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| Basic nhotation

G simple graph with d vertices
V. vertex set of G

F: edge set of ¢

Coloring of G:

any k: V —-P=1{1,2,...}
Proper coloring:

w € B = k(u) # k(v)

—



| The chromatic symmetric function

Xe = Xg(x1,T2,...) = Z z"

proper k: V—P

the chromatic symmetric function of &, where



| The chromatic symmetric function

Xe = Xg(x1,T2,...) = Z z"

proper k: V—P

the chromatic symmetric function of &, where

Xg(ln) L= X(;(L 1, Ce ey 1) — Xg(n),

n 1’s

the chromatic polynomial of ¢&. |



I Example of a monomial

T = 1] Ty T3 T3



| Simple examples

Xpoint = L1 + T2 + T3+ -+ = e€;.

More generally, let
1< <<
the kth elementary symmetric function. Then

Xk = nle,

Xa+n = Xg-Xg.

—



| Acyclic orientations

Acyclic orientation: an orientation o of the
edges of G that contains no directed cycle.



| Acyclic orientations

Acyclic orientation: an orientation o of the
edges of G that contains no directed cycle.

Theorem (RS, 1973). Let a(G) denote the
number of acyclic orientations of . Then

a(G) = (=1)"xa(-1).

Easy to prove by induction, by deletion-
contraction, bijectively, geometrically, etc.

—



| Fund. thm. of symmetric functions

Write A = d If A\ Is a partition of d, I.e.,
A= (A1, A9, ... ) Where

A=A > >0, Y Ai=d.

Let
E\N — CE)\,C)\, .
Fundamental theorem of symmetric

functions. Every symmetric function can be
uniquely written as a polynomial in the ¢;’s, or

equivalently as a linear combination of e,’s. |



| A refinement of a(G)

ex(1)=1 = || <&1> = (—1)%.

Hence if X¢ = )\ ,caen, then

a(G) = Z C)-

A=d



| Sinks

Sink of an acylic orientation (or digraph). vertex
for which no edges point out (including an
Isolated vertex).

ar(G): number of acyclic orientations of G with &
sinks

£(A): length (number of parts) of )

—



| The sink.theorem

Theorem. Let Xg = >, ,caex. Then

Z c) = ai(G).

ARd
¢(N)=k



| The sink.theorem

Theorem. Let Xg = >, ,caex. Then

Z cy = ap(G).

ARd
¢(N)=k

Proof based on guasisymmetric functions.

—



| The sink.theorem

Theorem. Let Xg = >, ,caex. Then

Z cyn = ap(G).

ARd
¢(N)=k

Proof based on quasisymmetric functions.

Open: Is there a simpler proof?

—



| The claw

Example. Let G be the claw K;s.
@

Then
XG — 464 —+ 5631 — 2622 -+ €211 -

Thus Cll(G) = 1, CLQ(G) — 90— 2 =23, ag(G) = 1,

a(G) = 5.
B



| The claw

Example. Let G be the claw K;s.
@

Then
XG — 464 —+ 5631 — 2622 -+ €211 -

Thus @1(G) — 1, CLQ(G) — 95— 2 =3, ag(G) = 1,
a(G) = 5.

When is X e-positive (i.e., each ¢, > 0)? |



Let P be a finite poset. Let 3 + 1 denote the
disjoint union of a 3-element chain and
1-element chain:




| (3 + 1)-free posets

P is (3+1)-free if it contains no 3+ 1.
®
X
(3+1)-free not

—



I The main conjecture

inc(P): incomparability graph of P (vertices are
elements of P; uv Is an edge if neither « < v nor
v < u)



I The main conjecture

inc(P): incomparability graph of P (vertices are
elements of P; uv Is an edge if neither « < v nor
v < u)

Conjecture. If P is (3 + 1)-free, then X, (p) IS
e-positive.

—



| Two comments

& Suggests that for incomparability graphs of
(3 4+ 1)-free posets, ¢, counts acyclic
orientations of G with /() sinks and some
further property depending on A.

Open: What is this property?



| Two comments

& Suggests that for incomparability graphs of
(3 4+ 1)-free posets, ¢, counts acyclic
orientations of G with /() sinks and some
further property depending on A.

Open: What is this property?

o Truelif Pis 3 — free, I.e., X IS e-positive If G
IS the complement of a bipartite graph. More
generally, X Is e-positive if GG Is the
complement of a triangle-free (or K3 — free)

graph. |



| A simple special case

Fix kK > 2. Define

where 74, ..., 14 ranges over all sequences of d
positive integers such that any & consecutive
terms are distinct.

—



| A simple special case

Fix kK > 2. Define

where 74, ..., 14 ranges over all sequences of d

positive integers such that any & consecutive
terms are distinct.

Conjecture. P, IS e-positive.

—



| The casek = 2

where ij > 1, ’ij 7é ij+1.

Theorem (Carlitz).

Z Py - td — ZiZO eiti



| The casek = 2

where ’ij > 1, ij 7é ij+1.

Theorem (Carlitz).

Z Py - td — Zizo eiti

1 — > g (i = 1)ett

Corollary. P, Is e-positive for k£ = 2.



| The casek = 3

Ben Joseph (2001) probably had a complicated
Inclusion-Exclusion proof.



| The casek = 3

Ben Joseph (2001) probably had a complicated
Inclusion-Exclusion proof.

> Pyett =

numerator
1 — (2€3t3 -+ 6€4t4 -+ 24€5t5 + (6466 + 6651 — 633)t6 + - )

—



| Schur functions

» Schur functions {s,} forms a linear basis for
symmetric functions.

® ¢ IS s-positive.

o (Gasharov) X Is s-positive if GG Is the
incomparability graph of a (3 4 1)-free poset.

o Conjecture (Gasharov). If G is claw-free,
then X Is s-positive. (Need not be
e-positive).

—



| A final word

When ' Is a unit interval graph (special case of
incomparability graphs of (3 4+ 1)-free posets),
then Haiman found a close connection with
Verma modules and Kazhdan-Lustzig
polynomials.
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