18.440 Midterm 1, Spring 2011: 50 minutes, 100 points. SOLUTIONS

1. (20 points) Consider an infinite sequence of independent tosses of a coin that comes up heads with probability p.
(a) Let X be such that the first heads appears on the X th toss. In other words, X is the number of tosses required to obtain a heads. Compute (in terms of p) the expectation $E[X]$. ANSWER: geometric random variable with parameter p has expectation $1 / p$.
(b) Compute (in terms of p) the probability that exactly 5 of the first 10 tosses are heads. ANSWER: binomial probability $\binom{10}{5} p^{5}(1-p)^{5}$
(c) Compute (in terms of p) the probability that the 5 th head appears on the 10th toss. ANSWER: negative binomial. Need 4 heads in first 9 tosses, 10th toss heads. Probability $\binom{9}{4} p^{4}(1-p)^{5} p$.
2. (20 points) Jill sends her resume to 1000 companies she finds on monster.com. Each company responds with probability $3 / 1000$
(independently of what all the other companies do). Let R be the number of companies that respond.
(a) Compute $E[R]$. ANSWER: binomial random variable with $n=1000$ and $p=3 / 1000 . E[R]=n p=3$.
(b) Compute Var $[R]$. ANSWER: binomial random variable with $n=1000$ and $p=3 / 1000 . \operatorname{Var}[R]=n p(1-p)=3(1-3 / 1000)$.
(c) Use a Poisson random variable approximation to estimate the probability $P\{R=3\}$. ANSWER: R is approximately Poisson with $\lambda=3$. So $P\{R=3\} \approx e^{-\lambda} \lambda^{k} / k!=e^{-3} 3^{3} / 3!=9 e^{-3} / 2$.
3. (10 points) How many four-tuples $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ of non-negative integers satisfy $x_{1}+x_{2}+x_{3}+x_{4}=10$? ANSWER: represent partition with stars and bars $* * \mid * * \| * * * * * *$. Have $\binom{13}{3}$ ways to do this. 4. (10 points) Suppose you buy a lottery ticket that gives you a one in a million chance to win a million dollars. Let X be the amount you win. Compute the following:
(a) $E[X]$. ANSWER: $\frac{1}{10^{6}} 10^{6}=1$.
(b) $\operatorname{Var}[X]$. ANSWER: $E\left[X^{2}\right]-E[X]^{2}=\frac{1}{10^{6}}\left(10^{6}\right)^{2}-1^{2}=10^{6}-1$.
4. (20 points) Suppose that X is continuous random variable with probability density function $f_{X}(x)=\left\{\begin{array}{ll}2 x & x \in[0,1] \\ 0 & x \notin[0,1]\end{array}\right.$. Compute the following:
(a) The expectation $E[X]$. ANSWER:

$$
\int_{-\infty}^{\infty} f_{X}(x) x d x=\int_{0}^{1} f_{X}(x) x d x=\int_{0}^{1} 2 x^{2} d x=\left.\frac{2}{3} x^{3}\right|_{0} ^{1}=2 / 3
$$

(b) The variance $\operatorname{Var}[X]$. ANSWER:

$$
E\left[X^{2}\right]=\int_{-\infty}^{\infty} f_{X}(x) x^{2} d x=\int_{0}^{1} f_{X}(x) x^{2} d x=\int_{0}^{1} 2 x^{3} d x=\left.\frac{2}{4} x^{4}\right|_{0} ^{1}=1 / 2 .
$$

So variance is $1 / 2-(2 / 3)^{2}=1 / 2-4 / 9=1 / 18$.
(c) The cumulative distribution function F_{X}. ANSWER:

$$
F_{X}(a)=\int_{-\infty}^{a} f_{X}(x) d x= \begin{cases}0 & a<0 \\ a^{2} & a \in[0,1] \\ 1 & a>1\end{cases}
$$

6. (20 points) A standard deck of 52 cards contains 4 aces. Suppose we choose a random ordering (all 52 ! permutations being equally likely). Compute the following:
(a) The probability that all of the top 4 cards in the deck are aces. ANSWER: 4! ways to order aces, 48 ! ways to order remainder. Probability $4!48!/ 52$!
(b) The probability that none of the top 4 cards in the deck is an ace.ANSWER: choose cards one at a time starting at the top and multiply number of available choices at each stage to get total number. Probability is $48 \cdot 47 \cdot 46 \cdot 45 \cdot 48$!/52!.
(c) The expected number of aces among the top 4 cards in the deck. (There is a simple form for the solution.) ANSWER: have probability $4 / 52=1 / 13$ that top card is an ace. Similarly, probability $1 / 13$ that j th card is an ace for each $j \in\{1,2,3,4\}$. Additivity of expectation gives answer: 4/13.
