PROBLEM SET 2 FOR 18.102, SPRING 2017
BRIEF SOLUTIONS.

RICHARD MELROSE

1. PROBLEM 2.1

Show that if K € C([0,1]?) is a continuous function of two variables, then the
integral operator

(1) Au(z) = / K (2, y)u(y)dy

(given by a Riemann integral) is a bounded operator, i.e. a continous linear map,
from C([0, 1]) to itself with respect to the supremum norm.

Solution: A continuous function on a compact set, such as [0,1]?, is uniformly
continuous, so given € there exists § > 0 such that

(2) |z —2'| + |y —y| <= |K(2,y) = K(z',¢)| < e

If u € C([0,1]) is fixed then the integrand in (1) is continuous for each fixed z € [0, 1]
so Au : [0,1] — C is well-defined as a Riemann integral. Moreover

| Au(z) — Au(a’)| = l/0 (K (2,y) = K(2",y)u(y)dy| < SI;PIK(JJ,y)—K(x’,y)ISuPIU\

by standard properties of the Riemann integral. Using (2) it follows that
|z — 2’| < § = |Au(z) — Au(z)| < sup |ule
so Au is continous on [0, 1] and (1) defines a map
(3) A:C(]0,1]) — C([0,1]).
The linearity of this map follows from the linearity of the Riemann integral and
(4) [u(@)| < sup [ K] sup|ul ¥ @ € [0,1]

shows that it is bounded, i.e. continuous.

2. PROBLEM 2.2

(1) Show that the ‘Dirac delta function at y € [0,1] is well-defined as a con-
tinuous linear map
(1) by : C([0,1]) 3ur—u(y) €C
with respect to the supremum norm on C([0, 1]).
(2) Show that d, is not continuous with respect to the L' norm fol .

Solution
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(1) The map (1) is clearly linear since
(2) Oy (crur + coug) = (crur + couz)(y) = c1dy(u1) + 28, (u2)
and it is bounded
6w (w)| < sup |u]

so continuous.
(2) It suffices to show that there is a sequence w,, in C([0, 1]) such that J, (u,) =
1 but ||uy||r — O since then a bound

16y (W) < Clul| L1

is impossible. Such a sequence is given by the ‘triangle functions’

0 r<y-—1/n
up(z)=q1—nly—z| y—1/n<z<y+1/n
0 x>y+1/n

restricted to [0, 1]. Indeed w,, is continuous at each point and

3) un(y) = 1, / un(y) < 1/n.

3. PROBLEM 2.3

Suppose a < b are real, show that the step function

0 ifz<a
(1) X@p =41 fa<z<bd
0 ifb<z

is an element of £(R). [Note that the definition requires you to find an absolutely
summable series of continuous functions with appropriate properties.]

Addendum: Oops, Ethan points out to me that I should read the question before
trying to answer it, and he has a point! The characteristic function is for (a, b] not
[a,b] for which I give the proof below (it is in the notes anyway). So, to get
something closer to full marks I would have done one of two things

(1) Noted that in class we showed that a point is a set of measure zero. So
the construction below gives an absolutely summable series of continuous
functions of compact support such that the partial sums converge f,(z) —
X(a,p] almost everywhere. From a Proposition in class or the notes this
implies X (4,5 € L(R).

(2) I could ‘shift the left leg a little’ defining, for n large enough

0 r<a

n(x — a) a<z<a+1l/n
(2) =91 a+l/n<z<b

l-n(z-b)<b<z<b+1/n

0 x>b+1/n.

Then a similar argument — breaking the difference f, — f,,_1 into the sum of
a positive and a negative piece supported near a and b (or just computing
the integral of the absolute value directly) proves that this comes from an
absolutely summable series and it converges to x (4 everywhere.
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Solution. Define a sequence of contuous functions f, € C.(R) much as above,

0 r<a-—1/n

1—n(a—x) a—1/n<zr<a
(3) falz) =<1 a<z<b

l-n(z-0)<b<z<b+1/n

0 x>b+1/n.

Thus fn, = X[a,p) o0 [a,b] and at all other points f,,(z) — 0, so fn(7) = X(a,p as
n — oo for all x € R. Morever

since it is non-negative and bounded above by X[q4—1,+1)- Define the terms of the
series for which the f, are the partial sums

(4) ulzfla un:fn_fn717n>1

as usual. Then u,, € C.(R) and the u,, are non-positive, for n > 1. Thus

(5) Z/w—/fl fu= <2 [ <oc.

So this is an absolutely summable approximating series and hence x[45) € LY(R).
You can easily compute the integrals of course.
4. PROBLEM 2.4

A subset F C R is said to be of measure zero if there exists an absolutely
summable sequence f,, € C¢(R) (so > [ |fn| < 00) such that

(1) EC{xERZ\fn )| = +o0}.

Show that if F is of measure zero and € > 0 is given then there exists f, € C.(R)
satisfying (1) and in addition

(2) Z/\m«.

Solution: Take such a series f, with Z [ |fn(x)] = C and replace it by /e
or choose N so large that
3 / (@) > C — e
n<N

and consider the new series u,, = f,,+n which has

3) 3 / un(2)] < ¢

and for which > |u,, (2)|C diverges wherever Y | f,(x)| diverges, so in particular on

E.
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5. PROBLEM 2.5

Using the previous problem (or otherwise ...) show that a countable union of
sets of measure zero is a set of measure zero.

Solution: Let E; be the countable collection of sets of measure zero. Choose a
summable series f; , for each j which satisfies

(1) Z/\fj,n| <277, 3 | finl(@)] = oo for z € Bj.

Now, rearrange the countably many terms f;, into a sequence g, € C.(R) — using
for instance a bijection from N? to N applied to the indices. Then, standard re-
arrangement properties of absolutely summable series (look at Rudin if you need
to, we will use this next week) show that

%/ng|=¥;/|fj,n| <zjj2—j:2,

Z |gk($)‘ > Z'fj,n(‘rﬂ =ooVaze Ej» v .
k n

(2)

Thus E = ) E; has measure zero.
J

6. PROBLEM 2.6 — EXTRA

Let’s generalize the theorem about B(V, W) given last week to bilinear maps —
this may seem hard but just take it step by step!

(1) Check that if U and V are normed spaces then U x V' (the linear space of
all pairs (u,v) where u € U and v € V) is a normed space where addition
and scalar multiplication is ‘componentwise’ and the norm is the sum

(1) 1w, 0)l[oxv = [ullo + [[oflv.

(2) Show that U x V is a Banach space if both U and V are Banach spaces.
(3) Consider three normed spaces U, V' and W. Let

(2) B:UxV —W
be a bilinear map. This means that
B(Auq + Aug,v) = Ay B(ug,v) + Ao B(ua,v),
B(u, A1v1 + Aava) = M B(u,v1) + Ao B(u, v2)

for all w, uy, ue € U, v, v1, vo € V and A, Ao € C. Show that B is
continuous if and only if it satisfies

(3) [1B(u, )[[w < Cllullulvlly Vuel, veV.

(4) Let M(U,V; W) be the space of all such continuous bilinear maps. Show
that this is a linear space and that

(4) 1Bl = sup [[B(u,0)|w
llull=1,[lv]|=1

is a norm.

(5) Show that M(U,V; W) is a Banach space if W is a Banach space.
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Solution: Third last part only and brief. An estimate (3) implies continuity,
since if u,, — v and v,, — v then

(5)
1B, vn) = B(u, 0)l[w < [[B(un, vn) = B(un, v)llw + [ B(un, v) = B(u,v)|lw
< C(llunllllon = vll + [lun = ul[fJull) = 0.
Conversely, if B is continuous then B~!({||w|| < 1}) 2 0 is open, so
Jull + 1ol < e = [ Blu,v)l| < 1
for some € > 0. If © and v are non-zero then

le/4(,

4
o o) < e = B0}l < Llullo]
using the bilinearity. If either vanishe then B(u,v) vanishes so (3) is equivalent to
continuity.

Everything else is very similar to the linear case.

7. PROBLEM 2.7 — EXTRA

Consider the space C.(R™) of continuous functions u : R” — C which vanish
outside a compact set, i.e. in |z| > R for some R (depending on u). Check (quickly)
that this is a linear space.

Show that if y € R"~! and u € C.(R") then

(1) Uy:Rotr—u(y,t) eC

defines an element Uy, € C.(R). Fix an overall ‘rectangle’ [—R, R]™ and only consider
functions C¢ r(R) vanishing outside this rectangle. With this restriction on supports
show for each R that R"™' 3 y — U, is a continuous map into C. g(R) with
respect to the supremum norm which vanishes for |y| > R, i.e. has compact support.
Conclude that ‘integration in the last variable’ gives a continuous linear map (with
respect to supremum norms)

(2) Cc,R(Rn) SU—UVE CC7R(]R"_1>7 v(y) = /Uy
By iterating this statement show that the iterated Riemann integral is well defined
(3) / :Ce.r(R") — C

and that [ |u| is a norm which is independent of R — so defined on the whole of
C.(R™).



