
PROBLEM SET 2 FOR 18.102, SPRING 2017

BRIEF SOLUTIONS.

RICHARD MELROSE

1. Problem 2.1

Show that if K ∈ C([0, 1]2) is a continuous function of two variables, then the
integral operator

(1) Au(x) =

∫ 1

0

K(x, y)u(y)dy

(given by a Riemann integral) is a bounded operator, i.e. a continous linear map,
from C([0, 1]) to itself with respect to the supremum norm.

Solution: A continuous function on a compact set, such as [0, 1]2, is uniformly
continuous, so given ε there exists δ > 0 such that

(2) |x− x′|+ |y − y′| < δ =⇒ |K(x, y)−K(x′, y′)| < ε.

If u ∈ C([0, 1]) is fixed then the integrand in (1) is continuous for each fixed x ∈ [0, 1]
so Au : [0, 1] −→ C is well-defined as a Riemann integral. Moreover

|Au(x)−Au(x′)| = |
∫ 1

0

(K(x, y)−K(x′, y)u(y)dy| ≤ sup
y
|K(x, y)−K(x′, y)| sup |u|

by standard properties of the Riemann integral. Using (2) it follows that

|x− x′| < δ =⇒ |Au(x)−Au(x′)| ≤ sup |u|ε

so Au is continous on [0, 1] and (1) defines a map

(3) A : C([0, 1]) −→ C([0, 1]).

The linearity of this map follows from the linearity of the Riemann integral and

(4) |u(x)| ≤ sup |K| sup |u| ∀ x ∈ [0, 1]

shows that it is bounded, i.e. continuous.

2. Problem 2.2

(1) Show that the ‘Dirac delta function at y ∈ [0, 1]’ is well-defined as a con-
tinuous linear map

(1) δy : C([0, 1]) 3 u 7−→ u(y) ∈ C

with respect to the supremum norm on C([0, 1]).

(2) Show that δy is not continuous with respect to the L1 norm
∫ 1

0
|u|.

Solution
1
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(1) The map (1) is clearly linear since

(2) δy(c1u1 + c2u2) = (c1u1 + c2u2)(y) = c1δy(u1) + c2δu(u2)

and it is bounded
|δu(u)| ≤ sup |u|

so continuous.
(2) It suffices to show that there is a sequence un in C([0, 1]) such that δy(un) =

1 but ‖un‖L1 → 0 since then a bound

|δy(u)| ≤ C‖u‖L1

is impossible. Such a sequence is given by the ‘triangle functions’

un(x) =


0 x ≤ y − 1/n

1− n|y − x| y − 1/n ≤ x ≤ y + 1/n

0 x ≥ y + 1/n

restricted to [0, 1]. Indeed un is continuous at each point and

(3) un(y) = 1,

∫ 1

0

un(y) ≤ 1/n.

3. Problem 2.3

Suppose a < b are real, show that the step function

(1) χ(a,b] =


0 if x ≤ a
1 if a < x ≤ b
0 if b < x

is an element of L1(R). [Note that the definition requires you to find an absolutely
summable series of continuous functions with appropriate properties.]

Addendum: Oops, Ethan points out to me that I should read the question before
trying to answer it, and he has a point! The characteristic function is for (a, b] not
[a, b] for which I give the proof below (it is in the notes anyway). So, to get
something closer to full marks I would have done one of two things

(1) Noted that in class we showed that a point is a set of measure zero. So
the construction below gives an absolutely summable series of continuous
functions of compact support such that the partial sums converge fn(x) −→
χ(a,b] almost everywhere. From a Proposition in class or the notes this

implies χ(a,b] ∈ L1(R).
(2) I could ‘shift the left leg a little’ defining, for n large enough

(2) fn =



0 x ≤ a
n(x− a) a < x ≤ a+ 1/n

1 a+ 1/n < x < b

1− n(x− b) ≤ b ≤ x ≤ b+ 1/n

0 x ≥ b+ 1/n.

Then a similar argument – breaking the difference fn−fn−1 into the sum of
a positive and a negative piece supported near a and b (or just computing
the integral of the absolute value directly) proves that this comes from an
absolutely summable series and it converges to χ(a,b] everywhere.
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Solution. Define a sequence of contuous functions fn ∈ Cc(R) much as above,

(3) fn(x) =



0 x < a− 1/n

1− n(a− x) a− 1/n ≤ x < a

1 a ≤ x < b

1− n(x− b) ≤ b ≤ x ≤ b+ 1/n

0 x ≥ b+ 1/n.

Thus fn = χ[a,b] on [a, b] and at all other points fn(x) → 0, so fn(x) → χ(a,b] as
n→∞ for all x ∈ R. Morever ∫

fn ≤ 2 + b− a

since it is non-negative and bounded above by χ[a−1,b+1]. Define the terms of the
series for which the fn are the partial sums

(4) u1 = f1, un = fn − fn−1, n > 1

as usual. Then un ∈ Cc(R) and the un are non-positive, for n > 1. Thus

(5)
∑
n

∫
|un| =

∫
f1 −

∑
n>1

(fn − fn−1) ≤ 2

∫
f1 <∞.

So this is an absolutely summable approximating series and hence χ[a,b] ∈ L1(R).
You can easily compute the integrals of course.

4. Problem 2.4

A subset E ⊂ R is said to be of measure zero if there exists an absolutely
summable sequence fn ∈ Cc(R) (so

∑
n

∫
|fn| <∞) such that

(1) E ⊂ {x ∈ R;
∑
n

|fn(x)| = +∞}.

Show that if E is of measure zero and ε > 0 is given then there exists fn ∈ Cc(R)
satisfying (1) and in addition

(2)
∑
n

∫
|fn| < ε.

Solution: Take such a series fn with
∑
n

∫
|fn(x)| = C and replace it by ε

C+1fn

or choose N so large that ∑
n≤N

∫
|fn(x)| > C − ε

and consider the new series un = fn+N which has

(3)
∑
n

∫
|un(x)| < ε

and for which
∑
n
|un(x)|C diverges wherever

∑
n
|fn(x)| diverges, so in particular on

E.
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5. Problem 2.5

Using the previous problem (or otherwise ...) show that a countable union of
sets of measure zero is a set of measure zero.

Solution: Let Ej be the countable collection of sets of measure zero. Choose a
summable series fj,n for each j which satisfies

(1)
∑
n

∫
|fj,n| < 2−j ,

∑
n

|fj,n(x)| =∞ for x ∈ Ej .

Now, rearrange the countably many terms fj,n into a sequence gk ∈ Cc(R) – using
for instance a bijection from N2 to N applied to the indices. Then, standard re-
arrangement properties of absolutely summable series (look at Rudin if you need
to, we will use this next week) show that

(2)

∑
k

∫
|gk| =

∑
j

∑
n

∫
|fj,n| <

∑
j

2−j = 2,

∑
k

|gk(x)| ≥
∑
n

|fj,n(x)| =∞ ∀ x ∈ Ej , ∀ j.

Thus E =
∑
j

Ej has measure zero.

6. Problem 2.6 – Extra

Let’s generalize the theorem about B(V,W ) given last week to bilinear maps –
this may seem hard but just take it step by step!

(1) Check that if U and V are normed spaces then U × V (the linear space of
all pairs (u, v) where u ∈ U and v ∈ V ) is a normed space where addition
and scalar multiplication is ‘componentwise’ and the norm is the sum

(1) ‖(u, v)‖U×V = ‖u‖U + ‖v‖V .

(2) Show that U × V is a Banach space if both U and V are Banach spaces.
(3) Consider three normed spaces U, V and W. Let

(2) B : U × V −→W

be a bilinear map. This means that

B(λ1u1 + λ2u2, v) = λ1B(u1, v) + λ2B(u2, v),

B(u, λ1v1 + λ2v2) = λ1B(u, v1) + λ2B(u, v2)

for all u, u1, u2 ∈ U, v, v1, v2 ∈ V and λ1, λ2 ∈ C. Show that B is
continuous if and only if it satisfies

(3) ‖B(u, v)‖W ≤ C‖u‖U‖v‖V ∀ u ∈ U, v ∈ V.

(4) Let M(U, V ;W ) be the space of all such continuous bilinear maps. Show
that this is a linear space and that

(4) ‖B‖ = sup
‖u‖=1,‖v‖=1

‖B(u, v)‖W

is a norm.
(5) Show that M(U, V ;W ) is a Banach space if W is a Banach space.
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Solution: Third last part only and brief. An estimate (3) implies continuity,
since if un → u and vn → v then

(5)

‖B(un, vn)−B(u, v)‖W ≤ ‖B(un, vn)−B(un, v)‖W + ‖B(un, v)−B(u, v)‖W
≤ C(‖un‖‖vn − v‖+ ‖un − u‖‖u‖)→ 0.

Conversely, if B is continuous then B−1({‖w‖ < 1}) 3 0 is open, so

‖u‖+ ‖v‖ < ε =⇒ ‖B(u, v)‖ ≤ 1

for some ε > 0. If u and v are non-zero then

‖ε/4(
u

‖u‖
,
v

‖v‖
) < ε =⇒ ‖B(u, v)‖ ≤ 4

ε
‖u‖‖v‖

using the bilinearity. If either vanishe then B(u, v) vanishes so (3) is equivalent to
continuity.

Everything else is very similar to the linear case.

7. Problem 2.7 – Extra

Consider the space Cc(Rn) of continuous functions u : Rn −→ C which vanish
outside a compact set, i.e. in |x| > R for some R (depending on u). Check (quickly)
that this is a linear space.

Show that if y ∈ Rn−1 and u ∈ Cc(Rn) then

(1) Uy : R 3 t 7−→ u(y, t) ∈ C
defines an element Uy ∈ Cc(R). Fix an overall ‘rectangle’ [−R,R]n and only consider
functions Cc,R(R) vanishing outside this rectangle. With this restriction on supports
show for each R that Rn−1 3 y 7−→ Uy is a continuous map into Cc,R(R) with
respect to the supremum norm which vanishes for |y| > R, i.e. has compact support.
Conclude that ‘integration in the last variable’ gives a continuous linear map (with
respect to supremum norms)

(2) Cc,R(Rn) 3 u −→ v ∈ Cc,R(Rn−1), v(y) =

∫
Uy.

By iterating this statement show that the iterated Riemann integral is well defined

(3)

∫
: Cc,R(Rn) −→ C

and that
∫
|u| is a norm which is independent of R – so defined on the whole of

Cc(Rn).


