PROBLEM SET 4 FOR 18.102

DUE 3 MARCH, 2017

RICHARD MELROSE

Hint; It might be wise to remind yourself (if necessary) of the structure of an open subset of \mathbb{R}.

Note: If you wish to you may use the Monotonicity Lemma, Fatou's Lemma and Dominated Convergence in this problem set.

Problem 4.1
(1) Suppose that $O \subset \mathbb{R}$ is a bounded open subset, so $O \subset(-R, R)$ for some R. Show that the characteristic function of O

$$
\chi_{O}(x)= \begin{cases}1 & x \in O \tag{1}\\ 0 & x \notin O\end{cases}
$$

is an element of $\mathcal{L}^{1}(\mathbb{R})$.
(2) If O is bounded and open define the length (or Lebesgue measure) of O to be $l(O)=\int \chi_{O}$. Show that if $U=\bigcup_{j} O_{j}$ is a (n at most) countable union of bounded open sets such that $\sum_{j} l\left(O_{j}\right)<\infty$ then $\chi_{U} \in \mathcal{L}^{1}(\mathbb{R})$; again we set $l(U)=\int \chi_{U}$.
(3) Conversely show that if U is open and $\chi_{U} \in \mathcal{L}^{1}(\mathbb{R})$ then $U=\bigcup_{j} O_{j}$ is the union of a countable collection of bounded open sets with $\sum_{j} l\left(O_{j}\right)<\infty$.
(4) Show that if $K \subset \mathbb{R}$ is compact then its characteristic function is an element of $\mathcal{L}^{1}(\mathbb{R})$.

$$
\text { Problem } 4.2
$$

Suppose $u_{n} \in \mathcal{C}_{\mathbf{c}}(\mathbb{R})$ form an absolutely summable series with respect to the L^{1} norm and set

$$
\begin{equation*}
E=\left\{x \in \mathbb{R} ; \sum_{n}\left|u_{n}(x)\right|=\infty\right\} \tag{2}
\end{equation*}
$$

(1) Show that if $a>0$ then the set

$$
\begin{equation*}
\left\{x \in \mathbb{R} ; \sum_{n}\left|u_{n}(x)\right| \leq a\right\} \tag{3}
\end{equation*}
$$

is closed.
(2) Deduce that if $\epsilon>0$ is given then there is an open set $O_{\epsilon} \supset E$ with $\sum_{n}\left|u_{n}(x)\right|>1 / \epsilon$ for each $x \in O_{\epsilon}$.
(3) Deduce that the characteristic function of O_{ϵ} is in $\mathcal{L}^{1}(\mathbb{R})$ and that $l\left(O_{\epsilon}\right) \leq$ $\epsilon C, C=\sum_{n} \int\left|u_{n}(x)\right|$.
(4) Conclude that E has the standard property of a set of measure zero (mentioned last week) - for each $\epsilon>0$ it is covered by a countable collection of open intervals the sum of the lengths of which is less than ϵ.

Problem 4.3
Define $\mathcal{L}^{\infty}(\mathbb{R})$ as the set of functions $g: \mathbb{R} \longrightarrow \mathbb{C}$ such that there exists $C>0$ and a sequence $v_{n} \in \mathcal{C}(\mathbb{R})$ with $\left|v_{n}(x)\right| \leq C$ and $v_{n}(x) \rightarrow g(x)$ a.e.
(1) Show that $\mathcal{L}^{\infty}(\mathbb{R})$ is a linear space.
(2) Show that

$$
\|g\|_{L^{\infty}}=\inf \left\{\sup _{\mathbb{R} \backslash E}|g(x)| ; E \text { has measure zero and } \sup _{\mathbb{R} \backslash E}|g(x)|<\infty\right\}
$$

is a seminorm on $\mathcal{L}^{\infty}(\mathbb{R})$ and that this makes $L^{\infty}(\mathbb{R})=\mathcal{L}^{\infty}(\mathbb{R}) / \mathcal{N}$ into a Banach space, where \mathcal{N} is the space of null functions.
(3) Show that if $g \in \mathcal{L}^{\infty}(\mathbb{R})$ and $f \in \mathcal{L}^{1}(\mathbb{R})$ then $g f \in \mathcal{L}^{1}(\mathbb{R})$ and that this defines a map

$$
L^{\infty}(\mathbb{R}) \times L^{1}(\mathbb{R}) \longrightarrow L^{1}(\mathbb{R})
$$

which satisfies $\|g f\|_{L^{1}} \leq\|g\|_{L^{\infty}}\|f\|_{L^{1}}$.
Hint: About completeness of $L^{i} n f t y$. First show that for a Cauchy sequence $\left[f_{j}\right]$, f_{n} converges pointwise a.e. and so defines a bounded function f - just define it as zero otherwise. One way to show that $f \in L^{\infty}(\mathbb{R})$ is to use the final part of the problem, which does not depend on completness. Look at say $g=\left(1+|x|^{2}\right)^{-1}$ which is in $\mathcal{L}^{1}(\mathbb{R})$ and is positive and continuous. Now $g f_{n} \rightarrow g f$ a.e. and LDC shows $g f \in \mathcal{L}^{1}(\mathbb{R})$, and therefore is the pointwise limit of continuous functions, hence so is f. Maybe after passing to the real part use boundedness to cut off this sequence and conclude $f \in \mathcal{L}^{1}(\mathbb{R})$ and that $f_{n} \rightarrow f$ in \mathcal{L}^{∞}.

Problem 4.4
Define a set $U \subset \mathbb{R}$ to be (Lebesgue) measureable if its characteristic function

$$
\chi_{U}(x)= \begin{cases}1 & x \in U \\ 0 & x \notin U\end{cases}
$$

is in $\mathcal{L}^{\infty}(\mathbb{R})$. Letting \mathcal{M} be the collection of measureable sets, show
(1) $\mathbb{R} \in \mathcal{M}$
(2) $U \in \mathcal{M} \Longrightarrow \mathbb{R} \backslash U \in \mathcal{M}$
(3) $U_{j} \in \mathcal{M}$ for $j \in \mathbb{N}$ then $\bigcup_{j=1}^{\infty} U_{j} \in \mathcal{M}$
(4) If $U \subset \mathbb{R}$ is open then $U \in \mathcal{M}$

Hint: It might be useful to you to know (and if you need it, show,) that a bounded L^{1} function is in L^{∞} and that a bounded function f such that $f \chi_{[-R, R]} \in L^{1}$ for all R is in L^{∞}. This allows you to use LDC and monotonicity to prove (3) for instance.

Problem 4.5
If $U \subset \mathbb{R}$ is measureable and $f \in \mathcal{L}^{1}(\mathbb{R})$ show that

$$
\int_{U} f=\int \chi_{U} f \in \mathbb{C}
$$

is well-defined. Prove that if $f \in \mathcal{L}^{1}(\mathbb{R})$ then

$$
I_{f}(x)= \begin{cases}\int_{(0, x)} f & x \geq 0 \\ -\int_{(x, 0)} f & x<0\end{cases}
$$

is a bounded continuous function on \mathbb{R}.

Problem 4.6 - Extra
Recall (from Rudin's book for instance) that if $F:[a, b] \longrightarrow[A, B]$ is an increasing continuously differentiable map, in the strong sense that $F^{\prime}(x)>0$, between finite intervals then for any continuous function $f:[A, B] \longrightarrow \mathbb{C}$, (Rudin shows it for Riemann integrable functions)

$$
\begin{equation*}
\int_{A}^{B} f(y) d y=\int_{a}^{b} f(F(x)) F^{\prime}(x) d x \tag{4}
\end{equation*}
$$

Prove the correspondng identity for every $f \in \mathcal{L}^{1}((A, B))$, which in particular requires the right side to make sense.

Problem 4.7 - Extra

Show that if $f \in \mathcal{L}^{1}(\mathbb{R})$ and I_{f} in Problem 4.5 vanishes identically then $f \in \mathcal{N}$.
Hint: Show that the integral $\int f u=0$ where first u is the characteristic function of any interval, then a finite linear combination of such functions (a step function). Then use the basis of Riemann integrability of a continuous function (here of compact support) that it is the uniform limit of such step functions to show this holds for $u \in \mathcal{C}_{\mathrm{c}}(\mathbb{R})$. Then use the definition of L^{∞} above (and Lebesgue Dominated Convergence) to show that $\int f u=0$ for every $u \in L^{\infty}(\mathbb{R})$. Finally show that $g=\bar{f} /|f|$ or 0 where $f=0$, is in L^{∞}.

Department of Mathematics, Massachusetts Institute of Technology
E-mail address: rbm@math.mit.edu

