18.102/1021 QUESTIONS FOR FINAL EXAM

No notes, books, reference material or communication equipment will be permitted!

Unless otherwise defined, H is an infinite-dimensional separable Hilbert space.

Problem 1

Let A be a compact, self-adjoint operator on a H which is positive in the sense that $\langle A u, u\rangle>0$ for all $0 \neq u \in H$. Show that the range $R(A)$ is a dense subspace of H and that

$$
\|v\|_{A}=\|u\|_{H}, v \in R(A), v=A u, u \in H
$$

defines a norm on $R(A)$ with respect to which it is a Hilbert space.

Problem 2

Let a be a continuous function on the square $[0,2 \pi]^{2}$. Show that $[0,2 \pi] \ni x \longmapsto$ $a(x, \cdot) \in \mathcal{C}^{0}([0,2 \pi])$ is a continuous map into the continuous functions with supremum norm. Using this, or otherwise, show that the Fourier coefficients with respect to the second variable

$$
\begin{equation*}
c_{k}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} a(x, t) e^{i k t} d t \tag{1}
\end{equation*}
$$

are continuous functions on $[0,2 \pi]$.

Problem 3

Let $H_{i}, i=1,2$ be two Hilbert spaces with inner products $(\cdot, \cdot)_{i}$ and suppose that $I: H_{1} \longrightarrow H_{2}$ is a continuous linear map between them.
(1) Show that there is a continuous linear map $Q: H_{2} \longrightarrow H_{1}$ such that $(u, I f)_{2}=(Q u, f)_{1} \forall f \in H_{1}$.
(2) Show that as a map from H_{1} to itself, $Q \circ I$ is bounded and self-adjoint
(3) Show that the spectrum of $Q \circ I$ is contained in $\left[0,\|I\|^{2}\right]$.

Problem 4

Let $u_{n}:[0,2 \pi] \longrightarrow \mathbb{C}$ be a sequence of continuously differentiable functions which is uniformly bounded, with bounded derivatives i.e. $\sup _{n} \sup _{x \in[0,2 \pi]}\left|u_{n}(x)\right|<\infty$ and $\sup _{n} \sup _{x \in[0,2 \pi]}\left|u_{n}^{\prime}(x)\right|<\infty$. Show that u_{n} has a subsequence which converges in $L^{2}([0,2 \pi])$.

Problem 5

Consider the subspace $H \subset \mathcal{C}[0,2 \pi]$ consisting of those continuous functions on [$0,2 \pi]$ which satisfy

$$
\begin{equation*}
u(x)=\int_{0}^{x} U, \forall x \in[0,2 \pi] \tag{2}
\end{equation*}
$$

for some $U \in L^{2}(0,2 \pi)$ (depending on u of course).
(1) Show that the function U is determined by u (given that it exists).
(2) Show that

$$
\begin{equation*}
\|u\|_{H}^{2}=\int_{(0,2 \pi)}|U|^{2} \tag{3}
\end{equation*}
$$

turns H into a Hilbert space.
(3) If $\int_{0}^{2 \pi} U=0$, determine the Fourier series of u in terms of that of U.

Problem 6

Consider the space of those complex-valued functions on $[0,1]$ for which there is a constant C (depending on the function) such that

$$
\begin{equation*}
|u(x)-u(y)| \leq C|x-y|^{\frac{1}{2}} \forall x, y \in[0,1] . \tag{4}
\end{equation*}
$$

Show that this is a Banach space with norm

$$
\begin{equation*}
\|u\|_{\frac{1}{2}}=\sup _{[0,1]}|u(x)|+\inf _{(4) \text { holds }} C . \tag{5}
\end{equation*}
$$

Problem 7

Let $A_{j} \subset \mathbb{R}$ be a sequence of subsets with the property that the characteristic function, χ_{j} of A_{j}, is integrable for each j. Show that the characteristic function of $\mathbb{R} \backslash A$, where $A=\bigcup_{j} A_{j}$ is locally integrable.

Problem 8

A bounded operator $A \in \mathcal{B}(H)$ on a separable Hilbert space is a Hilbert-Schmidt operator if for some orthonormal basis $\left\{e_{i}\right\}$

$$
\begin{equation*}
\sum_{i}\left\|A e_{i}\right\|^{2}<\infty \tag{6}
\end{equation*}
$$

Show that if A and B are Hilbert-Schmidt operators then the sum

$$
\begin{equation*}
\operatorname{Tr}(A B)=\sum_{i}\left\langle A e_{i}, B^{*} e_{i}\right\rangle \tag{7}
\end{equation*}
$$

exists and is independent of the orthonormal basis used to define it.

Problem 9

Let B_{n} be a sequence of bounded linear operators on a Hilbert space H such that for each u and $v \in H$ the sequence $\left(B_{n} u, v\right)$ converges in \mathbb{C}. Show that there is a uniquely defined bounded operator B on H such that

$$
(B u, v)=\lim _{n \rightarrow \infty}\left(B_{n} u, v\right) \forall u, v \in H
$$

Problem 10

Suppose $P \subset H$ is a closed linear subspace of a Hilbert space, with $\pi_{P}: H \longrightarrow P$ the orthogonal projection onto P. If H is separable and A is a compact self-adjoint operator on H, show that there is a complete orthonormal basis of H each element of which satisfies $\pi_{P} A \pi_{P} e_{i}=t_{i} e_{i}$ for some $t_{i} \in \mathbb{R}$.

Problem 11

Let $e_{j}=c_{j} C^{j} e^{-x^{2} / 2}, c_{j}>0$, where $j=1,2, \ldots$, and $C=-\frac{d}{d x}+x$ is the creation operator, be the orthonormal basis of $L^{2}(\mathbb{R})$ consisting of the eigenfunctions of the harmonic oscillator discussed in class. You may assume completeness in $L^{2}(\mathbb{R})$ and use the facts established in class that $-\frac{d^{2} e_{j}}{d x^{2}}+x^{2} e_{j}=(2 j+1) e_{j}$, that $c_{j}=2^{-j / 2}(j!)^{-\frac{1}{2}} \pi^{-\frac{1}{4}}$ and that $e_{j}=p_{j}(x) e_{0}$ for a polynomial of degree j. Compute $C e_{j}$ and $A e_{j}$ in terms of the basis and hence arrive at formulae for $d e_{j} / d x$ and $x e_{j}$. Conclude that if

$$
\begin{equation*}
H_{\mathrm{iso}}^{1}=\left\{u \in L^{2}(\mathbb{R}) ; \sum_{j \geq 1} j\left|\left(u, e_{j}\right)\right|^{2}<\infty\right\} \tag{8}
\end{equation*}
$$

then there are uniquely defined operators x and $D: H_{\text {iso }}^{1} \longrightarrow L^{2}(\mathbb{R})$ defined correctly on the basis, so $D e_{j}=\frac{d e_{j}}{d x}$ for each j.

Problem 12

Suppose that $f \in \mathcal{L}^{2}(0,2 \pi)$ is such that there exists a function $v \in L^{2}(\mathbb{R})$ satisfying

$$
\int_{\mathbb{R}} f \phi^{\prime}=\int v \hat{\phi} \forall \phi \in \mathcal{S}(\mathbb{R})
$$

where $\hat{\phi}$ is the Fourier transform of ϕ. Using if desired the density of $\mathcal{S}(\mathbb{R})$ in $L^{2}(\mathbb{R})$ show that there is a bounded continuous function g such that $f=g$ a.e.

Hint: There was really a typo here in that I meant $f \in L^{2}(\mathbb{R})$, the question is okay as it is but potentially confusing. Anyway, you can take $\hat{\phi}=\psi$ then $\phi(x)=\frac{1}{2 \pi}(\hat{\psi})(-x)$ so

$$
\int_{\mathbb{R}} f(-x) i \hat{\xi} \psi(x)=\int v \psi \forall \psi \in \mathcal{S}(\mathbb{R})
$$

So

$$
\int_{\mathbb{R}} f(\hat{-} x) i \xi \psi(\xi)=\int v \psi
$$

from which it follows that $\xi \hat{f} \in L^{2}(\mathbb{R})$. This means $\hat{f} \in L^{1}(\mathbb{R})$ so f is continuous.

Problem 13

Suppose $A \in \mathcal{B}(H)$ has closed range. Show that A has a generalized inverse, $B \in \mathcal{B}(H)$ such that

$$
A B=\Pi_{R}, B A=\operatorname{Id}-\Pi_{N}
$$

where Π_{N} and Π_{R} are the orthonormal projections onto the null space and range of A respectively.

Problem 14

For $u \in L^{2}(0,1)$ show that

$$
I u(x)=\int_{0}^{x} u(t) d t, x \in(0,1)
$$

is a bounded linear operator on $L^{2}(0,1)$. If $V \in \mathcal{C}([0,1])$, is real-valued and $V \geq 0$, show that there is a bounded linear operator B on $L^{2}(0,1)$ such that

$$
\begin{equation*}
B^{2} u=u+I^{*} M_{V} I u \forall u \in L^{2}(0,1) \tag{9}
\end{equation*}
$$

where M_{V} denotes multiplication by V.

Problem 15

Let $A \in \mathcal{B}(H)$ be such that

$$
\begin{equation*}
\sup \sum_{i}\left|\left\langle A e_{i}, f_{i}\right\rangle\right|<\infty \tag{10}
\end{equation*}
$$

where the supremum is over orthonormal sequence e_{i} and f_{j}. Use the polar decomposition to show that $A=B_{1} B_{2}$ where the $B_{k} \in \mathcal{B}(H)$ are Hilbert-Schmidt operators, i.e. $\sum_{i}\left\|B_{k} e_{i}\right\|^{2}<\infty, k=1,2$.

Problem 16

Suppose $f \in L^{1}(\mathbb{R})$ and the Fourier transform $\hat{f} \in L^{2}(\mathbb{R})$ show that $f \in L^{2}(\mathbb{R})$.
Hint: For $f \in L^{1}(\mathbb{R}), \hat{f}$ is defined by a Lebesgue integral. Use approximation (for instance the definition of L^{1}) to show that for all $\phi \in \mathcal{S}(\mathbb{R})$

$$
\int \hat{f} \phi=\int f \hat{\phi}
$$

We showed that there is an L^{2} function g with $\hat{g}=\hat{f}$ (defined by continuous extension) with this same property. Use this to show that $g=f$ a.e.

Problem 17

Show that the functions $c_{k} \cos (k x), k=0,1, \ldots$, for appropriate constants c_{k}, form an orthonormal basis of $L^{2}(0, \pi)$. Using these, or otherwise, show that for each function $f \in \mathcal{C}([0, \pi])$ the Neumann problem

$$
\begin{equation*}
-\frac{d^{2} u}{d x^{2}}+u=f \text { on }(0, \pi), \frac{d u}{d x}(0)=\frac{d u}{d x}(\pi)=0 \tag{11}
\end{equation*}
$$

has a unique twice continuously differentiable solution and the resulting map $f \longmapsto$ u extends by continuity to a compact self-adjoint operator on $L^{2}(0, \pi)$.

Problem 18

Let $a \in \mathcal{C}([0,1])$ be a real-valued continouous function. Show that multiplication by a defines a self-adjoint operator A_{a} on $L^{2}(0,1)$ which has spectrum exactly the range $a([0,1]) \subset \mathbb{R}$. If $h \in \mathcal{C}(\mathbb{R})$ is real-valued, describe the operator $h\left(A_{a}\right)$ given by the functional calculus.

Problem 19

Explain carefully (but briefly ..) why the Schwartz space $\mathcal{S}(\mathbb{R})$ gives a welldefined subspace of $L^{2}(\mathbb{R})$. Show that if $u \in L^{2}(\mathbb{R})$ has a weak derivative in $\mathcal{S}(\mathbb{R})$ in the sense that there exists $v \in \mathcal{S}(\mathbb{R})$ such that

$$
\int_{\mathbb{R}} u \frac{d \phi}{d x}=-\int_{\mathbb{R}} v \phi \forall \phi \in \mathcal{S}(\mathbb{R})
$$

then $u \in \mathcal{S}(\mathbb{R})$.
Hint: You can take $\phi=\hat{\psi}$ where $\psi \in \mathcal{S}(\mathbb{R})$. Using properties of the Fourier transform it follows that $\hat{v}(\xi)-i \xi \hat{u}(\xi)$ 'pairs' to zero with all Schwartz functions, so vanishes a.e. Hence $\xi \hat{u}=i \hat{v}$ 'is' Schwartz. Now \hat{u} is an L^{2} function and the only
way $w(x) / x$ can be in L^{2}, where w is Schwartz, is if $w(0)=0$ so it follows that \hat{u} is Schwartz and hence so is u.

