
Problem Set 4 Solutions

Problem 4.1

(1) Suppose that O is a bounded open subset, so O ⊂ (−R,R) for some R. Show that the
characteristic function of O, χO, is an element of L1(R).

Solution. Since O is open, O is the union of disjoint open intervals

O =
∞⋃
i=1

(ai, bi)

where ai, bi are finite. We know that for each i χ(ai,bi) ∈ L1(R), and thus

fn =
n∑

i=1

χ(ai,bi) ∈ L1(R).

Since fn → χO pointwise, andfor each n |fn| ≤ χ(−R,R) ∈ L1(R), theSi dominated
convergence theorem implies that χO ∈ L1(R).

(2) If O is bounded define the length (or Lebesgue measure) of O to be `(O) =
∫
χO.

Show that if U =
⋃

j Oj is an at most countable union of bounded open sets such that∑
j `(Oj) <∞, then χU ∈ L1(R); again we set `(U) =

∫
χU .

Solution. Set

Un =
n⋃

j=1

Oj.

Since Un is a bounded open set, χUn ∈ L1(R). Furthermore, χUn → χU pointwise and
monotonically. Certainly

χUn ≤
n∑

j=1

Oj,

and thus ∫
χUn ≤

n∑
j=1

∫
χOj
≤

∞∑
j=1

`(Oj) <∞.

The monotone convergence theorem implies that χU ∈ L1(R).
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(3) Conversely show that if U is open and χU ∈ L1(R) then U =
⋃

j Oj is a countable
union of bounded open sets with

∑
`(Oj) <∞.

Solution. Write U =
⋃∞

j=1Oj, where Oj = (aj, bj) are disjoint open intervals, where
perhaps aj, bj are infinite. We first show that neither of aj, bj are infinite. We will for
simplicity only show that (aj, bj) 6= (0,∞). Suppose not. Then since

χ(0,∞) = χ(aj ,bj) ≤ χU ∈ L1(R),

and the sequence χ(0,n) → χ(0,∞) pointwise from below, the dominated convergence
theorem shows thatχ(0,∞) ∈ L1(R) with

∫
χ(0,∞) =∞, a contradiction.

Now, since all Oj are finite intervals, χOj
∈ L1(R) for each j, with fn =

∑n
j=1 χOj

converging monotonically to χU . An application of the monotone convergence theorem
concludes that ∑

`(Oj) ≤ `(U).

(4) Show that if K ⊂ R is compact then its characteristic function is an element of L1(R).

Solution 1. K is closed and bounded, so K is a closed subset of (−R,R) for some
R > 0. Thus

χK = χ(−R,R) − χ(−R,R)\K .

Since (−R,R) \K is a bounded open set, χ(−R,R)\K ∈ L1(R), and we conclude since
L1(R) is closed under subtraction.

Solution 2. Consider the sets

Bε = K + (−ε, ε) = {x+ y : x ∈ K, |y| < ε}.

Since K is bounded, Bε is bounded. Bε is certainly open. Thus χBε ∈ L1(R). Fur-
thermore,

∞⋂
n=1

B1/n = K.

Indeed, z is in the intersection if and only if z = xn + yn for xn ∈ K and yn → 0.
Passing to a subsequence and using compactness, we may assume xn → x. Therefore
z ∈ K. The reverse inclusion is clear. Thus,

χBε → χK ,

and we invoke the dominated convergence theorem to conclude.
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Problem 4.2

Suppose un ∈ Cc(R) form an absolutely summable series with respect to the L1 norm and set

E =

{
x ∈ R :

∑
n

|un(x)| =∞

}
.

(1) Show that if a > 0 then the set{
x ∈ R :

∑
n

|un(x)| ≤ a

}

is closed.

Solution 1. Call the set Ea. Denote by EN the set{
x ∈ R :

N∑
n=1

|un(x)| ≤ a

}
.

Since un is continuous, each EN is closed. Since |un| ≥ 0, E =
⋂

N EN , we conclude.

Solution 2. We show instead that the complement is open. If x is in the complement,
then there exists some N for which

N∑
n=1

|un(x)| > a.

Since un is continuous, the same inequality holds true in a neighourhood of x. Since
the |un| are all positive,

∑∞
n=1 |un| > a in this neighbourhood. Thus Ea is open.

(2) Deduce that if ε > 0 is given then there is an open set Oε ⊇ E with
∑

n |un| > 1/ε for
each x ∈ Oε.

Solution. In the notation of the previous, set Oε = R \ E1/ε.

(3) Deduce that the characteristic function of OOε is in L1(R) and that `(OOε) ≤ εC,
C =

∑
n

∫
|un(x)|.

Solution. Set
f =

∑
n

|un| ∈ L1.
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Then f ∈ L1(R) (we need to redefine f on E). Observe that by definition

εχOε(x) ≤ f a.e.

If χOε ∈ L1(R), then it follows that

ε`(Oε) ≤ C,

which is the desired inequality. To show that χOε ∈ L1(R), write Oε as the union of
disjoint open intervals, and argue as in Problem 4.1.3.

(4) Conclude that E has the standard property of a set of measure zero (mentioned last
week) – for each ε > 0 it is covered by a countable collection of open intervals the sum
of the lengths of which is less than ε.

Solution. Choose Oε above, and write it as the disjoint union of open sets. Then E is
covered by a countable collection of open intervals, the sum of the lengths of which is
less than Cε. Since C does not depend on ε, this suffices.

Problem 4.3

Define L∞(R) as the set of functions g : R→ C such that there exists C > 0 and a sequence
vn ∈ C(R) with |vn| ≤ C an vn → g a.e.

(1) Show that L∞(R) is a linear space.

Solution. L∞(R) inherits its linear structure from that of the set of function R→ C,
so we need only verify closure under addition and scalar multiplication. Suppose f, g ∈
L∞(R), and λ ∈ C. Suppose un → f a.e. and vn → g a.e., with |un| ≤ B and |vn| ≤ C
and un, vn ∈ C(R). Since the union of two sets of measure 0 is a set of measure 0,
λun + vn → λf + g, and |λun + vn| ≤ |λ||B|+ |C|. Thus λf + g ∈ L∞(R).

(2) Show that

‖g‖L∞ = inf{sup
R\E
|g(x)| : E has measure zero and sup

R\E
|g(x)| <∞}

is a seminorm on L∞(R) and that this makes L∞(R) = L∞(R)/N into a Banach
space, where N is the space of null functions.

Solution. This really has several parts, so we break it up.

‖g‖L∞ is well-defined. Since there is a uniformly bounded sequence vn → g a.e., we
deduce that g is bounded off of a set of measure zero.
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‖g‖L∞ is a seminorm. Homogeneity and non-negativeity are clear. We present two
arguments fro triangle inequality. By definition, for f, g ∈ L∞(R), for all ε > 0
there exists sets D,E of measure 0 such that

sup
x∈R\D

|f(x)| ≤ ‖f‖L∞ + ε,

and similarly for g. Thus, since D ∪ E is a set of measure zero,

sup
x∈R\(D∪E)

|f(x) + g(x)| ≤ sup
x∈R\D

|f(x)|+ sup
x∈R\E

|g(x)| ≤ ‖f‖L∞ + ‖g‖+ L∞ + 2ε.

Taking the inf and then ε → 0 shows triangle inequality. Alternatively, if g ∈
L∞(R), then for all n there exists a set En of measure zero for which

‖g‖L∞ ≤ sup
x∈R\En

|g(x)| ≤ ‖g‖L∞ + 2−n.

Set Eg =
⋃

nEn, which is a set of measure zero. Then the previous inequality
implies that

‖g‖L∞ = sup
x∈R\Eg

|g(x)|,

i.e. the infimum is achieved. Now we argue as above with Ef , Eg replacing D,E,
and obviate the need to approximate the L∞ norm.

L∞(R) is a normed space. We need only show that N ⊆ L∞(R) and that ‖g‖L∞ =
0 if and only if g ∈ N . If g ∈ N , then g is the a.e. imit a sequence of all 0, and
hence g ∈ L∞(R). It is also clear that ‖g‖L∞ = 0. Conversely, if ‖g‖L∞ = 0, then
for all n there exists En such that

sup
x∈R\En

|g(x)| ≤ 2−n.

Since E =
⋃

En
has measure 0, it follows that g ≡ 0 off of E. Alternatively, using

Eg as defined above, we have that g ≡ 0 off of Eg.

L∞(R) is complete. Suppose [fn] ∈ L∞(R) is a Cauchy sequence. Choose arbitrary
representatives fn ∈ L∞(R). Then for all k ∈ N there exists N such that if
n,m > N ,

‖fn − fm‖L∞(R) < 2−k−1,

and so there exists sets of measure zero Ek,n,m for which

sup
R\Ek,n,m

|fn(x)− fm(x)| < 2−k.1

1In reality, one can pick the same set for each k, and not lose any error; however this is not necessary for
the argument.
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Let E =
⋃

k,n,mEk,n,m. Then E has measure zero, and fn is uniformly Cauchy on
the complement of E, and hence by the standard argument converges uniformly
to some function f defined on R \E. Extend f to R by defining it to be 0 on E.
By definition fn → f in L∞(R), so we just need to argue that f ∈ L∞(R).

Observe first that since fn converge uniformly on E and are bounded on E, the fn
are uniformly bounded on E by some constant C, and thus f is bounded by C, too.
Fix a < b ∈ R. Then by Problem 4.3.3, below, χ[a,b)fn ∈ L1(R). Observe that
Cχ[a,b) ∈ L1(R), that χ[a,b)fn → χ[a,b)f a.e. and that |χ[a,b)fn| ≤ Cχ[a,b) a.e. The
dominated convergence theorem implies that χ[a,b)f ∈ L1(R). Since f is bounded,
Lemma 1.1, below, shows that χ[a,b)f ∈ L∞(R). Then Lemma 1.2, below, shows
that f ∈ L∞(R). Alternatively, one can replace χ[a,b) with g = (1 + |x|2)−1 and
prove variants of Lemmas 1.1 and 1.2. Since we will need both again, we prove
them once below.
Instead of using Cauchy sequences, one can also use the criterion for completeness
that absolute summability implies summability. The first part of the argument
then needs the obvious modifications, and the second part goes through largely
unchanged.

Lemma 1.1. Suppose f is a.e. bounded and f ∈ L1(R). Then f ∈ L∞(R).

Proof. By assumption, there exist un ∈ Cc(R) converging to f a.e. Merging two sets
of measure zero, Without loss of generality we may assume that un converge on the
set where f is bounded, say by C > 0. Replacing un by “cut-off” versions u′n, we may
assume that |u′n| ≤ C. Indeed, simply set

u′n(x) :=

{
un(x), |un(x)| ≤ C
un(x)
|un(x)|C, |un(x)| ≥ C.

.

In effect, u′n is un on the closed region where |un| ≤ C, and un continuous with the
same complex phase, but is normalized on |un| ≥ C.2The pasting lemma guarantees
that u′n is still continuous. Alternatively, the function

C 3 z 7→

{
z, z ≤ C
z
|z| , |z| ≥ C

is continuous, and u′n is the composition of un with this map.

In any case, f is the a.e. limit of uniformly bounded continuous function, so f ∈
L∞.

2If complex phases are confusing, simply break un up into real and imaginary parts, and then the phase
becomes a sign.
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Lemma 1.2. Suppose χ[a,b)f ∈ L∞(R) for all a < b, and f is a.e. bounded. Then
f ∈ L∞(R).

Proof. The idea is to take a = n, b = n + 1, n ∈ Z, and piece together the limiting
sequences for each χ[n,n+1)f . This runs into two problems, which we seek to remedy.
The first is that the sequences may not be uniformly bounded. The second is that they
may have behaviour away from [n, n+1) which messes up the behaviour around other
intervals. We remedy the first as we did in the proof of Lemma 1.1, using the fact that
f is already bounded a.e. To remedy the second, suppose that un,k → χ[n,n+1) and
un,k ∈ C(R). Let ϕn ∈ C(R) be any continuous function which is 1 on [n, n + 1), 0
on (−∞, n− 1) ∪ (n+ 2,∞), and bounded by 1 everywhere. Then ϕnun,k → χ[n,n+1)f
a.e., since the limit is anyway 0 wherever ϕ is not 1. Renaming un,k, we may thus
assume that un,k are uniformly bounded in n, k by some C > 0, and are supported in
[n− 1, n+ 2]. Set

uk =
∑
n

un,k.

This looks like a infinite sum, but since at most 3 summands are supported around
any x, it is actually a finite sum around any x. In particular uk is continuous. Since
it is a sum of at most 3 functions, uk is also uniformly bounded, say by 3C. Since the
sum is finite at any x,

uk(x)→
∑

χ[n,n+1)(x)f(x) = f(x) a.e.

(of course, after taking the union in k of the sets of measure zero on which each sequence
un,k fails to converge). We conclude that f ∈ L∞(R).

(3) Show that if g ∈ L∞(R) and f ∈ L1(R), then gf ∈ L1(R), and that this defined a map

L∞(R)× L1(R)→ L1(R)

which satisfies ‖gf‖L1(R) ≤ ‖g‖L∞‖f‖L1.

Solution. Assuming everything else, the map is well-defined on L∞(R)× L1(R) since
null functions are in L1(R)∩L∞(R) with 0 L∞ and L1 norms. Take un → g a.e., with
un ∈ C(R) bounded by C, and vn → f a.e. with fn ∈ Cc(R). Then ‖g‖L∞(R) ≤ C, and
by the previous problem set, we may assume that there exists some F ∈ L1(R) with
|vn| ≤ F a.e. Thus |unvn| ≤ CF a.e., and so by the dominated convergence theorem
gf ∈ L1, and we have the estimate

‖gf‖L1(R) ≤ C‖F‖L1(R).

There are two methods for improving this. The easiest is to notice that |g| ≤ ‖g‖L∞

a.e., and so

‖gf‖L1(R) =

∫
|gf | ≤ ‖g‖L∞

∫
|f | = ‖g‖L∞‖f‖L1 .
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Slightly more complicated is to use a trick like in the proof of Lemma 1.1 to show that
we may take |un| ≤ ‖g‖L∞ , and thus C = ‖g‖L∞ , and to also notice that we may take
in fact vn → f in L1, too.

Problem 4.4

Define a set U ⊆ R to be (Lebesgue) measureable if its characteristic function χU ∈ L∞(R).
LettingM be the collection of measurable sets, show

(1) R ∈M.

Solution. χR = 1 ∈ C(R).

(2) U ∈M⇒ R \ U ∈M.

Solution. χR\U = χR − χU ∈ L∞(R).

(3) Uj ∈M for j ∈ N then
⋃∞

j=1 Uj ∈M. Set

Solution. Set

Vk =
k⋃

j=1

Uj.

Using Problem 4.3.3, we see that for each n χ[n,n+1)χVk
∈ L1(R). Since χ[n,n+1)χVk

→
χ[n,n+1)χU monotonically and are bounded by 1, the monotone convergence theorem
implies that χ[n,n+1)χU ∈ L1(R). Lemmas 1.1 and 1.2 then show that χU ∈ L∞(R).

(4) If U ⊆ R is open, then U ∈M.

Solution 1. Observe that

U =
∞⋃

N=1

(−N,N) ∩ U.

and χ(−N,N)∩U ∈ L∞(R) by Problem 4.1.1 and Lemma 1.1. Then use Problem 4.4.3 to
conclude.

Solution 2. Write U as the disoint union of (possibly infinite) intervals. It is easy to
see that each interval is inM. Then use Problem 4.4.3 to conclude.
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Problem 4.5

If U ⊆ R is measurable, show that ∫
Uf :=

∫
χUf ∈ C

is well-defined. Prove that if f ∈ L1(R) then

If (x) =

{∫
(0,x)

f, x ≥ 0

−
∫
(x,0)

f, x < 0

is a bounded continuous function on R.

Solution 1. χUf ∈ L1(R) follows from Problem 4.3.3, so the integral is well-defined. Also,
|χUf | ≤ |f |, so |If | ≤ ‖f‖L1 and is therefore bounded. Take xn → x. Then χ(0,xn)f →
χ(0,x)f , and the sequence is bounded by |f |. Thus the dominated convergence theorem
implies that If is continuous.

Solution 2. Argue that boundedness and that If is well-defined as in the first solution. Take
a sequence vn ∈ C(R) convering to f in L1. Then

|If (x+ h)− If (x)| ≤ |If (x+ h)− Ivn(x+ h)|+ |If (x)− Ivn(x)|+ |Ivn(x+ h)− Ivn|.

Using Problem 4.3.3, each of the first two terms is bounded by ‖f − vn‖L1 . Using that the
indicator function of (x, x + h] (or [x + h, x) if h < 0) is in L1(R), and vn ∈ L∞(R), and
then Problem 4.3.3, the third term is bounded by

|h|‖vn‖L∞ .

So for fixed ε > 0, choose n large so that ‖f − vn‖L1 < ε/3. Then if |h| < ‖vn‖−1ε/3,3

|If (x+ h)− If (x)| < ε/3,

and so If is continuous.

3If ‖vn‖ = 0, then h can be anything
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