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Some properties

Number of entries in row n (beginning with row 0): 2n+1 − 1
(so not really a triangle)

Sum of entries in row n: 3n

Largest entry in row n: Fn+1 (Fibonacci number)

Let ⟨n
k
⟩ be the kth entry (beginning with k = 0) in row n.

Write

Pn(x) = ∑
k≥0

⟨n
k
⟩xk .

Then Pn+1(x) = (1 + x + x2)Pn(x2) , since x Pn(x2)
corresponds to bringing down the previous row, and(1 + x2)Pn(x2) to summing two consecutive entries.
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(1 + x2i + x2⋅2i)
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Stern’s diatomic sequence

Corollary. Pn(x) = n−1∏
i=0

(1 + x2i + x2⋅2i)
As n →∞, the nth row has the limiting generating function

P(x) = ∞∏
i=0

(1 + x2i + x2⋅2i )
∶= ∑

n≥0

bn+1x
n.

The sequence b1,b2,b3, . . . is Stern’s diatomic sequence:

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, . . .

(often prefixed with 0)

b1 = 1, b2n = bn, b2n+1 = bn + bn+1



Historical note

An essentially equivalent array is due to Moritz Abraham Stern
around 1858 and is known as Stern’s diatomic array:

1 1
1 2 1
1 3 2 3 1
1 4 3 5 2 5 3 4 1
1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1

⋮



Amazing property

Theorem (Stern, 1858). Let b0,b1, . . . be Stern’s diatomic

sequence. Then every positive rational number occurs exactly once

among the ratios bi/bi+1, and moreover this expression is in lowest

terms.
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Sums of squares

1
1 1 1

1 1 2 1 2 1 1
1 1 2 1 3 2 3 1 3 2 3 1 2 1 1

⋮

u2(n) ∶= ∑
k

⟨n
k
⟩2 = 1, 3, 13, 59, 269, 1227, . . .

u2(n + 1) = 5u2(n) − 2u2(n − 1), n ≥ 1

∑
n≥0

u2(n)xn = 1 − 2x

1 − 5x + 2x2
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Sums of cubes

u3(n) ∶= ∑
k

⟨n
k
⟩3 = 1, 3, 21, 147, 1029, 7203, . . .

u3(n) = 3 ⋅ 7n−1, n ≥ 1
Equivalently, if

n−1∏
i=0

(1 + x2i + x2⋅2i) = ∑ajx
j , then

∑a3j = 3 ⋅ 7n−1.
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Proof for u2(n)

u2(n + 1) = ⋯+ ⟨n
k
⟩2 + (⟨n

k
⟩ + ⟨ n

k + 1
⟩)2 + ⟨ n

k + 1
⟩2 +⋯

= 3u2(n) + 2∑
k

⟨n
k
⟩⟨ n

k + 1
⟩.

Thus define u1,1(n) ∶= ∑k ⟨ nk ⟩⟨ n
k+1
⟩, so

u2(n + 1) = 3u2(n) + 2u1,1(n).
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What about u1,1(n)?

u1,1(n + 1) = ⋯+ (⟨n
k
⟩ + ⟨ n

k − 1
⟩) ⟨n

k
⟩ + ⟨n

k
⟩(⟨n

k
⟩ + ⟨ n

k + 1
⟩)

+(⟨n
k
⟩ + ⟨ n

k + 1
⟩) ⟨ n

k + 1
⟩ +⋯

= 2u2(n) + 2u1,1(n)

Recall also u2(n + 1) = 3u2(n) + 2u1,1(n).
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Two recurrences in two unknowns

Let

A ∶= [ 3 2
2 2

] .
Then

A [ u2(n)
u1,1(n) ] = [

u2(n + 1)
u1,1(n + 1) ] .

⇒ An [ u2(1)
u1,1(1) ] = [

u2(n)
u1,1(n) ]

Characteristic (or minimum) polynomial of A: x2 − 5x + 2

⇒ u2(n + 1) = 5u2(n) − 2u2(n − 1)
Also u1,1(n + 1) = 5u1,1(n) − 2u1,1(n − 1).



What about u3(n)?

A similar argument gives the matrix [ 3 6
2 4

], with eigenvalues

0,7, so u3(n) = c7n, n ≥ 1, etc.
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Get a matrix of size ⌈(r + 1)/2⌉, so expect a recurrence of this
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most 1

3
r +O(1).



What about ur(n) for general r ≥ 1?

Get a matrix of size ⌈(r + 1)/2⌉, so expect a recurrence of this
order.

Theorem (D. Speyer, 2018) The least order of a homogenous

linear recurrence with constant coeffcients satisfied by ur(n) is at
most 1

3
r +O(1).

Can be greatly generalized.



Modular properties

Sample result for Pascal’s triangle:

#{k ∶ (n
k
) ≡ 1 (mod 2)} = 2b(n),

where b(n) is the number of 1’s in the binary expansion of n
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Modular properties

Sample result for Pascal’s triangle:

#{k ∶ (n
k
) ≡ 1 (mod 2)} = 2b(n),

where b(n) is the number of 1’s in the binary expansion of n
(Lucas).

Behavior for Stern’s triangle is entirely different!
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Rationality

Let 0 ≤ a < m.

gm,a(n) =#{k ∶ 0 ≤ k ≤ 2n+1 − 2, ⟨n
k
⟩ ≡ a (modm)} .

Gm,a(x) = ∑
n≥0

gm,a(n)xn

Theorem (Reznick). Gm,a(x) is a rational function.

Example.

G2,0(x) = 2x2

(1 − x)(1 + x)(1 − 2x)
G2,1(x) = 1 + 2x

(1 + x)(1 − 2x)



More examples (m = 3)

G3,0(x) = 4x3

(1 − x)(1 − 2x)(1 + x + 2x2)
G3,1(x) = 1 + x − 4x3 − 4x4

(1 − x)(1 − 2x)(1 + x + 2x2)
G3,2(x) = 2x2 + 4x4

(1 − x)(1 − 2x)(1 + x + 2x2)



. . . and more (m = 4)

G4,0(x) = 4x4

(1 − x)(1 + x)(1 − 2x)(1 − x + 2x2)

G4,1(x) = 1 + x − 2x2 − 4x3

(1 − x)(1 + x)(1 − 2x)

G4,2(x) = 2x2

(1 + x)(1 − 2x)(1 − x + 2x2)

G4,3(x) = 4x3

(1 − x)(1 + x)(1 − 2x)



. . . and even more (m = 5)

G5,0(x) = 4x4

(1 − x)(1 + x)(1 − 2x)(1 − x + 2x2)

G5,1(x) = 1 − x2 − x4 − 8x5 + 5x6 − 4x7 − 16x8 + 8x9 − 32x10 − 32x11

(1 − x)(1 + x)(1 − 2x)(1 + x2)(1 − x + 2x2)(1 − x2 + 4x4)

G5,2(x) = 2x2 + 8x5 + 2x6 − 4x7 + 12x8 − 16x10

(1 + x)(1 − 2x)(1 + x2)(1 − x + 2x2)(1 − x2 + 4x4)

G5,3(x) = 4x3 + 4x5 + 4x6 + 12x7 − 4x8 + 16x10

(1 + x)(1 − 2x)(1 + x2)(1 − x + 2x2)(1 − x2 + 4x4)

G5,4(x) = 4x4 − 4x5 + 8x6 + 8x7 + 8x8 + 16x10 + 32x11

(1 + x)(1 − 2x)(1 + x2)(1 − x + 2x2)(1 − x2 + 4x4)



Three questions

Why so many denominator factors?



Three questions

Why so many denominator factors?

Why do some numerators have a single term?



Three questions

Why so many denominator factors?

Why do some numerators have a single term?

Why are so many numerator coefficients a power of 2?



Ehrenborg’s quasisymmetric function

P: finite graded poset with 0̂, 1̂ of rank n

βP(S): flag h-vector of P , for S ⊆ [n − 1]
FS,n = ∑

1≤i1≤i2≤⋯≤in
ij<ij+1 if j∈S

xi1⋯xin (fundamental quasisymmetric

function)

Definition (R. Ehrenborg)

EP = ∑
S⊆[n−1]

βP(S)FS,n



When is EP a symmetric function?

Theorem. EP is a symmetric function if every interval of P is

rank-symmetric.
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Theorem. EP is a symmetric function if every interval of P is

rank-symmetric.

Example. P = NCn+1 ⇒ EP = PFn



Extension to infinite posets

Let P = P0 ∪P1 ∪⋯ be an N-graded poset with P0 = {0̂}. Let
ρi ∶=#Pi <∞.

For t ∈ P let Λt = {s ∈ P ∶ s ≤ t}.
Definition. EP = ∑

t∈P

EΛt
(inhomgeneous quasisymmetric power

series)



Extension to infinite posets

Let P = P0 ∪P1 ∪⋯ be an N-graded poset with P0 = {0̂}. Let
ρi ∶=#Pi <∞.

For t ∈ P let Λt = {s ∈ P ∶ s ≤ t}.
Definition. EP = ∑

t∈P

EΛt
(inhomgeneous quasisymmetric power

series)

Note. EP×Q = EPEQ



Upper homogeneous posets

P (as above) is upper homogeneous (upho) if #P > 1 and

Vt ∶= {s ∈ P ∶ s ≥ t} ≅ P .



Upper homogeneous posets

P (as above) is upper homogeneous (upho) if #P > 1 and

Vt ∶= {s ∈ P ∶ s ≥ t} ≅ P .
Examples. (a) The chain N is upho.

(b) P ,Q upho ⇒ P ×Q upho.

(c) Fix a prime p. Subgroups of Zk of index pi , ordered by reverse
inclusion, is upho.



EP for upho posets

Let P be upho with rank-generating function

FP(q) = ∑
n≥0

ρnq
n.

Theorem

αP(c1 < c2 < ⋯ < ck) = ρc1 ρc2−c1 ⋯ρck−ck−1
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EP for upho posets

Let P be upho with rank-generating function

FP(q) = ∑
n≥0

ρnq
n.

Theorem

αP(c1 < c2 < ⋯ < ck) = ρc1 ρc2−c1 ⋯ρck−ck−1

EP = ∑
λ

⎛
⎝∏λi>0

ρλi

⎞
⎠mλ

EP = FP(x1)FP(x2)⋯
EP is Schur-positive if and only if FP(q) = A(q)/B(q), where
A(q) is a polynomial with only negative real zeros, and B(q)
is a nonconstant polynomial with only positive real zeros.
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Upper homogeneity of S
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Upper homogeneity of S

S is upho with rank-generating function

FS = 1

(1 − q)(1 − 2q) = ∑n≥0(2
n+1
− 1)qn.

Corollary. ES is Schur-positive.

In fact,
ES = ∑

a≥b≥0

(2a−b+1 − 1)2bsa,b.



Principal order ideals in S

Every interval in S is a distributive lattice.

1

2 1

3

5 4

910
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1
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21

1

2

3
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bm = e(P)

1

2 1

3

5 4

910

19

1

11

21

1

2

3

43

7

( )= J

⇒ ⟨ 7
18
⟩ = b19 = 7
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What is gained?

refinements of e(P)Ð→ refinements of bn

Let P be naturally labelled, and let L(P) denote the set of linear
extensions of P .

P-Eulerian polynomial:

AP(q) = ∑
w∈L(P)

qdes(w)

If #P = p and ΩP(n) is the number of order-preserving P → [n],
then

∑
n≥1

ΩP(n)qn = qAP(q)
(1 − q)p+1 .



An example

3 4

1 2

w des(w)
1234 0
2134 1
1243 1
2413 1
2143 2

AP(q) = 1 + 3q + q2



A refinement of bn

Let Pn be the poset associated to the nth element (beginning with
n = 1) of row r of Stern’s triangle, for r ≫ 0. Thus e(Pn) = bn.



A refinement of bn

Let Pn be the poset associated to the nth element (beginning with
n = 1) of row r of Stern’s triangle, for r ≫ 0. Thus e(Pn) = bn.
Recall b2n = bn, b2n+1 = bn + bn+1. Define b1(q) = 1 and

b2n(q) = bn(q)
b4n+1(q) = qb2n(q) + b2n+1(q)
b4n+3(q) = b2n+1(q) + qb2n+2(q).

Theorem. bn(q) = APn
(q)



Eulerian row sums of Stern’s triangle

Let

Ln(q) = 2 2
n−1∑
k=1

bk(q) + b2n(q)´¹¹¹¹¹¸¹¹¹¹¹¹¶
1

,

so Ln(1) = ∑k ⟨ nk ⟩ = 3n.



Eulerian row sums of Stern’s triangle

Let

Ln(q) = 2 2
n−1∑
k=1

bk(q) + b2n(q)´¹¹¹¹¹¸¹¹¹¹¹¹¶
1

,

so Ln(1) = ∑k ⟨ nk ⟩ = 3n.
Conjecture. (a) Ln(q) has only real zeros.

(b) L4n+1(q) is divisible by L2n(q).



The final slide



The final slide


