PROBLEM SET 3 FOR 18.102, SPRING 2017 DUE ELECTRONICALLY ON FRIDAY 24 FEBRUARY (IN THE USUAL SENSE)

RICHARD MELROSE

There is only one lecture this week but these problems do not depend on it – you should be able to tackle them now. The extra problems will reappear next week.

Problem 3.1

Suppose that $f: \mathbb{R} \longrightarrow \mathbb{R}$ is such that there is a sequence $f_n \in \mathcal{C}_c(\mathbb{R})$ with real values, such that $f_n(x)$ is increasing for each $x, \int f_n$ is bounded and

$$\lim_{n} f_n(x) = f(x)$$

whenever the limit exists. Show that $f \in \mathcal{L}^1(\mathbb{R})$.

Problem 3.2

Suppose $E \subset \mathbb{R}$ has the following (well-known) property:-

 $\forall \epsilon > 0 \exists$ a countable collection of intervals (a_i, b_i) s.t.

(2)
$$\sum_{i} (b_i - a_i) < \epsilon, \ E \subset \bigcup_{i} (a_i, b_i).$$

Show that E is a set of measure zero in the sense used in lectures and the notes. Remark: I will ask you to prove the converse in the next problem set, using results from Lecture 4 or 5; the next question will then be rather easy.

Problem 3.3

Write out proof (I described one briefly in Lecture 2) that a non-trivial interval $[a,b] \subset \mathbb{R}$ were b>a, is not of measure zero.

Problem 3.4

Show that the function with F(0) = 0 and

$$F(x) = \begin{cases} 0 & x > 1 \\ \exp(i/x) & 0 < |x| \le 1 \\ 0 & x < -1, \end{cases}$$

is an element of $\mathcal{L}^1(\mathbb{R})$.

Problem 3.5

Suppose $f \in \mathcal{L}^1(\mathbb{R})$ is real-valued. Show that there is a sequence $f_n \in \mathcal{C}_c(\mathbb{R})$ and another element $F \in \mathcal{L}^1(\mathbb{R})$ such that

$$f_n(x) \to f(x)$$
 a.e. on \mathbb{R} , $|f_n(x)| \le F(x)$ a.e.

Hint: Take an approximating series u_n as in the definition and think about $|u_n|$. Remark: The converse of this, where the f_n are allowed to be in $\mathcal{L}^1(\mathbb{R})$ is 'Lebesgue Dominated Convergence' which we will get to.

Department of Mathematics, Massachusetts Institute of Technology $E\text{-}mail\ address$: rbm@math.mit.edu