
18.600: Lecture 1

Permutations and combinations, Pascal’s
triangle, learning to count

Scott Sheffield

MIT



My office hours: Wednesdays 3 to 5 in 2-249

Take a selfie with Norbert Wiener’s desk.
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Politics

I Suppose that, in some election, betting markets place the
probability that your favorite candidate will be elected at 58
percent. Price of a contact that pays 100 dollars if your
candidate wins is 58 dollars.

I Market seems to say that your candidate will probably win, if
“probably” means with probability greater than .5.

I The price of such a contract may fluctuate in time.
I Let X (t) denote the price at time t.
I Suppose X (t) is known to vary continuously in time. What is

probability p it reaches 59 before 57?
I If p > .5, we can make money in expecation by buying at 58

and selling when price hits 57 or 59.
I If p < .5, we can sell at 58 and buy when price hits 57 or 59.
I Efficient market hypothesis (a.k.a. “no free money just lying

around” hypothesis) suggests p = .5 (with some caveats...)
I Natural model for prices: repeatedly toss coin, adding 1 for

heads and −1 for tails, until price hits 0 or 100.
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Which of these statements is “probably” true?

I 1. X (t) will go below 50 at some future point.

I 2. X (t) will get all the way below 20 at some point

I 3. X (t) will reach both 70 and 30, at different future times.

I 4. X (t) will reach both 65 and 35 at different future times.

I 5. X (t) will hit 65, then 50, then 60, then 55.

I Answers: 1, 2, 4.

I Full explanations coming toward the end of the course.

I Problem sets in this course explore applications of probability
to politics, medicine, finance, economics, science, engineering,
philosophy, dating, etc. Stories motivate the math and make
it easier to remember.

I Provocative question: what simple advice, that would greatly
benefit humanity, are we unaware of? Foods to avoid?
Exercises to do? Books to read? How would we know?

I Let’s start with easier questions.
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Permutations

I How many ways to order 52 cards?

I Answer: 52 · 51 · 50 · . . . · 1 = 52! =
80658175170943878571660636856403766975289505600883277824×
1012

I n hats, n people, how many ways to assign each person a hat?

I Answer: n!

I n hats, k < n people, how many ways to assign each person a
hat?

I n · (n − 1) · (n − 2) . . . (n − k + 1) = n!/(n − k)!
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Permutation notation

I A permutation is a function from {1, 2, . . . , n} to
{1, 2, . . . , n} whose range is the whole set {1, 2, . . . , n}. If σ
is a permutation then for each j between 1 and n, the the
value σ(j) is the number that j gets mapped to.

I For example, if n = 3, then σ could be a function such that
σ(1) = 3, σ(2) = 2, and σ(3) = 1.

I If you have n cards with labels 1 through n and you shuffle
them, then you can let σ(j) denote the label of the card in the
jth position. Thus orderings of n cards are in one-to-one
correspondence with permutations of n elements.

I One way to represent σ is to list the values
σ(1), σ(2), . . . , σ(n) in order. The σ above is represented as
{3, 2, 1}.

I If σ and ρ are both permutations, write σ ◦ ρ for their
composition. That is, σ ◦ ρ(j) = σ(ρ(j)).
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Cycle decomposition

I Another way to write a permutation is to describe its cycles:

I For example, taking n = 7, we write (2, 3, 5), (1, 7), (4, 6) for
the permutation σ such that σ(2) = 3, σ(3) = 5, σ(5) = 2 and
σ(1) = 7, σ(7) = 1, and σ(4) = 6, σ(6) = 4.

I If you pick some j and repeatedly apply σ to it, it will “cycle
through” the numbers in its cycle.

I Visualize this by writing down numbers 1 to n and drawing
arrow from each k to σ(k). Trace through a cycle by
following arrows.

I Generally, a function f is called an involution if f (f (x)) = x
for all x .

I A permutation is an involution if all cycles have length one or
two.

I A permutation is “fixed point free” if there are no cycles of
length one.
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I A permutation is an involution if all cycles have length one or
two.

I A permutation is “fixed point free” if there are no cycles of
length one.
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Fundamental counting trick

I n ways to assign hat for the first person. No matter what
choice I make, there will remain n − 1 ways to assign hat to
the second person. No matter what choice I make there, there
will remain n− 2 ways to assign a hat to the third person, etc.

I This is a useful trick: break counting problem into a sequence
of stages so that one always has the same number of choices
to make at each stage. Then the total count becomes a
product of number of choices available at each stage.

I Easy to make mistakes. For example, maybe in your problem,
the number of choices at one stage actually does depend on
choices made during earlier stages.
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Another trick: overcount by a fixed factor

I If you have 5 indistinguishable black cards, 2 indistinguishable
red cards, and three indistinguishable green cards, how many
distinct shuffle patterns of the ten cards are there?

I Answer: if the cards were distinguishable, we’d have 10!. But
we’re overcounting by a factor of 5!2!3!, so the answer is
10!/(5!2!3!).
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(
n
k

)
notation

I How many ways to choose an ordered sequence of k elements
from a list of n elements, with repeats allowed?

I Answer: nk

I How many ways to choose an ordered sequence of k elements
from a list of n elements, with repeats forbidden?

I Answer: n!/(n − k)!

I How many way to choose (unordered) k elements from a list
of n without repeats?

I Answer:
(n
k

)
:= n!

k!(n−k)!

I What is the coefficient in front of xk in the expansion of
(x + 1)n?

I Answer:
(n
k

)
.
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Pascal’s triangle

I Arnold principle.

I A simple recursion:
(n
k

)
=
(n−1
k−1

)
+
(n−1

k

)
.

I What is the coefficient in front of xk in the expansion of
(x + 1)n?

I Answer:
(n
k

)
.

I (x + 1)n =
(n
0

)
· 1 +

(n
1

)
x1 +

(n
2

)
x2 + . . .+

( n
n−1

)
xn−1 +

(n
n

)
xn.

I Question: what is
∑n

k=0

(n
k

)
?

I Answer: (1 + 1)n = 2n.
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More problems

I How many full house hands in poker?

I 13
(4
3

)
· 12
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2

)
I How many “2 pair” hands?
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2

)
· 12
(4
2

)
· 11
(4
1

)
/2

I How many royal flush hands?

I 4
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More problems

I How many hands that have four cards of the same suit, one
card of another suit?

I 4
(13
4

)
· 3
(13
1

)
I How many 10 digit numbers with no consecutive digits that

agree?

I If initial digit can be zero, have 10 · 99 ten-digit sequences. If
initial digit required to be non-zero, have 910.

I How many ways to assign a birthday to each of 23 distinct
people? What if no birthday can be repeated?

I 36623 if repeats allowed. 366!/343! if repeats not allowed.



More problems

I How many hands that have four cards of the same suit, one
card of another suit?

I 4
(13
4

)
· 3
(13
1

)

I How many 10 digit numbers with no consecutive digits that
agree?

I If initial digit can be zero, have 10 · 99 ten-digit sequences. If
initial digit required to be non-zero, have 910.

I How many ways to assign a birthday to each of 23 distinct
people? What if no birthday can be repeated?

I 36623 if repeats allowed. 366!/343! if repeats not allowed.



More problems

I How many hands that have four cards of the same suit, one
card of another suit?

I 4
(13
4

)
· 3
(13
1

)
I How many 10 digit numbers with no consecutive digits that

agree?

I If initial digit can be zero, have 10 · 99 ten-digit sequences. If
initial digit required to be non-zero, have 910.

I How many ways to assign a birthday to each of 23 distinct
people? What if no birthday can be repeated?

I 36623 if repeats allowed. 366!/343! if repeats not allowed.



More problems

I How many hands that have four cards of the same suit, one
card of another suit?

I 4
(13
4

)
· 3
(13
1

)
I How many 10 digit numbers with no consecutive digits that

agree?

I If initial digit can be zero, have 10 · 99 ten-digit sequences. If
initial digit required to be non-zero, have 910.

I How many ways to assign a birthday to each of 23 distinct
people? What if no birthday can be repeated?

I 36623 if repeats allowed. 366!/343! if repeats not allowed.



More problems

I How many hands that have four cards of the same suit, one
card of another suit?

I 4
(13
4

)
· 3
(13
1

)
I How many 10 digit numbers with no consecutive digits that

agree?

I If initial digit can be zero, have 10 · 99 ten-digit sequences. If
initial digit required to be non-zero, have 910.

I How many ways to assign a birthday to each of 23 distinct
people? What if no birthday can be repeated?

I 36623 if repeats allowed. 366!/343! if repeats not allowed.



More problems

I How many hands that have four cards of the same suit, one
card of another suit?

I 4
(13
4

)
· 3
(13
1

)
I How many 10 digit numbers with no consecutive digits that

agree?

I If initial digit can be zero, have 10 · 99 ten-digit sequences. If
initial digit required to be non-zero, have 910.

I How many ways to assign a birthday to each of 23 distinct
people? What if no birthday can be repeated?

I 36623 if repeats allowed. 366!/343! if repeats not allowed.


	Remark, just for fun
	Permutations
	Counting tricks
	Binomial coefficients
	Problems

