▶ Recall that when X was a discrete random variable, with $p(x) = P\{X = x\}$, we wrote

$$E[g(X)] = \sum_{x: p(x)>0} p(x)g(x).$$

▶ Recall that when X was a discrete random variable, with $p(x) = P\{X = x\}$, we wrote

$$E[X] = \sum_{x: p(x) > 0} p(x)x.$$

- ▶ How should we define E[X] when X is a continuous random variable?
- Answer: $E[X] = \int_{-\infty}^{\infty} f(x)xdx$.
- Recall that when X was a discrete random variable, with $p(x) = P\{X = x\}$, we wrote

$$E[g(X)] = \sum_{x: p(x) > 0} p(x)g(x).$$

▶ What is the analog when *X* is a continuous random variable?

▶ Recall that when X was a discrete random variable, with $p(x) = P\{X = x\}$, we wrote

$$E[X] = \sum_{x: p(x) > 0} p(x)x.$$

- ▶ How should we define E[X] when X is a continuous random variable?
- Answer: $E[X] = \int_{-\infty}^{\infty} f(x)xdx$.
- Recall that when X was a discrete random variable, with $p(x) = P\{X = x\}$, we wrote

$$E[g(X)] = \sum_{x: p(x) > 0} p(x)g(x).$$

- ▶ What is the analog when X is a continuous random variable?
- ▶ Answer: we will write $E[g(X)] = \int_{-\infty}^{\infty} f(x)g(x)dx$.

▶ Suppose X is a continuous random variable with mean μ .

- ▶ Suppose X is a continuous random variable with mean μ .
- ▶ We can write $Var[X] = E[(X \mu)^2]$, same as in the discrete case.

- ▶ Suppose X is a continuous random variable with mean μ .
- ▶ We can write $Var[X] = E[(X \mu)^2]$, same as in the discrete case.
- Next, if $g = g_1 + g_2$ then $E[g(X)] = \int g_1(x)f(x)dx + \int g_2(x)f(x)dx = \int (g_1(x) + g_2(x))f(x)dx = E[g_1(X)] + E[g_2(X)].$

- ▶ Suppose X is a continuous random variable with mean μ .
- ▶ We can write $Var[X] = E[(X \mu)^2]$, same as in the discrete case.
- ▶ Next, if $g = g_1 + g_2$ then $E[g(X)] = \int g_1(x)f(x)dx + \int g_2(x)f(x)dx = \int (g_1(x) + g_2(x))f(x)dx = E[g_1(X)] + E[g_2(X)].$
- ▶ Furthermore, E[ag(X)] = aE[g(X)] when a is a constant.

- ▶ Suppose X is a continuous random variable with mean μ .
- ▶ We can write $Var[X] = E[(X \mu)^2]$, same as in the discrete case.
- ▶ Next, if $g = g_1 + g_2$ then $E[g(X)] = \int g_1(x)f(x)dx + \int g_2(x)f(x)dx = \int (g_1(x) + g_2(x))f(x)dx = E[g_1(X)] + E[g_2(X)].$
- ▶ Furthermore, E[ag(X)] = aE[g(X)] when a is a constant.
- Just as in the discrete case, we can expand the variance expression as $\operatorname{Var}[X] = E[X^2 2\mu X + \mu^2]$ and use additivity of expectation to say that $\operatorname{Var}[X] = E[X^2] 2\mu E[X] + E[\mu^2] = E[X^2] 2\mu^2 + \mu^2 = E[X^2] E[X]^2$.

Variance of continuous random variables

- ▶ Suppose X is a continuous random variable with mean μ .
- ▶ We can write $Var[X] = E[(X \mu)^2]$, same as in the discrete case.
- ▶ Next, if $g = g_1 + g_2$ then $E[g(X)] = \int g_1(x)f(x)dx + \int g_2(x)f(x)dx = \int (g_1(x) + g_2(x))f(x)dx = E[g_1(X)] + E[g_2(X)].$
- ▶ Furthermore, E[ag(X)] = aE[g(X)] when a is a constant.
- Just as in the discrete case, we can expand the variance expression as $\operatorname{Var}[X] = E[X^2 2\mu X + \mu^2]$ and use additivity of expectation to say that $\operatorname{Var}[X] = E[X^2] 2\mu E[X] + E[\mu^2] = E[X^2] 2\mu^2 + \mu^2 = E[X^2] E[X]^2$.
- This formula is often useful for calculations.

Outline

Continuous random variables

Expectation and variance of continuous random variables

Uniform random variable on [0,1]

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

Outline

Continuous random variables

Expectation and variance of continuous random variables

Uniform random variable on [0,1]

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

- Suppose X is a random variable with probability density function $f(x) = \begin{cases} 1 & x \in [0,1] \\ 0 & x \notin [0,1]. \end{cases}$
- ▶ Then for any $0 \le a \le b \le 1$ we have $P\{X \in [a, b]\} = b a$.

- Suppose X is a random variable with probability density function $f(x) = \begin{cases} 1 & x \in [0,1] \\ 0 & x \notin [0,1]. \end{cases}$
- ▶ Then for any $0 \le a \le b \le 1$ we have $P\{X \in [a, b]\} = b a$.
- lacktriangle Intuition: all locations along the interval [0,1] equally likely.

- Suppose X is a random variable with probability density function $f(x) = \begin{cases} 1 & x \in [0,1] \\ 0 & x \notin [0,1]. \end{cases}$
- ▶ Then for any $0 \le a \le b \le 1$ we have $P\{X \in [a, b]\} = b a$.
- lacktriangle Intuition: all locations along the interval [0,1] equally likely.
- Say that X is a uniform random variable on [0,1] or that X is sampled uniformly from [0,1].

$$F_X(a) = egin{cases} 0 & a < 0 \ a & a \in [0,1] \ 1 & a > 1 \end{cases}.$$

Suppose X is a random variable with probability density function $f(x) = \begin{cases} 1 & x \in [0,1] \\ 0 & x \notin [0,1], \end{cases}$ which implies

$$F_X(a) = egin{cases} 0 & a < 0 \ a & a \in [0,1] \ 1 & a > 1 \end{cases}.$$

▶ What is *E*[*X*]?

$$F_X(a) = egin{cases} 0 & a < 0 \ a & a \in [0,1] \ 1 & a > 1 \end{cases}.$$

- ▶ What is *E*[*X*]?
- ▶ Guess 1/2 (since 1/2 is, you know, in the middle).

$$F_X(a) = egin{cases} 0 & a < 0 \ a & a \in [0,1] \ 1 & a > 1 \end{cases}.$$

- ▶ What is *E*[*X*]?
- ► Guess 1/2 (since 1/2 is, you know, in the middle).
- ► Indeed, $\int_{-\infty}^{\infty} f(x)xdx = \int_{0}^{1} xdx = \frac{x^{2}}{2}\Big|_{0}^{1} = 1/2.$

$$F_X(a) = egin{cases} 0 & a < 0 \ a & a \in [0,1] \ 1 & a > 1 \end{cases}.$$

- ▶ What is *E*[*X*]?
- ► Guess 1/2 (since 1/2 is, you know, in the middle).
- ► Indeed, $\int_{-\infty}^{\infty} f(x)xdx = \int_{0}^{1} xdx = \frac{x^{2}}{2}\Big|_{0}^{1} = 1/2$.
- ▶ What is the general moment $E[X^k]$ for $k \ge 0$?

$$F_X(a) = egin{cases} 0 & a < 0 \ a & a \in [0,1] \ 1 & a > 1 \end{cases}.$$

- ▶ What is *E*[*X*]?
- ► Guess 1/2 (since 1/2 is, you know, in the middle).
- ► Indeed, $\int_{-\infty}^{\infty} f(x)xdx = \int_{0}^{1} xdx = \frac{x^{2}}{2}\Big|_{0}^{1} = 1/2$.
- ▶ What is the general moment $E[X^k]$ for $k \ge 0$?
- Answer: 1/(k+1).

$$F_X(a) = egin{cases} 0 & a < 0 \ a & a \in [0,1] \ 1 & a > 1 \end{cases}.$$

- ▶ What is *E*[*X*]?
- ▶ Guess 1/2 (since 1/2 is, you know, in the middle).
- ► Indeed, $\int_{-\infty}^{\infty} f(x)x dx = \int_{0}^{1} x dx = \frac{x^{2}}{2} \Big|_{0}^{1} = 1/2$.
- ▶ What is the general moment $E[X^k]$ for $k \ge 0$?
- Answer: 1/(k+1).
- ▶ What would you guess the variance is? Expected square of distance from 1/2?

$$F_X(a) = egin{cases} 0 & a < 0 \ a & a \in [0,1] \ 1 & a > 1 \end{cases}.$$

- ▶ What is *E*[*X*]?
- ► Guess 1/2 (since 1/2 is, you know, in the middle).
- ► Indeed, $\int_{-\infty}^{\infty} f(x)xdx = \int_{0}^{1} xdx = \frac{x^{2}}{2}\Big|_{0}^{1} = 1/2$.
- ▶ What is the general moment $E[X^k]$ for $k \ge 0$?
- Answer: 1/(k+1).
- ▶ What would you guess the variance is? Expected square of distance from 1/2?
- ▶ It's obviously less than 1/4, but how much less?

$$F_X(a) = egin{cases} 0 & a < 0 \ a & a \in [0,1] \ 1 & a > 1 \end{cases}.$$

- ▶ What is *E*[*X*]?
- ▶ Guess 1/2 (since 1/2 is, you know, in the middle).
- ▶ Indeed, $\int_{-\infty}^{\infty} f(x)xdx = \int_{0}^{1} xdx = \frac{x^{2}}{2}\Big|_{0}^{1} = 1/2$.
- ▶ What is the general moment $E[X^k]$ for $k \ge 0$?
- Answer: 1/(k+1).
- ► What would you guess the variance is? Expected square of distance from 1/2?
- ▶ It's obviously less than 1/4, but how much less?
- $\operatorname{Var}E[X^2] E[X]^2 = 1/3 1/4 = 1/12.$

Outline

Continuous random variables

Expectation and variance of continuous random variables

Uniform random variable on [0,1]

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

Outline

Continuous random variables

Expectation and variance of continuous random variables

Uniform random variable on [0,1]

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

Fix $\alpha < \beta$ and suppose X is a random variable with probability density function $f(x) = \begin{cases} \frac{1}{\beta - \alpha} & x \in [\alpha, \beta] \\ 0 & x \notin [\alpha, \beta]. \end{cases}$

- Fix $\alpha < \beta$ and suppose X is a random variable with probability density function $f(x) = \begin{cases} \frac{1}{\beta \alpha} & x \in [\alpha, \beta] \\ 0 & x \notin [\alpha, \beta]. \end{cases}$
- ▶ Then for any $\alpha \le a \le b \le \beta$ we have $P\{X \in [a,b]\} = \frac{b-a}{\beta-\alpha}$.

- Fix $\alpha < \beta$ and suppose X is a random variable with probability density function $f(x) = \begin{cases} \frac{1}{\beta \alpha} & x \in [\alpha, \beta] \\ 0 & x \notin [\alpha, \beta]. \end{cases}$
- ▶ Then for any $\alpha \le a \le b \le \beta$ we have $P\{X \in [a,b]\} = \frac{b-a}{\beta-\alpha}$.
- Intuition: all locations along the interval $[\alpha, \beta]$ are equally likely.

- Fix $\alpha < \beta$ and suppose X is a random variable with probability density function $f(x) = \begin{cases} \frac{1}{\beta \alpha} & x \in [\alpha, \beta] \\ 0 & x \notin [\alpha, \beta]. \end{cases}$
- ▶ Then for any $\alpha \le a \le b \le \beta$ we have $P\{X \in [a, b]\} = \frac{b-a}{\beta-\alpha}$.
- Intuition: all locations along the interval $[\alpha, \beta]$ are equally likely.
- Say that X is a uniform random variable on $[\alpha, \beta]$ or that X is sampled uniformly from $[\alpha, \beta]$.

Suppose X is a random variable with probability density function $f(x) = \begin{cases} \frac{1}{\beta - \alpha} & x \in [\alpha, \beta] \\ 0 & x \notin [\alpha, \beta]. \end{cases}$

- Suppose X is a random variable with probability density function $f(x) = \begin{cases} \frac{1}{\beta \alpha} & x \in [\alpha, \beta] \\ 0 & x \notin [\alpha, \beta]. \end{cases}$
- ▶ What is E[X]?

- Suppose X is a random variable with probability density function $f(x) = \begin{cases} \frac{1}{\beta \alpha} & x \in [\alpha, \beta] \\ 0 & x \notin [\alpha, \beta]. \end{cases}$
- ▶ What is *E*[*X*]?
- ▶ Intuitively, we'd guess the midpoint $\frac{\alpha+\beta}{2}$.

- Suppose X is a random variable with probability density function $f(x) = \begin{cases} \frac{1}{\beta \alpha} & x \in [\alpha, \beta] \\ 0 & x \notin [\alpha, \beta]. \end{cases}$
- ▶ What is *E*[*X*]?
- ▶ Intuitively, we'd guess the midpoint $\frac{\alpha+\beta}{2}$.
- What's the cleanest way to prove this?

- Suppose X is a random variable with probability density function $f(x) = \begin{cases} \frac{1}{\beta \alpha} & x \in [\alpha, \beta] \\ 0 & x \notin [\alpha, \beta]. \end{cases}$
- ▶ What is *E*[*X*]?
- ▶ Intuitively, we'd guess the midpoint $\frac{\alpha+\beta}{2}$.
- What's the cleanest way to prove this?
- ▶ One approach: let Y be uniform on [0,1] and try to show that $X = (\beta \alpha)Y + \alpha$ is uniform on $[\alpha, \beta]$.

- Suppose X is a random variable with probability density function $f(x) = \begin{cases} \frac{1}{\beta \alpha} & x \in [\alpha, \beta] \\ 0 & x \notin [\alpha, \beta]. \end{cases}$
- ▶ What is *E*[*X*]?
- ▶ Intuitively, we'd guess the midpoint $\frac{\alpha+\beta}{2}$.
- What's the cleanest way to prove this?
- ▶ One approach: let Y be uniform on [0,1] and try to show that $X = (\beta \alpha)Y + \alpha$ is uniform on $[\alpha, \beta]$.
- ► Then expectation linearity gives $E[X] = (\beta \alpha)E[Y] + \alpha = (1/2)(\beta \alpha) + \alpha = \frac{\alpha + \beta}{2}$.

- Suppose X is a random variable with probability density function $f(x) = \begin{cases} \frac{1}{\beta \alpha} & x \in [\alpha, \beta] \\ 0 & x \notin [\alpha, \beta]. \end{cases}$
- ▶ What is *E*[*X*]?
- ▶ Intuitively, we'd guess the midpoint $\frac{\alpha+\beta}{2}$.
- What's the cleanest way to prove this?
- ▶ One approach: let Y be uniform on [0,1] and try to show that $X = (\beta \alpha)Y + \alpha$ is uniform on $[\alpha, \beta]$.
- ► Then expectation linearity gives $E[X] = (\beta \alpha)E[Y] + \alpha = (1/2)(\beta \alpha) + \alpha = \frac{\alpha + \beta}{2}$.
- ▶ Using similar logic, what is the variance Var[X]?

- Suppose X is a random variable with probability density function $f(x) = \begin{cases} \frac{1}{\beta \alpha} & x \in [\alpha, \beta] \\ 0 & x \notin [\alpha, \beta]. \end{cases}$
- ▶ What is *E*[*X*]?
- ▶ Intuitively, we'd guess the midpoint $\frac{\alpha+\beta}{2}$.
- What's the cleanest way to prove this?
- ▶ One approach: let Y be uniform on [0,1] and try to show that $X = (\beta \alpha)Y + \alpha$ is uniform on $[\alpha, \beta]$.
- ► Then expectation linearity gives $E[X] = (\beta \alpha)E[Y] + \alpha = (1/2)(\beta \alpha) + \alpha = \frac{\alpha + \beta}{2}$.
- ▶ Using similar logic, what is the variance Var[X]?
- Answer: $\operatorname{Var}[X] = \operatorname{Var}[(\beta \alpha)Y + \alpha] = \operatorname{Var}[(\beta \alpha)Y] = (\beta \alpha)^2 \operatorname{Var}[Y] = (\beta \alpha)^2 / 12.$

Outline

Continuous random variables

Expectation and variance of continuous random variables

Uniform random variable on [0,1]

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

Outline

Continuous random variables

Expectation and variance of continuous random variables

Uniform random variable on [0,1]

Uniform random variable on $[\alpha, \beta]$

Measurable sets and a famous paradox

▶ One of the very simplest probability density functions is

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 0 & 0 \notin [0,1]. \end{cases}$$

► One of the very simplest probability density functions is $f(x) = \begin{cases} 1 & x \in [0,1] \\ 0 & 0 \notin [0,1]. \end{cases}$

▶ If $B \subset [0,1]$ is an interval, then $P\{X \in B\}$ is the length of that interval.

- ► One of the very simplest probability density functions is $f(x) = \begin{cases} 1 & x \in [0,1] \\ 0 & 0 \not\in [0,1]. \end{cases}$
- ▶ If $B \subset [0,1]$ is an interval, then $P\{X \in B\}$ is the length of that interval.
- ▶ Generally, if $B \subset [0,1]$ then $P\{X \in B\} = \int_B 1 dx = \int 1_B(x) dx$ is the "total volume" or "total length" of the set B.

- ► One of the very simplest probability density functions is $f(x) = \begin{cases} 1 & x \in [0,1] \\ 0 & 0 \not\in [0,1]. \end{cases}$
- ▶ If $B \subset [0,1]$ is an interval, then $P\{X \in B\}$ is the length of that interval.
- ▶ Generally, if $B \subset [0,1]$ then $P\{X \in B\} = \int_B 1 dx = \int 1_B(x) dx$ is the "total volume" or "total length" of the set B.
- ▶ What if *B* is the set of all rational numbers?

Uniform measure: is probability defined for all subsets?

- ► One of the very simplest probability density functions is $f(x) = \begin{cases} 1 & x \in [0,1] \\ 0 & 0 \not\in [0,1]. \end{cases}$
- ▶ If $B \subset [0,1]$ is an interval, then $P\{X \in B\}$ is the length of that interval.
- ▶ Generally, if $B \subset [0,1]$ then $P\{X \in B\} = \int_B 1 dx = \int 1_B(x) dx$ is the "total volume" or "total length" of the set B.
- ▶ What if *B* is the set of all rational numbers?
- ► How do we mathematically define the volume of an arbitrary set *B*?

▶ **Hypothetical:** Consider the interval [0,1) with the two endpoints glued together (so it looks like a circle). What if we could partition [0,1) into a countably infinite collection of disjoint sets that all looked the same (up to a rotation of the circle) and thus had to have the same probability?

- ▶ **Hypothetical:** Consider the interval [0,1) with the two endpoints glued together (so it looks like a circle). What if we could partition [0,1) into a countably infinite collection of disjoint sets that all looked the same (up to a rotation of the circle) and thus had to have the same probability?
- If that probability was zero, then (by countable additivity) probability of whole circle would be zero, a contradiction.

- ▶ **Hypothetical:** Consider the interval [0,1) with the two endpoints glued together (so it looks like a circle). What if we could partition [0,1) into a countably infinite collection of disjoint sets that all looked the same (up to a rotation of the circle) and thus had to have the same probability?
- If that probability was zero, then (by countable additivity) probability of whole circle would be zero, a contradiction.
- But if that probability were a number greater than zero the probability of whole circle would be infinite, also a contradiction...

- ▶ **Hypothetical:** Consider the interval [0,1) with the two endpoints glued together (so it looks like a circle). What if we could partition [0,1) into a countably infinite collection of disjoint sets that all looked the same (up to a rotation of the circle) and thus had to have the same probability?
- ▶ If that probability was zero, then (by countable additivity) probability of whole circle would be zero, a contradiction.
- But if that probability were a number greater than zero the probability of whole circle would be infinite, also a contradiction...
- Related problem: if (in a non-atomic world, where mass was infinitely divisible) you could cut a cake into countably infinitely many pieces all of the same weight, how much would each piece weigh?

- ▶ **Hypothetical:** Consider the interval [0,1) with the two endpoints glued together (so it looks like a circle). What if we could partition [0,1) into a countably infinite collection of disjoint sets that all looked the same (up to a rotation of the circle) and thus had to have the same probability?
- ▶ If that probability was zero, then (by countable additivity) probability of whole circle would be zero, a contradiction.
- But if that probability were a number greater than zero the probability of whole circle would be infinite, also a contradiction...
- Related problem: if (in a non-atomic world, where mass was infinitely divisible) you could cut a cake into countably infinitely many pieces all of the same weight, how much would each piece weigh?
- ▶ **Question:** Is it really possible to partition [0,1) into countably many identical (up to rotation) pieces?

▶ **Consider** the set of numbers $\{0, 1, 2, \dots, 99\}$.

- **Consider** the set of numbers $\{0, 1, 2, \dots, 99\}$.
- ▶ Let's suggest one fancy way to divide this set into ten equal subsets that are translations of each other modulo 100.

- **Consider** the set of numbers $\{0, 1, 2, \dots, 99\}$.
- ▶ Let's suggest one fancy way to divide this set into ten equal subsets that are translations of each other modulo 100.
- ▶ Two numbers are **equivalent modulo** 10 if their difference is a multiple of 10 (so they end in same digit). Pick a set $S \subset \{0,1,2,\ldots,99\}$ with one number from each *equivalence class*, e.g., $S = \{40,21,42,53,94,5,76,27,28,39\}$.

- **Consider** the set of numbers $\{0, 1, 2, \dots, 99\}$.
- ▶ Let's suggest one fancy way to divide this set into ten equal subsets that are translations of each other modulo 100.
- ▶ Two numbers are **equivalent modulo** 10 if their difference is a multiple of 10 (so they end in same digit). Pick a set $S \subset \{0, 1, 2, ..., 99\}$ with one number from each *equivalence class*, e.g., $S = \{40, 21, 42, 53, 94, 5, 76, 27, 28, 39\}$.
- ▶ Then for each $j \in \{0, 10, 20, ..., 90\}$ define the set $S_j = \{s + j : s \in S\}$, where addition is modulo 100.

- **Consider** the set of numbers $\{0, 1, 2, \dots, 99\}$.
- ▶ Let's suggest one fancy way to divide this set into ten equal subsets that are translations of each other modulo 100.
- ▶ Two numbers are **equivalent modulo** 10 if their difference is a multiple of 10 (so they end in same digit). Pick a set $S \subset \{0, 1, 2, ..., 99\}$ with one number from each *equivalence class*, e.g., $S = \{40, 21, 42, 53, 94, 5, 76, 27, 28, 39\}$.
- ▶ Then for each $j \in \{0, 10, 20, ..., 90\}$ define the set $S_j = \{s + j : s \in S\}$, where addition is modulo 100.
- Now observe that every number in $\{0, 1, 2, ..., 99\}$ lies in exactly one of the ten S_j sets we have defined.

- **Consider** the set of numbers $\{0, 1, 2, \dots, 99\}$.
- ▶ Let's suggest one fancy way to divide this set into ten equal subsets that are translations of each other modulo 100.
- ▶ Two numbers are **equivalent modulo** 10 if their difference is a multiple of 10 (so they end in same digit). Pick a set $S \subset \{0, 1, 2, ..., 99\}$ with one number from each *equivalence class*, e.g., $S = \{40, 21, 42, 53, 94, 5, 76, 27, 28, 39\}$.
- ▶ Then for each $j \in \{0, 10, 20, ..., 90\}$ define the set $S_j = \{s + j : s \in S\}$, where addition is modulo 100.
- Now observe that every number in $\{0, 1, 2, ..., 99\}$ lies in exactly one of the ten S_j sets we have defined.
- On next slide, we're going to do something similar with [0,1) in place of {0,1,2,...,99} and the rational numbers in [0,1) in place of {0,10,20,...,90}.

▶ Consider wrap-around translations $\tau_r(x) = (x + r) \mod 1$.

- ► Consider wrap-around translations $\tau_r(x) = (x + r) \mod 1$.
- We expect $\tau_r(B)$ to have same probability as B.

- ► Consider wrap-around translations $\tau_r(x) = (x + r) \mod 1$.
- We expect $\tau_r(B)$ to have same probability as B.
- ▶ Call x, y "equivalent modulo rationals" if x y is rational (e.g., $x = \pi 3$ and $y = \pi 9/4$). An **equivalence class** is the set of points in [0,1) equivalent to some given point.

- ► Consider wrap-around translations $\tau_r(x) = (x + r) \mod 1$.
- We expect $\tau_r(B)$ to have same probability as B.
- ▶ Call x, y "equivalent modulo rationals" if x y is rational (e.g., $x = \pi 3$ and $y = \pi 9/4$). An **equivalence class** is the set of points in [0,1) equivalent to some given point.
- ▶ There are uncountably many of these classes.

- ► Consider wrap-around translations $\tau_r(x) = (x + r) \mod 1$.
- We expect $\tau_r(B)$ to have same probability as B.
- ▶ Call x, y "equivalent modulo rationals" if x y is rational (e.g., $x = \pi 3$ and $y = \pi 9/4$). An **equivalence class** is the set of points in [0,1) equivalent to some given point.
- ▶ There are uncountably many of these classes.
- ▶ Let $A \subset [0,1)$ contain **one** point from each class. For each $x \in [0,1)$, there is **one** $a \in A$ such that r = x a is rational.

- ► Consider wrap-around translations $\tau_r(x) = (x + r) \mod 1$.
- We expect $\tau_r(B)$ to have same probability as B.
- ▶ Call x, y "equivalent modulo rationals" if x y is rational (e.g., $x = \pi 3$ and $y = \pi 9/4$). An **equivalence class** is the set of points in [0,1) equivalent to some given point.
- ▶ There are uncountably many of these classes.
- Let $A \subset [0,1)$ contain **one** point from each class. For each $x \in [0,1)$, there is **one** $a \in A$ such that r = x a is rational.
- ▶ Then each x in [0,1) lies in $\tau_r(A)$ for **one** rational $r \in [0,1)$.

- ► Consider wrap-around translations $\tau_r(x) = (x + r) \mod 1$.
- We expect $\tau_r(B)$ to have same probability as B.
- ▶ Call x, y "equivalent modulo rationals" if x y is rational (e.g., $x = \pi 3$ and $y = \pi 9/4$). An **equivalence class** is the set of points in [0,1) equivalent to some given point.
- ▶ There are uncountably many of these classes.
- ▶ Let $A \subset [0,1)$ contain **one** point from each class. For each $x \in [0,1)$, there is **one** $a \in A$ such that r = x a is rational.
- ▶ Then each x in [0,1) lies in $\tau_r(A)$ for **one** rational $r \in [0,1)$.
- ▶ Thus $[0,1) = \cup \tau_r(A)$ as r ranges over rationals in [0,1).

- ► Consider wrap-around translations $\tau_r(x) = (x + r) \mod 1$.
- We expect $\tau_r(B)$ to have same probability as B.
- ▶ Call x, y "equivalent modulo rationals" if x y is rational (e.g., $x = \pi 3$ and $y = \pi 9/4$). An **equivalence class** is the set of points in [0,1) equivalent to some given point.
- ▶ There are uncountably many of these classes.
- ▶ Let $A \subset [0,1)$ contain **one** point from each class. For each $x \in [0,1)$, there is **one** $a \in A$ such that r = x a is rational.
- ▶ Then each x in [0,1) lies in $\tau_r(A)$ for **one** rational $r \in [0,1)$.
- ▶ Thus $[0,1) = \cup \tau_r(A)$ as r ranges over rationals in [0,1).
- ▶ If P(A) = 0, then $P(S) = \sum_{r} P(\tau_r(A)) = 0$. If P(A) > 0 then $P(S) = \sum_{r} P(\tau_r(A)) = \infty$. Contradicts P(S) = 1 axiom.

▶ 1. Re-examine axioms of mathematics: the very existence of a set A with one element from each equivalence class is consequence of so-called axiom of choice. Removing that axiom makes paradox goes away, since one can just suppose (pretend?) these kinds of sets don't exist.

- ▶ 1. Re-examine axioms of mathematics: the very existence of a set A with one element from each equivalence class is consequence of so-called axiom of choice. Removing that axiom makes paradox goes away, since one can just suppose (pretend?) these kinds of sets don't exist.
- 2. Re-examine axioms of probability: Replace countable additivity with finite additivity? (Doesn't fully solve problem: look up Banach-Tarski.)

- ▶ 1. Re-examine axioms of mathematics: the very existence of a set A with one element from each equivalence class is consequence of so-called axiom of choice. Removing that axiom makes paradox goes away, since one can just suppose (pretend?) these kinds of sets don't exist.
- 2. Re-examine axioms of probability: Replace countable additivity with finite additivity? (Doesn't fully solve problem: look up Banach-Tarski.)
- ▶ 3. Keep the axiom of choice and countable additivity but don't define probabilities of all sets: Instead of defining P(B) for every subset B of sample space, restrict attention to a family of so-called "measurable" sets.

- ▶ 1. Re-examine axioms of mathematics: the very existence of a set A with one element from each equivalence class is consequence of so-called axiom of choice. Removing that axiom makes paradox goes away, since one can just suppose (pretend?) these kinds of sets don't exist.
- ▶ 2. **Re-examine axioms of probability:** Replace *countable additivity* with *finite additivity*? (Doesn't fully solve problem: look up Banach-Tarski.)
- ➤ 3. Keep the axiom of choice and countable additivity but don't define probabilities of all sets: Instead of defining P(B) for every subset B of sample space, restrict attention to a family of so-called "measurable" sets.
- Most mainstream probability and analysis takes the third approach.

- ▶ 1. Re-examine axioms of mathematics: the very existence of a set A with one element from each equivalence class is consequence of so-called axiom of choice. Removing that axiom makes paradox goes away, since one can just suppose (pretend?) these kinds of sets don't exist.
- ▶ 2. **Re-examine axioms of probability:** Replace *countable additivity* with *finite additivity*? (Doesn't fully solve problem: look up Banach-Tarski.)
- ➤ 3. Keep the axiom of choice and countable additivity but don't define probabilities of all sets: Instead of defining P(B) for every subset B of sample space, restrict attention to a family of so-called "measurable" sets.
- Most mainstream probability and analysis takes the third approach.
- ▶ In practice, sets we care about (e.g., countable unions of points and intervals) tend to be measurable.

More advanced courses in probability and analysis (such as 18.125 and 18.175) spend a significant amount of time rigorously constructing a class of so-called measurable sets and the so-called Lebesgue measure, which assigns a real number (a measure) to each of these sets.

- More advanced courses in probability and analysis (such as 18.125 and 18.175) spend a significant amount of time rigorously constructing a class of so-called measurable sets and the so-called Lebesgue measure, which assigns a real number (a measure) to each of these sets.
- These courses also replace the Riemann integral with the so-called Lebesgue integral.

- More advanced courses in probability and analysis (such as 18.125 and 18.175) spend a significant amount of time rigorously constructing a class of so-called **measurable sets** and the so-called **Lebesgue measure**, which assigns a real number (a measure) to each of these sets.
- These courses also replace the Riemann integral with the so-called Lebesgue integral.
- ▶ We will not treat these topics any further in this course.

- More advanced courses in probability and analysis (such as 18.125 and 18.175) spend a significant amount of time rigorously constructing a class of so-called **measurable sets** and the so-called **Lebesgue measure**, which assigns a real number (a measure) to each of these sets.
- These courses also replace the Riemann integral with the so-called Lebesgue integral.
- ▶ We will not treat these topics any further in this course.
- We usually limit our attention to probability density functions f and sets B for which the ordinary Riemann integral $\int 1_B(x)f(x)dx$ is well defined.

- More advanced courses in probability and analysis (such as 18.125 and 18.175) spend a significant amount of time rigorously constructing a class of so-called **measurable sets** and the so-called **Lebesgue measure**, which assigns a real number (a measure) to each of these sets.
- These courses also replace the Riemann integral with the so-called Lebesgue integral.
- ▶ We will not treat these topics any further in this course.
- We usually limit our attention to probability density functions f and sets B for which the ordinary Riemann integral $\int 1_B(x)f(x)dx$ is well defined.
- Riemann integration is a mathematically rigorous theory. It's just not as robust as Lebesgue integration.