PROBLEM SET 2 FOR 18.102, SPRING 2017
 BRIEF SOLUTIONS.

RICHARD MELROSE

1. Problem 2.1

Show that if $K \in \mathcal{C}\left([0,1]^{2}\right)$ is a continuous function of two variables, then the integral operator

$$
\begin{equation*}
A u(x)=\int_{0}^{1} K(x, y) u(y) d y \tag{1}
\end{equation*}
$$

(given by a Riemann integral) is a bounded operator, i.e. a continous linear map, from $\mathcal{C}([0,1])$ to itself with respect to the supremum norm.

Solution: A continuous function on a compact set, such as $[0,1]^{2}$, is uniformly continuous, so given ϵ there exists $\delta>0$ such that

$$
\begin{equation*}
\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|<\delta \Longrightarrow\left|K(x, y)-K\left(x^{\prime}, y^{\prime}\right)\right|<\epsilon \tag{2}
\end{equation*}
$$

If $u \in \mathcal{C}([0,1])$ is fixed then the integrand in (1) is continuous for each fixed $x \in[0,1]$ so $A u:[0,1] \longrightarrow \mathbb{C}$ is well-defined as a Riemann integral. Moreover
$\left|A u(x)-A u\left(x^{\prime}\right)\right|=\mid \int_{0}^{1}\left(K(x, y)-K\left(x^{\prime}, y\right) u(y) d y\left|\leq \sup _{y}\right| K(x, y)-K\left(x^{\prime}, y\right)|\sup | u \mid\right.$ by standard properties of the Riemann integral. Using (2) it follows that

$$
\left|x-x^{\prime}\right|<\delta \Longrightarrow\left|A u(x)-A u\left(x^{\prime}\right)\right| \leq \sup |u| \epsilon
$$

so $A u$ is continous on $[0,1]$ and (1) defines a map

$$
\begin{equation*}
A: \mathcal{C}([0,1]) \longrightarrow \mathcal{C}([0,1]) \tag{3}
\end{equation*}
$$

The linearity of this map follows from the linearity of the Riemann integral and

$$
\begin{equation*}
|u(x)| \leq \sup |K| \sup |u| \forall x \in[0,1] \tag{4}
\end{equation*}
$$

shows that it is bounded, i.e. continuous.

2. Problem 2.2

(1) Show that the 'Dirac delta function at $y \in[0,1]$ ' is well-defined as a continuous linear map

$$
\begin{equation*}
\delta_{y}: \mathcal{C}([0,1]) \ni u \longmapsto u(y) \in \mathbb{C} \tag{1}
\end{equation*}
$$

with respect to the supremum norm on $\mathcal{C}([0,1])$.
(2) Show that δ_{y} is not continuous with respect to the L^{1} norm $\int_{0}^{1}|u|$.

Solution
(1) The map (1) is clearly linear since

$$
\begin{equation*}
\delta_{y}\left(c_{1} u_{1}+c_{2} u_{2}\right)=\left(c_{1} u_{1}+c_{2} u_{2}\right)(y)=c_{1} \delta_{y}\left(u_{1}\right)+c_{2} \delta_{u}\left(u_{2}\right) \tag{2}
\end{equation*}
$$

and it is bounded

$$
\left|\delta_{u}(u)\right| \leq \sup |u|
$$

so continuous.
(2) It suffices to show that there is a sequence u_{n} in $\mathcal{C}([0,1])$ such that $\delta_{y}\left(u_{n}\right)=$ 1 but $\left\|u_{n}\right\|_{L^{1}} \rightarrow 0$ since then a bound

$$
\left|\delta_{y}(u)\right| \leq C\|u\|_{L^{1}}
$$

is impossible. Such a sequence is given by the 'triangle functions'

$$
u_{n}(x)= \begin{cases}0 & x \leq y-1 / n \\ 1-n|y-x| & y-1 / n \leq x \leq y+1 / n \\ 0 & x \geq y+1 / n\end{cases}
$$

restricted to $[0,1]$. Indeed u_{n} is continuous at each point and

$$
\begin{equation*}
u_{n}(y)=1, \quad \int_{0}^{1} u_{n}(y) \leq 1 / n \tag{3}
\end{equation*}
$$

3. Problem 2.3

Suppose $a<b$ are real, show that the step function

$$
\chi_{(a, b]}= \begin{cases}0 & \text { if } x \leq a \tag{1}\\ 1 & \text { if } a<x \leq b \\ 0 & \text { if } b<x\end{cases}
$$

is an element of $\mathcal{L}^{1}(\mathbb{R})$. [Note that the definition requires you to find an absolutely summable series of continuous functions with appropriate properties.]

Addendum: Oops, Ethan points out to me that I should read the question before trying to answer it, and he has a point! The characteristic function is for $(a, b]$ not $[a, b]$ for which I give the proof below (it is in the notes anyway). So, to get something closer to full marks I would have done one of two things
(1) Noted that in class we showed that a point is a set of measure zero. So the construction below gives an absolutely summable series of continuous functions of compact support such that the partial sums converge $f_{n}(x) \longrightarrow$ $\chi_{(a, b]}$ almost everywhere. From a Proposition in class or the notes this implies $\chi_{(a, b]} \in \mathcal{L}^{1}(\mathbb{R})$.
(2) I could 'shift the left leg a little' defining, for n large enough

$$
f_{n}= \begin{cases}0 & x \leq a \tag{2}\\ n(x-a) & a<x \leq a+1 / n \\ 1 & a+1 / n<x<b \\ 1-n(x-b) \leq b \leq x \leq b+1 / n & \\ 0 & x \geq b+1 / n\end{cases}
$$

Then a similar argument - breaking the difference $f_{n}-f_{n-1}$ into the sum of a positive and a negative piece supported near a and b (or just computing the integral of the absolute value directly) proves that this comes from an absolutely summable series and it converges to $\chi_{(a, b]}$ everywhere.

Solution. Define a sequence of contuous functions $f_{n} \in \mathcal{C}_{\mathbf{c}}(\mathbb{R})$ much as above,

$$
f_{n}(x)= \begin{cases}0 & x<a-1 / n \tag{3}\\ 1-n(a-x) & a-1 / n \leq x<a \\ 1 & a \leq x<b \\ 1-n(x-b) \leq b \leq x \leq b+1 / n & \\ 0 & x \geq b+1 / n\end{cases}
$$

Thus $f_{n}=\chi_{[a, b]}$ on $[a, b]$ and at all other points $f_{n}(x) \rightarrow 0$, so $f_{n}(x) \rightarrow \chi_{(a, b]}$ as $n \rightarrow \infty$ for all $x \in \mathbb{R}$. Morever

$$
\int f_{n} \leq 2+b-a
$$

since it is non-negative and bounded above by $\chi_{[a-1, b+1]}$. Define the terms of the series for which the f_{n} are the partial sums

$$
\begin{equation*}
u_{1}=f_{1}, u_{n}=f_{n}-f_{n-1}, n>1 \tag{4}
\end{equation*}
$$

as usual. Then $u_{n} \in \mathcal{C}_{\mathrm{C}}(\mathbb{R})$ and the u_{n} are non-positive, for $n>1$. Thus

$$
\begin{equation*}
\sum_{n} \int\left|u_{n}\right|=\int f_{1}-\sum_{n>1}\left(f_{n}-f_{n-1}\right) \leq 2 \int f_{1}<\infty \tag{5}
\end{equation*}
$$

So this is an absolutely summable approximating series and hence $\chi_{[a, b]} \in \mathcal{L}^{1}(\mathbb{R})$. You can easily compute the integrals of course.

4. Problem 2.4

A subset $E \subset \mathbb{R}$ is said to be of measure zero if there exists an absolutely summable sequence $f_{n} \in \mathcal{C}_{\mathrm{c}}(\mathbb{R})$ (so $\sum_{n} \int\left|f_{n}\right|<\infty$) such that

$$
\begin{equation*}
E \subset\left\{x \in \mathbb{R} ; \sum_{n}\left|f_{n}(x)\right|=+\infty\right\} \tag{1}
\end{equation*}
$$

Show that if E is of measure zero and $\epsilon>0$ is given then there exists $f_{n} \in \mathcal{C}_{\mathrm{c}}(\mathbb{R})$ satisfying (1) and in addition

$$
\begin{equation*}
\sum_{n} \int\left|f_{n}\right|<\epsilon \tag{2}
\end{equation*}
$$

Solution: Take such a series f_{n} with $\sum_{n} \int\left|f_{n}(x)\right|=C$ and replace it by $\frac{\epsilon}{C+1} f_{n}$ or choose N so large that

$$
\sum_{n \leq N} \int\left|f_{n}(x)\right|>C-\epsilon
$$

and consider the new series $u_{n}=f_{n+N}$ which has

$$
\begin{equation*}
\sum_{n} \int\left|u_{n}(x)\right|<\epsilon \tag{3}
\end{equation*}
$$

and for which $\sum_{n}\left|u_{n}(x)\right| C$ diverges wherever $\sum_{n}\left|f_{n}(x)\right|$ diverges, so in particular on E.

5. Problem 2.5

Using the previous problem (or otherwise ...) show that a countable union of sets of measure zero is a set of measure zero.

Solution: Let E_{j} be the countable collection of sets of measure zero. Choose a summable series $f_{j, n}$ for each j which satisfies

$$
\begin{equation*}
\sum_{n} \int\left|f_{j, n}\right|<2^{-j}, \sum_{n}\left|f_{j, n}(x)\right|=\infty \text { for } x \in E_{j} \tag{1}
\end{equation*}
$$

Now, rearrange the countably many terms $f_{j, n}$ into a sequence $g_{k} \in \mathcal{C}_{\mathbf{c}}(\mathbb{R})$ - using for instance a bijection from \mathbb{N}^{2} to \mathbb{N} applied to the indices. Then, standard rearrangement properties of absolutely summable series (look at Rudin if you need to, we will use this next week) show that

$$
\begin{gather*}
\sum_{k} \int\left|g_{k}\right|=\sum_{j} \sum_{n} \int\left|f_{j, n}\right|<\sum_{j} 2^{-j}=2 \tag{2}\\
\sum_{k}\left|g_{k}(x)\right| \geq \sum_{n}\left|f_{j, n}(x)\right|=\infty \forall x \in E_{j}, \forall j .
\end{gather*}
$$

Thus $E=\sum_{j} E_{j}$ has measure zero.

6. Problem 2.6 - Extra

Let's generalize the theorem about $\mathcal{B}(V, W)$ given last week to bilinear maps this may seem hard but just take it step by step!
(1) Check that if U and V are normed spaces then $U \times V$ (the linear space of all pairs (u, v) where $u \in U$ and $v \in V)$ is a normed space where addition and scalar multiplication is 'componentwise' and the norm is the sum

$$
\begin{equation*}
\|(u, v)\|_{U \times V}=\|u\|_{U}+\|v\|_{V} . \tag{1}
\end{equation*}
$$

(2) Show that $U \times V$ is a Banach space if both U and V are Banach spaces.
(3) Consider three normed spaces U, V and W. Let

$$
\begin{equation*}
B: U \times V \longrightarrow W \tag{2}
\end{equation*}
$$

be a bilinear map. This means that

$$
\begin{aligned}
B\left(\lambda_{1} u_{1}+\lambda_{2} u_{2}, v\right) & =\lambda_{1} B\left(u_{1}, v\right)+\lambda_{2} B\left(u_{2}, v\right) \\
B\left(u, \lambda_{1} v_{1}+\lambda_{2} v_{2}\right) & =\lambda_{1} B\left(u, v_{1}\right)+\lambda_{2} B\left(u, v_{2}\right)
\end{aligned}
$$

for all $u, u_{1}, u_{2} \in U, v, v_{1}, v_{2} \in V$ and $\lambda_{1}, \lambda_{2} \in \mathbb{C}$. Show that B is continuous if and only if it satisfies

$$
\begin{equation*}
\|B(u, v)\|_{W} \leq C\|u\|_{U}\|v\|_{V} \forall u \in U, v \in V \tag{3}
\end{equation*}
$$

(4) Let $\mathcal{M}(U, V ; W)$ be the space of all such continuous bilinear maps. Show that this is a linear space and that

$$
\begin{equation*}
\|B\|=\sup _{\|u\|=1,\|v\|=1}\|B(u, v)\|_{W} \tag{4}
\end{equation*}
$$

is a norm.
(5) Show that $\mathcal{M}(U, V ; W)$ is a Banach space if W is a Banach space.

Solution: Third last part only and brief. An estimate (3) implies continuity, since if $u_{n} \rightarrow u$ and $v_{n} \rightarrow v$ then

$$
\begin{align*}
&\left\|B\left(u_{n}, v_{n}\right)-B(u, v)\right\|_{W} \leq \| B\left(u_{n}, v_{n}\right)-B\left(u_{n}, v\right)\left\|_{W}+\right\| B\left(u_{n}, v\right)-B(u, v) \|_{W} \tag{5}\\
& \leq C\left(\left\|u_{n}\right\|\left\|v_{n}-v\right\|+\left\|u_{n}-u\right\|\|u\|\right) \rightarrow 0 .
\end{align*}
$$

Conversely, if B is continuous then $B^{-1}(\{\|w\|<1\}) \ni 0$ is open, so

$$
\|u\|+\|v\|<\epsilon \Longrightarrow\|B(u, v)\| \leq 1
$$

for some $\epsilon>0$. If u and v are non-zero then

$$
\left\|\epsilon / 4\left(\frac{u}{\|u\|}, \frac{v}{\|v\|}\right)<\epsilon \Longrightarrow\right\| B(u, v)\left\|\leq \frac{4}{\epsilon}\right\| u\|\|v\|
$$

using the bilinearity. If either vanishe then $B(u, v)$ vanishes so (3) is equivalent to continuity.

Everything else is very similar to the linear case.

7. Problem 2.7 - Extra

Consider the space $\mathcal{C}_{\mathrm{c}}\left(\mathbb{R}^{n}\right)$ of continuous functions $u: \mathbb{R}^{n} \longrightarrow \mathbb{C}$ which vanish outside a compact set, i.e. in $|x|>R$ for some R (depending on u). Check (quickly) that this is a linear space.

Show that if $y \in \mathbb{R}^{n-1}$ and $u \in \mathcal{C}_{\mathrm{c}}\left(\mathbb{R}^{n}\right)$ then

$$
\begin{equation*}
U_{y}: \mathbb{R} \ni t \longmapsto u(y, t) \in \mathbb{C} \tag{1}
\end{equation*}
$$

defines an element $U_{y} \in \mathcal{C}_{\mathrm{c}}(\mathbb{R})$. Fix an overall 'rectangle' $[-R, R]^{n}$ and only consider functions $\mathcal{C}_{\mathrm{c}, R}(\mathbb{R})$ vanishing outside this rectangle. With this restriction on supports show for each R that $\mathbb{R}^{n-1} \ni y \longmapsto U_{y}$ is a continuous map into $\mathcal{C}_{\mathrm{c}, R}(\mathbb{R})$ with respect to the supremum norm which vanishes for $|y|>R$, i.e. has compact support. Conclude that 'integration in the last variable' gives a continuous linear map (with respect to supremum norms)

$$
\begin{equation*}
\mathcal{C}_{\mathrm{c}, R}\left(\mathbb{R}^{n}\right) \ni u \longrightarrow v \in \mathcal{C}_{\mathrm{c}, R}\left(\mathbb{R}^{n-1}\right), v(y)=\int U_{y} \tag{2}
\end{equation*}
$$

By iterating this statement show that the iterated Riemann integral is well defined

$$
\begin{equation*}
\int: \mathcal{C}_{\mathrm{c}, R}\left(\mathbb{R}^{n}\right) \longrightarrow \mathbb{C} \tag{3}
\end{equation*}
$$

and that $\int|u|$ is a norm which is independent of R - so defined on the whole of $\mathcal{C}_{\mathrm{C}}\left(\mathbb{R}^{n}\right)$.

