18.102/1021 QUESTIONS FOR FINAL EXAM

No notes, books, reference material or communication equipment will be permitted!

Unless otherwise defined, H is an infinite-dimensional separable Hilbert space.

Problem 1

Let A be a compact, self-adjoint operator on a H which is positive in the sense that $\langle Au, u \rangle > 0$ for all $0 \neq u \in H$. Show that the range R(A) is a dense subspace of H and that

$$||v||_A = ||u||_H, \ v \in R(A), \ v = Au, \ u \in H$$

defines a norm on R(A) with respect to which it is a Hilbert space.

Problem 2

Let a be a continuous function on the square $[0, 2\pi]^2$. Show that $[0, 2\pi] \ni x \mapsto a(x, \cdot) \in \mathcal{C}^0([0, 2\pi])$ is a continuous map into the continuous functions with supremum norm. Using this, or otherwise, show that the Fourier coefficients with respect to the second variable

(1)
$$c_k(x) = \frac{1}{2\pi} \int_0^{2\pi} a(x,t)e^{ikt}dt$$

are continuous functions on $[0, 2\pi]$.

Problem 3

Let H_i , i=1,2 be two Hilbert spaces with inner products $(\cdot,\cdot)_i$ and suppose that $I: H_1 \longrightarrow H_2$ is a continuous linear map between them.

- (1) Show that there is a continuous linear map $Q: H_2 \longrightarrow H_1$ such that $(u, If)_2 = (Qu, f)_1 \ \forall \ f \in H_1$.
- (2) Show that as a map from H_1 to itself, $Q \circ I$ is bounded and self-adjoint
- (3) Show that the spectrum of $Q \circ I$ is contained in $[0, ||I||^2]$.

Problem 4

Let $u_n:[0,2\pi] \longrightarrow \mathbb{C}$ be a sequence of continuously differentiable functions which is uniformly bounded, with bounded derivatives i.e. $\sup_n \sup_{x \in [0,2\pi]} |u_n(x)| < \infty$ and $\sup_n \sup_{x \in [0,2\pi]} |u_n'(x)| < \infty$. Show that u_n has a subsequence which converges in $L^2([0,2\pi])$.

Problem 5

Consider the subspace $H \subset \mathcal{C}[0, 2\pi]$ consisting of those continuous functions on $[0, 2\pi]$ which satisfy

(2)
$$u(x) = \int_0^x U, \ \forall \ x \in [0, 2\pi]$$

for some $U \in L^2(0, 2\pi)$ (depending on u of course).

- (1) Show that the function U is determined by u (given that it exists).
- (2) Show that

(3)
$$||u||_H^2 = \int_{(0,2\pi)} |U|^2$$

turns H into a Hilbert space.

(3) If $\int_0^{2\pi} U = 0$, determine the Fourier series of u in terms of that of U.

Problem 6

Consider the space of those complex-valued functions on [0,1] for which there is a constant C (depending on the function) such that

$$|u(x) - u(y)| \le C|x - y|^{\frac{1}{2}} \ \forall \ x, y \in [0, 1].$$

Show that this is a Banach space with norm

(5)
$$||u||_{\frac{1}{2}} = \sup_{[0,1]} |u(x)| + \inf_{(4) \text{ holds}} C.$$

Problem 7

Let $A_j \subset \mathbb{R}$ be a sequence of subsets with the property that the characteristic function, χ_j of A_j , is integrable for each j. Show that the characteristic function of $\mathbb{R} \setminus A$, where $A = \bigcup_j A_j$ is locally integrable.

Problem 8

A bounded operator $A \in \mathcal{B}(H)$ on a separable Hilbert space is a Hilbert-Schmidt operator if for some orthonormal basis $\{e_i\}$

Show that if A and B are Hilbert-Schmidt operators then the sum

(7)
$$\operatorname{Tr}(AB) = \sum_{i} \langle Ae_i, B^*e_i \rangle$$

exists and is independent of the orthonormal basis used to define it.

Problem 9

Let B_n be a sequence of bounded linear operators on a Hilbert space H such that for each u and $v \in H$ the sequence $(B_n u, v)$ converges in \mathbb{C} . Show that there is a uniquely defined bounded operator B on H such that

$$(Bu, v) = \lim_{n \to \infty} (B_n u, v) \ \forall \ u, v \in H.$$

Problem 10

Suppose $P \subset H$ is a closed linear subspace of a Hilbert space, with $\pi_P : H \longrightarrow P$ the orthogonal projection onto P. If H is separable and A is a compact self-adjoint operator on H, show that there is a complete orthonormal basis of H each element of which satisfies $\pi_P A \pi_P e_i = t_i e_i$ for some $t_i \in \mathbb{R}$.

Problem 11

Let $e_j=c_jC^je^{-x^2/2},\ c_j>0$, where $j=1,2,\ldots,$ and $C=-\frac{d}{dx}+x$ is the creation operator, be the orthonormal basis of $L^2(\mathbb{R})$ consisting of the eigenfunctions of the harmonic oscillator discussed in class. You may assume completeness in $L^2(\mathbb{R})$ and use the facts established in class that $-\frac{d^2e_j}{dx^2}+x^2e_j=(2j+1)e_j$, that $c_j=2^{-j/2}(j!)^{-\frac{1}{2}}\pi^{-\frac{1}{4}}$ and that $e_j=p_j(x)e_0$ for a polynomial of degree j. Compute Ce_j and Ae_j in terms of the basis and hence arrive at formulae for de_j/dx and xe_j . Conclude that if

(8)
$$H_{\text{iso}}^{1} = \{ u \in L^{2}(\mathbb{R}); \sum_{j>1} j |(u, e_{j})|^{2} < \infty \}$$

then there are uniquely defined operators x and $D: H^1_{\text{iso}} \longrightarrow L^2(\mathbb{R})$ defined correctly on the basis, so $De_j = \frac{de_j}{dx}$ for each j.

Problem 12

Suppose that $f \in \mathcal{L}^2(0,2\pi)$ is such that there exists a function $v \in L^2(\mathbb{R})$ satisfying

$$\int_{\mathbb{R}} f\phi' = \int v\hat{\phi} \ \forall \ \phi \in \mathcal{S}(\mathbb{R})$$

where $\hat{\phi}$ is the Fourier transform of ϕ . Using if desired the density of $\mathcal{S}(\mathbb{R})$ in $L^2(\mathbb{R})$ show that there is a bounded continuous function g such that f = g a.e.

Hint: There was really a typo here in that I meant $f \in L^2(\mathbb{R})$, the question is okay as it is but potentially confusing. Anyway, you can take $\hat{\phi} = \psi$ then $\phi(x) = \frac{1}{2\pi}(\hat{\psi})(-x)$ so

$$\int_{\mathbb{R}} f(-x)i\hat{\xi}\psi(x) = \int v\psi \ \forall \psi \in \mathcal{S}(\mathbb{R}).$$

So

$$\int_{\mathbb{R}} f(-x)i\xi\psi(\xi) = \int v\psi$$

from which it follows that $\xi \hat{f} \in L^2(\mathbb{R})$. This means $\hat{f} \in L^1(\mathbb{R})$ so f is continuous.

Problem 13

Suppose $A \in \mathcal{B}(H)$ has closed range. Show that A has a generalized inverse, $B \in \mathcal{B}(H)$ such that

$$AB = \Pi_R, BA = \operatorname{Id} - \Pi_N$$

where Π_N and Π_R are the orthonormal projections onto the null space and range of A respectively.

Problem 14

For $u \in L^2(0,1)$ show that

$$Iu(x) = \int_0^x u(t)dt, \ x \in (0,1)$$

is a bounded linear operator on $L^2(0,1)$. If $V \in \mathcal{C}([0,1])$, is real-valued and $V \geq 0$, show that there is a bounded linear operator B on $L^2(0,1)$ such that

(9)
$$B^{2}u = u + I^{*}M_{V}Iu \ \forall \ u \in L^{2}(0,1)$$

where M_V denotes multiplication by V.

Problem 15

Let $A \in \mathcal{B}(H)$ be such that

(10)
$$\sup \sum_{i} |\langle Ae_i, f_i \rangle| < \infty$$

where the supremum is over orthonormal sequence e_i and f_j . Use the polar decomposition to show that $A = B_1B_2$ where the $B_k \in \mathcal{B}(H)$ are Hilbert-Schmidt operators, i.e. $\sum_i \|B_k e_i\|^2 < \infty$, k = 1, 2.

Problem 16

Suppose $f \in L^1(\mathbb{R})$ and the Fourier transform $\hat{f} \in L^2(\mathbb{R})$ show that $f \in L^2(\mathbb{R})$. Hint: For $f \in L^1(\mathbb{R})$, \hat{f} is defined by a Lebesgue integral. Use approximation (for instance the definition of L^1) to show that for all $\phi \in \mathcal{S}(\mathbb{R})$

$$\int \hat{f}\phi = \int f\hat{\phi}.$$

We showed that there is an L^2 function g with $\hat{g} = \hat{f}$ (defined by continuous extension) with this same property. Use this to show that g = f a.e.

Problem 17

Show that the functions $c_k \cos(kx)$, $k = 0, 1, \ldots$, for appropriate constants c_k , form an orthonormal basis of $L^2(0, \pi)$. Using these, or otherwise, show that for each function $f \in \mathcal{C}([0, \pi])$ the Neumann problem

(11)
$$-\frac{d^2u}{dx^2} + u = f \text{ on } (0,\pi), \ \frac{du}{dx}(0) = \frac{du}{dx}(\pi) = 0$$

has a unique twice continuously differentiable solution and the resulting map $f \mapsto u$ extends by continuity to a compact self-adjoint operator on $L^2(0,\pi)$.

Problem 18

Let $a \in \mathcal{C}([0,1])$ be a real-valued continouous function. Show that multiplication by a defines a self-adjoint operator A_a on $L^2(0,1)$ which has spectrum exactly the range $a([0,1]) \subset \mathbb{R}$. If $h \in \mathcal{C}(\mathbb{R})$ is real-valued, describe the operator $h(A_a)$ given by the functional calculus.

Problem 19

Explain carefully (but briefly ..) why the Schwartz space $\mathcal{S}(\mathbb{R})$ gives a well-defined subspace of $L^2(\mathbb{R})$. Show that if $u \in L^2(\mathbb{R})$ has a weak derivative in $\mathcal{S}(\mathbb{R})$ in the sense that there exists $v \in \mathcal{S}(\mathbb{R})$ such that

$$\int_{\mathbb{R}} u \frac{d\phi}{dx} = -\int_{\mathbb{R}} v\phi \ \forall \ \phi \in \mathcal{S}(\mathbb{R})$$

then $u \in \mathcal{S}(\mathbb{R})$.

Hint: You can take $\phi = \hat{\psi}$ where $\psi \in \mathcal{S}(\mathbb{R})$. Using properties of the Fourier transform it follows that $\hat{v}(\xi) - i\xi\hat{u}(\xi)$ 'pairs' to zero with all Schwartz functions, so vanishes a.e. Hence $\xi\hat{u} = i\hat{v}$ 'is' Schwartz. Now \hat{u} is an L^2 function and the only

way w(x)/x can be in L^2 , where w is Schwartz, is if w(0)=0 so it follows that \hat{u} is Schwartz and hence so is u.