PROBLEM SET 5 FOR 18.102, SPRING 2017 DUE FRIDAY 17 MARCH IN THE USUAL SENSE.

RICHARD MELROSE

Problem 5.1
Let H be a normed space (over \mathbb{C}) in which the norm satisfies the parallelogram law:

$$
\begin{equation*}
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right) \forall u, v \in H . \tag{1}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\langle u, v\rangle=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}+i\|u+i v\|^{2}-i\|u-i v\|^{2}\right) \tag{2}
\end{equation*}
$$

is a positive-definite Hermitian form which induces the given norm.
Hint: Linearity is a pain. Try to get something, say for a mid-point, first.

Problem 5.2

Let H be a finite dimensional (pre)Hilbert space. So, by definition H has a basis $\left\{v_{i}\right\}_{i=1}^{n}$, meaning that any element of H can be written

$$
\begin{equation*}
v=\sum_{i} c_{i} v_{i} \tag{3}
\end{equation*}
$$

and there is no dependence relation between the v_{i} 's - the presentation of $v=0$ in the form (3) is unique. Show that H has an orthonormal basis, $\left\{e_{i}\right\}_{i=1}^{n}$ satisfying $\left(e_{i}, e_{j}\right)=\delta_{i j}(=1$ if $i=j$ and 0 otherwise). Check that for the orthonormal basis the coefficients in (3) are given by the inner products $c_{i}=\left\langle v, e_{i}\right\rangle$ and that the map

$$
\begin{equation*}
T: H \ni v \longmapsto\left(\left\langle v, e_{1}\right\rangle,\left\langle v, e_{2}\right\rangle, \ldots,\left\langle v, e_{n}\right\rangle\right) \in \mathbb{C}^{n} \tag{4}
\end{equation*}
$$

is a linear isomorphism with the properties

$$
\begin{equation*}
\langle u, v\rangle=\sum_{i}(T u)_{i} \overline{(T v)_{i}},\|u\|_{H}=\|T u\|_{\mathbb{C}^{n}} \forall u, v \in H \tag{5}
\end{equation*}
$$

Why is a finite dimensional pre-Hilbert space a Hilbert space?

Problem 5.3

Let $e_{i}, i \in \mathbb{N}$, be an orthonormal sequence in a separable Hilbert space H. Suppose that for each element u in a dense subset $D \subset H$

$$
\begin{equation*}
\sum_{i}\left|\left\langle u, e_{i}\right\rangle\right|^{2}=\|u\|^{2} \tag{6}
\end{equation*}
$$

Conclude that e_{i} is an orthonormal basis, i.e. is complete.

Problem 5.4
Consider the sequence space

$$
\begin{equation*}
h^{2,1}=\left\{c: \mathbb{N} \ni j \longmapsto c_{j} \in \mathbb{C} ; \sum_{j}\left(1+j^{2}\right)\left|c_{j}\right|^{2}<\infty\right\} . \tag{7}
\end{equation*}
$$

(1) Show that

$$
\begin{equation*}
h^{2,1} \times h^{2,1} \ni(c, d) \longmapsto\langle c, d\rangle_{2,1}=\sum_{j}\left(1+j^{2}\right) c_{j} \overline{d_{j}} \tag{8}
\end{equation*}
$$

is an Hermitian inner form which turns $h^{2,1}$ into a Hilbert space.
(2) Denoting the norm on this space by $\|\cdot\|_{2,1}$ and the norm on l^{2} by $\|\cdot\|_{2}$, show that

$$
\begin{equation*}
h^{2,1} \subset l^{2},\|c\|_{2} \leq\|c\|_{2,1} \forall c \in h^{2,1} \tag{9}
\end{equation*}
$$

Problem 5.5
Suppose that H_{1} and H_{2} are two different Hilbert spaces and $A: H_{1} \longrightarrow H_{2}$ is a bounded linear operator. Show that there is a unique bounded linear operator (the adjoint) $A^{*}: H_{2} \longrightarrow H_{1}$ with the property

$$
\begin{equation*}
\left\langle A u_{1}, u_{2}\right\rangle_{H_{2}}=\left\langle u_{1}, A^{*} u_{2}\right\rangle_{H_{1}} \forall u_{1} \in H_{1}, u_{2} \in H_{2} . \tag{10}
\end{equation*}
$$

Problem 5.6 - Extra

Show that the complex finite linear combinations of the functions $\sin a x, a \in \mathbb{R}$ form a pre-Hilbert space with respect to the norm given by

$$
\begin{equation*}
\|f\|^{2}=\lim _{R \rightarrow \infty} \frac{1}{R} \int_{[-R, R]}|f|^{2} \tag{11}
\end{equation*}
$$

Show that the completion is a non-separable Hilbert space. Can you give a concrete description of the elements of the completion?

Problem 5.7 - Extra

Consider the subspace of $\mathcal{L}^{2}(\mathbb{R})$ which consists of continuous functions u with the additional property that there exists $v \in \mathcal{L}^{2}(\mathbb{R})$ such that

$$
u(x)= \begin{cases}u(0)+\int_{(0, x)} v(t) & \text { if } x>0 \tag{12}\\ u(0)-\int_{(x, 0)} v(t) & \text { if } x<0\end{cases}
$$

Show that for a given u if there are two such functions v then they differ by a null function. Prove that the set of pairs $(u,[v])$ where $[v] \in L^{2}(\mathbb{R})$ is a Hilbert space with respect to the inner product

$$
\begin{equation*}
\left\langle\left(u_{1},\left[v_{1}\right]\right),\left(u_{2},\left[v_{2}\right]\right)\right\rangle=\int u_{1} \overline{u_{2}}+\int v_{1} \overline{v_{2}} . \tag{13}
\end{equation*}
$$

Department of Mathematics, Massachusetts Institute of Technology
E-mail address: rbm@math.mit.edu

