From Stern's Triangle to Upper Homogeneous Posets

Richard P. Stanley
U. Miami \& M.I.T.

math.mit.edu/~rstan/transparencies/stern-ml.pdf

Stern's triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

Stern's triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

1

1
1
1

1
1 ;

Stern's triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.
\square
1
1
1
1
1
;

Stern's triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

Stern's triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

Stern's triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

Stern's triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

$$
\begin{array}{llllllllllllllll}
& & & & & & & & 1 & & & & & & & \\
& & & 1 & & & & & & & & \\
& 1 & & 1 & & 2 & & 1 & & 2 & & 1 & & 1 & \\
1 & 1 & 2 & 1 & 3 & 2 & 3 & 1 & 3 & 2 & 3 & 1 & 2 & 1 & 1
\end{array}
$$

Stern's triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

Stern's triangle

Some properties

- Number of entries in row n (beginning with row 0): $2^{n+1}-1$ (so not really a triangle)

Some properties

- Number of entries in row n (beginning with row 0): $2^{n+1}-1$ (so not really a triangle)
- Sum of entries in row $n: 3^{n}$

Some properties

- Number of entries in row n (beginning with row 0): $2^{n+1}-1$ (so not really a triangle)
- Sum of entries in row $n: 3^{n}$
- Largest entry in row $n: F_{n+1}$ (Fibonacci number)

Some properties

- Number of entries in row n (beginning with row 0): $2^{n+1}-1$ (so not really a triangle)
- Sum of entries in row $n: 3^{n}$
- Largest entry in row $n: F_{n+1}$ (Fibonacci number)
- Let $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ be the k th entry (beginning with $k=0$) in row n. Write

$$
P_{n}(x)=\sum_{k \geq 0}\binom{n}{k} x^{k} .
$$

Then $P_{n+1}(x)=\left(1+x+x^{2}\right) P_{n}\left(x^{2}\right)$, since $x P_{n}\left(x^{2}\right)$ corresponds to bringing down the previous row, and $\left(1+x^{2}\right) P_{n}\left(x^{2}\right)$ to summing two consecutive entries.

Stern's diatomic sequence

- Corollary. $P_{n}(x)=\prod_{i=0}^{n-1}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)$

Stern's diatomic sequence

- Corollary. $P_{n}(x)=\prod_{i=0}^{n-1}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)$
- As $n \rightarrow \infty$, the nth row has the limiting generating function

$$
\begin{aligned}
P(x) & =\prod_{i=0}^{\infty}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right) \\
& :=\sum_{n \geq 0} \boldsymbol{b}_{n+1} x^{n}
\end{aligned}
$$

Stern's diatomic sequence

- Corollary. $P_{n}(x)=\prod_{i=0}^{n-1}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)$
- As $n \rightarrow \infty$, the nth row has the limiting generating function

$$
\begin{aligned}
P(x) & =\prod_{i=0}^{\infty}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right) \\
& :=\sum_{n \geq 0} \boldsymbol{b}_{\boldsymbol{n}+\boldsymbol{1}} x^{n} .
\end{aligned}
$$

- The sequence $b_{1}, b_{2}, b_{3}, \ldots$ is Stern's diatomic sequence:

$$
1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1, \ldots
$$

(often prefixed with 0)

Stern's diatomic sequence

- Corollary. $P_{n}(x)=\prod_{i=0}^{n-1}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)$
- As $n \rightarrow \infty$, the nth row has the limiting generating function

$$
\begin{aligned}
P(x) & =\prod_{i=0}^{\infty}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right) \\
& :=\sum_{n \geq 0} \boldsymbol{b}_{\boldsymbol{n}+\boldsymbol{1}} x^{n} .
\end{aligned}
$$

- The sequence $b_{1}, b_{2}, b_{3}, \ldots$ is Stern's diatomic sequence:

$$
1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1, \ldots
$$

(often prefixed with 0)

- $b_{1}=1, b_{2 n}=b_{n}, b_{2 n+1}=b_{n}+b_{n+1}$

Historical note

An essentially equivalent array is due to Moritz Abraham Stern around 1858 and is known as Stern's diatomic array:

1															1
1								2							
1															

Amazing property

Theorem (Stern, 1858). Let b_{0}, b_{1}, \ldots be Stern's diatomic sequence. Then every positive rational number occurs exactly once among the ratios b_{i} / b_{i+1}, and moreover this expression is in lowest terms.

Sums of squares

$$
\begin{aligned}
& \begin{array}{llllllllllllllll}
\\
& & & & & & & & & 1 & & & & & & \\
& 1 & & & & & 1 & & & \\
& 1 & & 1 & & 2 & & 1 & & 2 & & 1 & & 1 & \\
1 & 1 & 2 & 1 & 3 & 2 & 3 & 1 & 3 & 2 & 3 & 1 & 2 & 1 & 1 \\
& & & & & & & & & & & & & & &
\end{array} \\
& \boldsymbol{u}_{2}(n):=\sum_{k}\binom{n}{k}^{2}=1,3,13,59,269,1227, \ldots
\end{aligned}
$$

Sums of squares

$$
\begin{aligned}
& \boldsymbol{u}_{2}(n):=\sum_{k}\binom{n}{k}^{2}=1,3,13,59,269,1227, \ldots \\
& u_{2}(n+1)=5 u_{2}(n)-2 u_{2}(n-1), \quad n \geq 1
\end{aligned}
$$

Sums of squares

$$
\begin{aligned}
& \begin{array}{lllllllllllllllll}
\\
& & & & & & & & & 1 & & & & & & & \\
1 & 1 & & & & & 1 & & & \\
& 1 & & 1 & & 2 & & & 1 & & 2 & & 1 & & 1 & \\
1 & 1 & 2 & 1 & 3 & 2 & 3 & 1 & 3 & 2 & 3 & 1 & 2 & 1 & 1
\end{array} \\
& \boldsymbol{u}_{2}(n):=\sum_{k}\binom{n}{k}^{2}=1,3,13,59,269,1227, \ldots \\
& u_{2}(n+1)=5 u_{2}(n)-2 u_{2}(n-1), \quad n \geq 1 \\
& \sum_{n \geq 0} u_{2}(n) x^{n}=\frac{1-2 x}{1-5 x+2 x^{2}}
\end{aligned}
$$

Sums of cubes

$$
u_{3}(n):=\sum_{k}\binom{n}{k}^{3}=1,3,21,147,1029,7203, \ldots
$$

Sums of cubes

$$
\begin{gathered}
u_{3}(n):=\sum_{k}\binom{n}{k}^{3}=1,3,21,147,1029,7203, \ldots \\
u_{3}(n)=3 \cdot 7^{n-1}, \quad n \geq 1
\end{gathered}
$$

Sums of cubes

$$
\begin{gathered}
u_{3}(n):=\sum_{k}\binom{n}{k}^{3}=1,3,21,147,1029,7203, \ldots \\
u_{3}(n)=3 \cdot 7^{n-1}, \quad n \geq 1
\end{gathered}
$$

Equivalently, if $\prod_{i=0}^{n-1}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)=\sum a_{j} x^{j}$, then

$$
\sum a_{j}^{3}=3 \cdot 7^{n-1}
$$

Proof for $u_{2}(n)$

$$
\begin{aligned}
u_{2}(n+1) & =\cdots+\binom{n}{k}^{2}+\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right)+\binom{n}{k+1}\right)^{2}+\binom{n}{k+1}^{2}+\cdots \\
& =3 u_{2}(n)+2 \sum_{k}\binom{n}{k}\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right) .
\end{aligned}
$$

Proof for $u_{2}(n)$

$$
\begin{aligned}
u_{2}(n+1) & =\cdots+\binom{n}{k}^{2}+\left(\binom{n}{k}+\binom{n}{k+1}\right)^{2}+\binom{n}{k+1}^{2}+\cdots \\
& =3 u_{2}(n)+2 \sum_{k}\binom{n}{k}\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right)
\end{aligned}
$$

Thus define $\boldsymbol{u}_{1,1}(\boldsymbol{n}):=\sum_{k}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle\left\langle\begin{array}{c}n \\ k+1\end{array}\right\rangle$, so

$$
u_{2}(n+1)=3 u_{2}(n)+2 u_{1,1}(n) .
$$

What about $u_{1,1}(n)$?

$$
\begin{aligned}
u_{1,1}(n+1)= & \left.\cdots+\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right)+\binom{n}{k-1}\right)\binom{n}{k}+\binom{n}{k}\left(\left\lvert\, \begin{array}{l}
n \\
k
\end{array}\right.\right)+\binom{n}{k+1}\right) \\
& +\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right)+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right)\right)\left(\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\cdots \\
= & 2 u_{2}(n)+2 u_{1,1}(n)
\end{aligned}
$$

What about $u_{1,1}(n)$?

$$
\begin{aligned}
u_{1,1}(n+1)= & \cdots+\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right)+\binom{n}{k-1}\right)\binom{n}{k}+\binom{n}{k}\left(\binom{n}{k}+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right)\right) \\
& +\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right)+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right)\right)\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\cdots \\
= & 2 u_{2}(n)+2 u_{1,1}(n)
\end{aligned}
$$

Recall also $u_{2}(n+1)=3 u_{2}(n)+2 u_{1,1}(n)$.

Two recurrences in two unknowns

Let

$$
A:=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right]
$$

Then

$$
A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right]
$$

Two recurrences in two unknowns

Let

$$
A:=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right]
$$

Then

$$
\begin{aligned}
& A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right] . \\
& \Rightarrow A^{n}\left[\begin{array}{c}
u_{2}(1) \\
u_{1,1}(1)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]
\end{aligned}
$$

Two recurrences in two unknowns

Let

$$
A:=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right]
$$

Then

$$
\begin{aligned}
& A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right] . \\
& \Rightarrow A^{n}\left[\begin{array}{c}
u_{2}(1) \\
u_{1,1}(1)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]
\end{aligned}
$$

Characteristic (or minimum) polynomial of $A: x^{2}-5 x+2$

Two recurrences in two unknowns

Let

$$
A:=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right]
$$

Then

$$
\begin{aligned}
& A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right] . \\
& \Rightarrow A^{n}\left[\begin{array}{c}
u_{2}(1) \\
u_{1,1}(1)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]
\end{aligned}
$$

Characteristic (or minimum) polynomial of $A: x^{2}-5 x+2$

$$
\Rightarrow u_{2}(n+1)=5 u_{2}(n)-2 u_{2}(n-1)
$$

Two recurrences in two unknowns

Let

$$
A:=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right]
$$

Then

$$
\begin{aligned}
& A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right] . \\
& \Rightarrow A^{n}\left[\begin{array}{c}
u_{2}(1) \\
u_{1,1}(1)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]
\end{aligned}
$$

Characteristic (or minimum) polynomial of $A: x^{2}-5 x+2$

$$
\Rightarrow u_{2}(n+1)=5 u_{2}(n)-2 u_{2}(n-1)
$$

Also $u_{1,1}(n+1)=5 u_{1,1}(n)-2 u_{1,1}(n-1)$.

What about $\mu_{3}(n)$?

A similar argument gives the matrix $\left[\begin{array}{ll}3 & 6 \\ 2 & 4\end{array}\right]$, with eigenvalues 0,7 , so $u_{3}(n)=c 7^{n}, n \geq 1$, etc.

What about $u_{r}(n)$ for general $r \geq 1$?

Get a matrix of size $\lceil(r+1) / 2\rceil$, so expect a recurrence of this order.

What about $u_{r}(n)$ for general $r \geq 1$?

Get a matrix of size $\lceil(r+1) / 2\rceil$, so expect a recurrence of this order.

Theorem (D. Speyer, 2018) The least order of a homogenous linear recurrence with constant coeffcients satisfied by $u_{r}(n)$ is at most $\frac{1}{3} r+O(1)$.

What about $u_{r}(n)$ for general $r \geq 1$?

Get a matrix of size $\lceil(r+1) / 2\rceil$, so expect a recurrence of this order.

Theorem (D. Speyer, 2018) The least order of a homogenous linear recurrence with constant coeffcients satisfied by $u_{r}(n)$ is at most $\frac{1}{3} r+O(1)$.

Can be greatly generalized.

Modular properties

Sample result for Pascal's triangle:

$$
\#\left\{k:\binom{n}{k} \equiv 1(\bmod 2)\right\}=2^{b(n)}
$$

where $\boldsymbol{b}(\boldsymbol{n})$ is the number of 1 's in the binary expansion of n (Lucas).

Modular properties

Sample result for Pascal's triangle:

$$
\#\left\{k:\binom{n}{k} \equiv 1(\bmod 2)\right\}=2^{b(n)}
$$

where $\boldsymbol{b}(\boldsymbol{n})$ is the number of 1 's in the binary expansion of n (Lucas).

Behavior for Stern's triangle is entirely different!

Rationality

Let $0 \leq a<m$.

$$
\begin{gathered}
\left.g_{m, a}(n)=\#\left\{k: 0 \leq k \leq 2^{n+1}-2, \left\lvert\, \begin{array}{l}
n \\
k
\end{array}\right.\right) \equiv a(\bmod m)\right\} . \\
G_{m, a}(x)=\sum_{n \geq 0} g_{m, a}(n) x^{n}
\end{gathered}
$$

Rationality

Let $0 \leq a<m$.

$$
\begin{gathered}
\left.g_{m, a}(n)=\#\left\{k: 0 \leq k \leq 2^{n+1}-2, \left\lvert\, \begin{array}{l}
n \\
k
\end{array}\right.\right) \equiv a(\bmod m)\right\} . \\
G_{m, a}(x)=\sum_{n \geq 0} g_{m, a}(n) x^{n}
\end{gathered}
$$

Theorem (Reznick). $G_{m, a}(x)$ is a rational function.

Rationality

Let $0 \leq a<m$.

$$
\begin{gathered}
\left.g_{m, a}(n)=\#\left\{k: 0 \leq k \leq 2^{n+1}-2, \left\lvert\, \begin{array}{l}
n \\
k
\end{array}\right.\right) \equiv a(\bmod m)\right\} . \\
G_{m, a}(x)=\sum_{n \geq 0} g_{m, a}(n) x^{n}
\end{gathered}
$$

Theorem (Reznick). $G_{m, a}(x)$ is a rational function.
Example.

$$
\begin{aligned}
G_{2,0}(x) & =\frac{2 x^{2}}{(1-x)(1+x)(1-2 x)} \\
G_{2,1}(x) & =\frac{1+2 x}{(1+x)(1-2 x)}
\end{aligned}
$$

More examples $(m=3)$

$$
\begin{aligned}
G_{3,0}(x) & =\frac{4 x^{3}}{(1-x)(1-2 x)\left(1+x+2 x^{2}\right)} \\
G_{3,1}(x) & =\frac{1+x-4 x^{3}-4 x^{4}}{(1-x)(1-2 x)\left(1+x+2 x^{2}\right)} \\
G_{3,2}(x) & =\frac{2 x^{2}+4 x^{4}}{(1-x)(1-2 x)\left(1+x+2 x^{2}\right)}
\end{aligned}
$$

\ldots and more $(m=4)$

$$
\begin{aligned}
& G_{4,0}(x)=\frac{4 x^{4}}{(1-x)(1+x)(1-2 x)\left(1-x+2 x^{2}\right)} \\
& G_{4,1}(x)=\frac{1+x-2 x^{2}-4 x^{3}}{(1-x)(1+x)(1-2 x)} \\
& G_{4,2}(x)=\frac{2 x^{2}}{(1+x)(1-2 x)\left(1-x+2 x^{2}\right)} \\
& G_{4,3}(x)=\frac{4 x^{3}}{(1-x)(1+x)(1-2 x)}
\end{aligned}
$$

\ldots and even more $(m=5)$

$$
\begin{aligned}
& G_{5,0}(x)=\frac{4 x^{4}}{(1-x)(1+x)(1-2 x)\left(1-x+2 x^{2}\right)} \\
& G_{5,1}(x)=\frac{1-x^{2}-x^{4}-8 x^{5}+5 x^{6}-4 x^{7}-16 x^{8}+8 x^{9}-32 x^{10}-32 x^{11}}{(1-x)(1+x)(1-2 x)\left(1+x^{2}\right)\left(1-x+2 x^{2}\right)\left(1-x^{2}+4 x^{4}\right)} \\
& G_{5,2}(x)=\frac{2 x^{2}+8 x^{5}+2 x^{6}-4 x^{7}+12 x^{8}-16 x^{10}}{(1+x)(1-2 x)\left(1+x^{2}\right)\left(1-x+2 x^{2}\right)\left(1-x^{2}+4 x^{4}\right)} \\
& G_{5,3}(x)=\frac{4 x^{3}+4 x^{5}+4 x^{6}+12 x^{7}-4 x^{8}+16 x^{10}}{(1+x)(1-2 x)\left(1+x^{2}\right)\left(1-x+2 x^{2}\right)\left(1-x^{2}+4 x^{4}\right)} \\
& G_{5,4}(x)=\frac{4 x^{4}-4 x^{5}+8 x^{6}+8 x^{7}+8 x^{8}+16 x^{10}+32 x^{11}}{(1+x)(1-2 x)\left(1+x^{2}\right)\left(1-x+2 x^{2}\right)\left(1-x^{2}+4 x^{4}\right)}
\end{aligned}
$$

Three questions

- Why so many denominator factors?

Three questions

- Why so many denominator factors?
- Why do some numerators have a single term?

Three questions

- Why so many denominator factors?
- Why do some numerators have a single term?
- Why are so many numerator coefficients a power of 2 ?

Ehrenborg's quasisymmetric function

P : finite graded poset with $\hat{0}, \hat{1}$ of rank n
$\beta_{P}(S)$: flag h-vector of P, for $S \subseteq[n-1]$
$F_{S, n}=\sum_{\substack{1 \leq i \leq i \leq i \leq \cdots \leq i_{n} \\ i_{j} \leq i+1 \\ \text { if } j \in S}} x_{i_{1} \cdots x_{i n}} \cdots x_{n}$ (fundamental quasisymmetric
function)
Definition (R. Ehrenborg)

$$
E_{P}=\sum_{S \subseteq[n-1]} \beta_{P}(S) F_{S, n}
$$

When is E_{P} a symmetric function?

Theorem. E_{P} is a symmetric function if every interval of P is rank-symmetric.

When is E_{P} a symmetric function?

Theorem. E_{P} is a symmetric function if every interval of P is rank-symmetric.

Example. $P=\mathrm{NC}_{n+1} \Rightarrow E_{P}=\mathrm{PF}_{n}$

Extension to infinite posets

Let $P=P_{0} \cup P_{1} \cup \cdots$ be an \mathbb{N}-graded poset with $P_{0}=\{\hat{0}\}$. Let $\rho_{i}:=\# P_{i}<\infty$.

For $t \in P$ let $\Lambda_{t}=\{s \in P: s \leq t\}$.
Definition. $E_{P}=\sum_{t \in P} E_{\Lambda_{t}}$ (inhomgeneous quasisymmetric power series)

Extension to infinite posets

Let $P=P_{0} \cup P_{1} \cup \cdots$ be an \mathbb{N}-graded poset with $P_{0}=\{\hat{0}\}$. Let $\rho_{i}:=\# P_{i}<\infty$.

For $t \in P$ let $\Lambda_{t}=\{s \in P: s \leq t\}$.
Definition. $E_{P}=\sum_{t \in P} E_{\Lambda_{t}}$ (inhomgeneous quasisymmetric power series)

Note. $E_{P \times Q}=E_{P} E_{Q}$

Upper homogeneous posets

P (as above) is upper homogeneous (upho) if \#P>1 and

$$
V_{t}:=\{s \in P: s \geq t\} \cong P .
$$

Upper homogeneous posets

P (as above) is upper homogeneous (upho) if \#P>1 and

$$
V_{t}:=\{s \in P: s \geq t\} \cong P .
$$

Examples. (a) The chain \mathbb{N} is upho.
(b) P, Q upho $\Rightarrow P \times Q$ upho.
(c) Fix a prime p. Subgroups of \mathbb{Z}^{k} of index p^{i}, ordered by reverse inclusion, is upho.

E_{P} for upho posets

Let P be upho with rank-generating function

$$
F_{P}(q)=\sum_{n \geq 0} \rho_{n} q^{n}
$$

Theorem

- $\alpha_{P}\left(c_{1}<c_{2}<\cdots<c_{k}\right)=\rho_{c_{1}} \rho_{c_{2}-c_{1}} \cdots \rho_{c_{k}-c_{k-1}}$

E_{P} for upho posets

Let P be upho with rank-generating function

$$
F_{P}(q)=\sum_{n \geq 0} \rho_{n} q^{n}
$$

Theorem

- $\alpha_{P}\left(c_{1}<c_{2}<\cdots<c_{k}\right)=\rho_{c_{1}} \rho_{c_{2}-c_{1}} \cdots \rho_{c_{k}-c_{k-1}}$
- $E_{P}=\sum_{\lambda}\left(\prod_{\lambda_{i}>0} \rho_{\lambda_{i}}\right) m_{\lambda}$

E_{P} for upho posets

Let P be upho with rank-generating function

$$
F_{P}(q)=\sum_{n \geq 0} \rho_{n} q^{n}
$$

Theorem

- $\alpha_{P}\left(c_{1}<c_{2}<\cdots<c_{k}\right)=\rho_{c_{1}} \rho_{c_{2}-c_{1}} \cdots \rho_{c_{k}-c_{k-1}}$
- $E_{P}=\sum_{\lambda}\left(\prod_{\lambda_{i}>0} \rho_{\lambda_{i}}\right) m_{\lambda}$
- $E_{P}=F_{P}\left(x_{1}\right) F_{P}\left(x_{2}\right) \cdots$

E_{P} for upho posets

Let P be upho with rank-generating function

$$
F_{P}(q)=\sum_{n \geq 0} \rho_{n} q^{n}
$$

Theorem

- $\alpha_{P}\left(c_{1}<c_{2}<\cdots<c_{k}\right)=\rho_{c_{1}} \rho_{c_{2}-c_{1}} \cdots \rho_{c_{k}-c_{k-1}}$
- $E_{P}=\sum_{\lambda}\left(\prod_{\lambda_{i}>0} \rho_{\lambda_{i}}\right) m_{\lambda}$
- $E_{P}=F_{P}\left(x_{1}\right) F_{P}\left(x_{2}\right) \cdots$
- E_{P} is Schur-positive if and only if $F_{P}(q)=A(q) / B(q)$, where $A(q)$ is a polynomial with only negative real zeros, and $B(q)$ is a nonconstant polynomial with only positive real zeros.

The Stern poset \mathcal{S}

related to the "hyperbolic graph $S_{2,3}$ "

The Stern poset \mathcal{S}

not a lattice

Upper homogeneity of \mathcal{S}

\mathcal{S} is upho with rank-generating function

$$
F_{\mathcal{S}}=\frac{1}{(1-q)(1-2 q)}=\sum_{n \geq 0}\left(2^{n+1}-1\right) q^{n}
$$

Upper homogeneity of \mathcal{S}

\mathcal{S} is upho with rank-generating function

$$
F_{\mathcal{S}}=\frac{1}{(1-q)(1-2 q)}=\sum_{n \geq 0}\left(2^{n+1}-1\right) q^{n}
$$

Corollary. $E_{\mathcal{S}}$ is Schur-positive.

Upper homogeneity of \mathcal{S}

\mathcal{S} is upho with rank-generating function

$$
F_{\mathcal{S}}=\frac{1}{(1-q)(1-2 q)}=\sum_{n \geq 0}\left(2^{n+1}-1\right) q^{n}
$$

Corollary. $E_{\mathcal{S}}$ is Schur-positive.
In fact,

$$
E_{\mathcal{S}}=\sum_{a \geq b \geq 0}\left(2^{a-b+1}-1\right) 2^{b} s_{a, b} .
$$

Principal order ideals in \mathcal{S}

Every interval in \mathcal{S} is a distributive lattice.

$b_{m}=e(P)$

$b_{m}=e(P)$

$$
\Rightarrow\binom{7}{18}=b_{19}=7
$$

What is gained?

refinements of $e(P) \longrightarrow$ refinements of b_{n}

What is gained?

refinements of $e(P) \longrightarrow$ refinements of b_{n}
Let P be naturally labelled, and let $\mathcal{L}(P)$ denote the set of linear extensions of P.
P-Eulerian polynomial:

$$
A_{P}(q)=\sum_{w \in \mathcal{L}(P)} q^{\operatorname{des}(w)}
$$

If $\# P=p$ and $\Omega_{P}(n)$ is the number of order-preserving $P \rightarrow[n]$, then

$$
\sum_{n \geq 1} \Omega_{P}(n) q^{n}=\frac{q A_{P}(q)}{(1-q)^{p+1}}
$$

An example

$$
\begin{aligned}
& 3 \\
& \frac{w}{2} \\
& \hline 1234 \\
& 2134 \\
& 1243 \\
& 2413 \\
& 2143 \\
& A_{P}(q)=1+3 q+q^{2}
\end{aligned}
$$

A refinement of b_{n}

Let P_{n} be the poset associated to the nth element (beginning with $n=1$) of row r of Stern's triangle, for $r \gg 0$. Thus $e\left(P_{n}\right)=b_{n}$.

A refinement of b_{n}

Let $P_{\boldsymbol{n}}$ be the poset associated to the nth element (beginning with $n=1$) of row r of Stern's triangle, for $r \gg 0$. Thus $e\left(P_{n}\right)=b_{n}$.

Recall $b_{2 n}=b_{n}, b_{2 n+1}=b_{n}+b_{n+1}$. Define $b_{1}(q)=1$ and

$$
\begin{aligned}
b_{2 n}(q) & =b_{n}(q) \\
b_{4 n+1}(q) & =q b_{2 n}(q)+b_{2 n+1}(q) \\
b_{4 n+3}(q) & =b_{2 n+1}(q)+q b_{2 n+2}(q)
\end{aligned}
$$

Theorem. $b_{n}(q)=A_{P_{n}}(q)$

Eulerian row sums of Stern's triangle

Let

$$
L_{n}(q)=2 \sum_{k=1}^{2^{n}-1} b_{k}(q)+\underbrace{b_{2^{n}}(q)}_{1},
$$

so $L_{n}(1)=\sum_{k}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle=3^{n}$.

Eulerian row sums of Stern's triangle

Let

$$
L_{n}(q)=2 \sum_{k=1}^{2^{n}-1} b_{k}(q)+\underbrace{b_{2^{n}}(q)}_{1},
$$

so $L_{n}(1)=\sum_{k}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle=3^{n}$.
Conjecture. (a) $L_{n}(q)$ has only real zeros.
(b) $L_{4 n+1}(q)$ is divisible by $L_{2 n}(q)$.

The final slide

The final slide

