CHAPTER 3

Hilbert spaces

There are really three ‘types’ of Hilbert spaces (over C). The finite dimen-
sional ones, essentially just C™, for different integer values of n, with which you are
pretty familiar, and two infinite dimensional types corresponding to being separa-
ble (having a countable dense subset) or not. As we shall see, there is really only
one separable infinite-dimensional Hilbert space (no doubt you realize that the C"
are separable) and that is what we are mostly interested in. Nevertheless we try
to state results in general and then give proofs (usually they are the nicest ones)
which work in the non-separable cases too.

I will first discuss the definition of pre-Hilbert and Hilbert spaces and prove
Cauchy’s inequality and the parallelogram law. This material can be found in all
the lecture notes listed earlier and many other places so the discussion here will be
kept succinct. Another nice source is the book of G.F. Simmons, “Introduction to
topology and modern analysis” [5]. I like it — but I think it is long out of print.

1. pre-Hilbert spaces

A pre-Hilbert space, H, is a vector space (usually over the complex numbers
but there is a real version as well) with a Hermitian inner product

(,) :Hx H—C,
(3.1) (M1 + Agv2, w) = A1 (v1, W) + Ao (v2, w),
(w,v) = (v,w)
for any vy, vo, v and w € H and Ay, Ay € C which is positive-definite
(3.2) (v,v) >0, (v,0) =0= v =0.

Note that the reality of (v,v) follows from the second condition in (3.1), the posi-
tivity is an additional assumption as is the positive-definiteness.

The combination of the two conditions in (3.1) implies ‘anti-linearity’ in the
second variable

(3.3) (v, Mwy + Aows) = Ay (v, w1) + Ao (v, wo)

which is used without comment below.
The notion of ‘definiteness’ for such an Hermitian inner product exists without
the need for positivity — it just means

(3.4) (u,v) =0Vv e H = u=0.
LEMMA 3.1. If H is a pre-Hilbert space with Hermitian inner product {(,) then
1
(3.5) [[ull = (u,u)?
is a norm on H.
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PROOF. The first condition on a norm follows from (3.2). Absolute homogene-
ity follows from (3.1) since
(3.6) [Aull* = (N, ) = [N

So, it is only the triangle inequality we need. This follows from the next lemma,
which is the Cauchy-Schwarz inequality in this setting — (3.8). Indeed, using the
‘sesqui-linearity’ to expand out the norm

(3.7) Mu+ol* = (u+v,u+wv)
= Jlull® + (u,v) + (v, u) + ol < Jlufl? + 2[full o] + [[]>
= (lull +[lv[)?.
O
LEMMA 3.2. The Cauchy-Schwarz inequality,
(3.8) [(uw, 0)| < lullllvll V u,v e H
holds in any pre-Hilbert space.

PROOF. This inequality is trivial if either v or v vanishes. For any non-zero u,
v € H and s € R positivity of the norm shows that

(3.9) 0 < Jlu+ svll* = [lull® + 25 Re(u, v) + s*[[v]|*.

This quadratic polynomial in s is non-zero for s large so can have only a single
minimum at which point the derivative vanishes, i.e. it is where

(3.10) 2s||v]|* + 2Re(u,v) = 0.
Substituting this into (3.9) gives
(3.11) [ul® = (Re(u, v))*/[[v]]* > 0 = |Re(u, v)| < [[ull]|v]

which is what we want except that it is only the real part. However, we know that,
for some z € C with |z| = 1, Re(zu,v) = Rez(u,v) = |[(u,v)| and applying (3.11)
with u replaced by zu gives (3.8). O

COROLLARY 3.1. The inner product is continuous on the metric space (i.e. with
respect to the norm) H x H.

PrOOF. Corollaries really aren’t supposed to require proof! If (u;,v;) = (u,v)
then, by definition ||u — u;|| — 0 and ||v — v;|| — 0 so from

(3.12)  [{u,v) = (uz, v3)] < [u, v) = (u,v)] + [{u, v;) = (u;,v5)]
< lullflo =i ll + llw — ;[ {lv]]
continuity follows. (Il
COROLLARY 3.2. The Cauchy-Scwharz inequality is optimal in the sense that

(3.13) lul = sup |(u,v)].
veH;|[v]| <1

I really will leave this one to you.
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2. Hilbert spaces

DEeFINITION 3.1. A Hilbert space H is a pre-Hilbert space which is complete
with respect to the norm induced by the inner product.

As examples we know that C™ with the usual inner product
n
(3.14) (2,2) = Z 22
j=1

is a Hilbert space — since any finite dimensional normed space is complete. The
example we had from the beginning of the course is [? with the extension of (3.14)

(3.15) (a,b) = a;b;, a,bel”.
j=1

Completeness was shown earlier.
The whole outing into Lebesgue integration was so that we could have the
‘standard example’ at our disposal, namely

(3.16) L*(R) = {u € Lic(R); [u* € L1(R)}/N

where N is the space of null functions. The inner product is

(3.17) (, v) = / T,

Note that we showed that if u, v € £2(R) then uv € L}(R). We also showed that
if [|u[? =0 then u = 0 almost everywhere, i.e. u € N, which is the definiteness of
the inner product (3.17). It is fair to say that we went to some trouble to prove
the completeness of this norm, so L?(R) is indeed a Hilbert space.

3. Orthonormal sets
Two elements of a pre-Hilbert space H are said to be orthogonal if

(3.18) (u,v) = 0 which can be written u L v.

A sequence of elements e; € H, (finite or infinite) is said to be orthonormal if
lle;]l =1 for all ¢ and (e;, e;) = 0 for all ¢ # j.

PROPOSITION 3.1 (Bessel’s inequality). Ife;, i € N, is an orthonormal sequence
in a pre-Hilbert space H, then

(3.19) Z |(u, e)|* < |Jul|* ¥ u e H.
PROOF. Start with the finite case, ¢ =1, ..., N. Then, for any v € H set
N
(3.20) v = Z(u,ez)ei.
i=1

This is supposed to be ‘the projection of w onto the span of the e;’. Anyway,
computing away we see that

N

(3.21) (v,e5) =D (u,ei)eire;) = (u,e5)

=1
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using orthonormality. Thus, v —v L e; for all j so v —v L v and hence
(3.22) 0= (u—uv,v) = (u,v) — |Jv||.

Thus ||v||? = |{u, v)| and applying the Cauchy-Schwarz inequality we conclude that
lv]2 < ||v||||u]| so either v = 0 or ||v|| < |ju|. Expanding out the norm (and
observing that all cross-terms vanish)
N
loll> = >~ 1w, e * < Jlull?
i=1
which is (3.19).
In case the sequence is infinite this argument applies to any finite subsequence,
e;, © = 1,..., N since it just uses orthonormality, so (3.19) follows by taking the
supremum over N. O

4. Gram-Schmidt procedure

DEFINITION 3.2. An orthonormal sequence, {e;}, (finite or infinite) in a pre-
Hilbert space is said to be mazimal if

(3.23) u€ H, (u,e;) =0Vi=u=0.

THEOREM 3.1. Every separable pre-Hilbert space contains a mazximal orthonor-
mal set.

Proor. Take a countable dense subset — which can be arranged as a sequence
{v;} and the existence of which is the definition of separability — and orthonormalize
it. Thus if v; # 0 set e; = vy /||v1]]. Proceeding by induction we can suppose we
have found, for a given integer n, elements e;, i = 1,...,m, where m < n, which
are orthonormal and such that the linear span

(3.24) sp(e1, ..., em) =sp(v1,...,0n).
We certainly have this for n = 1. To show the inductive step observe that if v, 41
is in the span(s) in (3.24) then the same e;’s work for n 4+ 1. So we may as well
assume that the next element, v, is not in the span in (3.24). It follows that

n

(3.25) W= VUpt1 — Z<Un+17 ejre; # 080 emy1 =
j=1

w
]|

makes sense. By construction it is orthogonal to all the earlier e;’s so adding e, 1
gives the equality of the spans for n + 1.

Thus we may continue indefinitely, since in fact the only way the dense set
could be finite is if we were dealing with the space with one element, 0, in the first
place. There are only two possibilities, either we get a finite set of e;’s or an infinite
sequence. In either case this must be a maximal orthonormal sequence. That is,
we claim

(3.26) HouleVj=—u=0.

This uses the density of the v;’s. There must exist a sequence wy, where each wy, is
a vj;, such that wy, — w in H, assumed to satisfy (3.26). Now, each v;, and hence
each wy, is a finite linear combination of e;’s so, by Bessel’s inequality

(3.27) lwkl|* = Kwe,en)® =D [{u— wp, e < Jlu—wi?
l l
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where (u, e;) =0 for all [ has been used. Thus ||wg| — 0 and hence u = 0. O

Although a non-complete but separable pre-Hilbert space has maximal or-
thonormal sets, these are not much use without completeness.

5. Orthonormal bases

DEFINITION 3.3. In view of the following result, a maximal orthonormal se-
quence in a separable Hilbert space will be called an orthonormal basis; it is often
called a ‘complete orthonormal basis’ but the ‘complete’ is really redundant.

This notion of basis is not quite the same as in the finite dimensional case (although
it is a legitimate extension of it).

THEOREM 3.2. If {e;} is an orthonormal basis (a maximal orthonormal se-
quence) in a Hilbert space then for any element w € H the ‘Fourier-Bessel series’
converges to u :

oo

(3.28) u= Z(u, ei)e;.

i=1

PRrROOF. The sequence of partial sums of the Fourier-Bessel series

N
(3.29) Uy = Z(u, ei)e;
i=1
is Cauchy. Indeed, if m < m’ then
(3.30) s = wn* =Y [P <Y [(useq)?
i=m-+1 i>m

which is small for large m by Bessel’s inequality. Since we are now assuming
completeness, u,, — w in H. However, (u,,e;) = {(u,e;) as soon as m > i and
{w — up, ;)] < ||lw—uyl| so in fact

(3.31) (w,e;) = lm (up, ;) = (u, e;)

m—r o0

for each i. Thus u — w is orthogonal to all the e; so by the assumed completeness
of the orthonormal basis must vanish. Thus indeed (3.28) holds. O

6. Isomorphism to [°

A finite dimensional Hilbert space is isomorphic to C™ with its standard inner
product. Similarly from the result above

PROPOSITION 3.2. Any infinite-dimensional separable Hilbert space (over the
complex numbers) is isomorphic to 12, that is there exists a linear map

(3.32) T:H—[?

which is 1-1, onto and satisfies (Tu, Tv);z = (u,v)g and || Tu|;2z = |lul|g for all w,
veH.
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PROOF. Choose an orthonormal basis — which exists by the discussion above
— and set

(3.33) Tu = {(u,e;)}72;-

This maps H into {2 by Bessel’s inequality. Moreover, it is linear since the entries
in the sequence are linear in w. It is 1-1 since Tw = 0 implies (u,e;) = 0 for all j
implies u = 0 by the assumed completeness of the orthonormal basis. It is surjective
since if {¢;}52, € (? then

(3.34) u= Z cj€;j
j=1

converges in H. This is the same argument as above — the sequence of partial sums
is Cauchy since if n > m,

(3.35) 1Y celli= D el
j=m+1 j=m+1

Again by continuity of the inner product, Tu = {¢;} so T is surjective.

The equality of the norms follows from equality of the inner products and the
latter follows by computation for finite linear combinations of the e; and then in
general by continuity. ([

7. Parallelogram law

What exactly is the difference between a general Banach space and a Hilbert
space? It is of course the existence of the inner product defining the norm. In fact
it is possible to formulate this condition intrinsically in terms of the norm itself.

PROPOSITION 3.3. In any pre-Hilbert space the parallelogram law holds —
(3.36) v+ w|)® + v — w||? = 2||v||* + 2||w|]?, ¥V v,w € H.

PRrROOF. Just expand out using the inner product
(3.37) v+ wl? = [Jol|* + (v, w) + (w, v) + [|Jw]|®

and the same for ||v — w||? and see the cancellation. O

PROPOSITION 3.4. Any normed space where the norm satisfies the parallelogram
law, (3.36), is a pre-Hilbert space in the sense that

1
(3.38) (v, w) = 7 (Ilv+ wl? = lv = wlf* + o+ dwl|* — iflo — qw]|?)

s a positive-definite Hermitian inner product which reproduces the norm.

PROOF. A problem below. O

So, when we use the parallelogram law and completeness we are using the
essence of the Hilbert space.
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8. Convex sets and length minimizer

The following result does not need the hypothesis of separability of the Hilbert
space and allows us to prove the subsequent results — especially Riesz’ theorem —
in full generality.

ProrosiTION 3.5. If C C H is a subset of a Hilbert space which is
(1) Non-empty
(2) Closed
(3) Convexz, in the sense that vi,v1 € C implies %(vl +v9) €C
then there exists a unique element v € C' closest to the origin, i.e. such that

. = inf .
(3:39) ol = in [lul

PRroOF. By definition of the infimum of a non-empty set of real numbers which
is bounded below (in this case by 0) there must exist a sequence {v,} in C such
that |Jv,|| = d = inf,ec ||ul|. We show that v, converges and that the limit is the
point we want. The parallelogram law can be written

(3.40) lvn = v ® = 2[|0all* + 2]lom]* = 4]l (vn + vm) /21|

Since ||v,|| — d, given € > 0 if N is large enough then n > N implies 2||v,||* <
2d? + €2 /2. By convexity, (v, + vm)/2 € C so |[(vn + vm)/2||> > d?. Combining
these estimates gives

(3.41) n,m >N = |lv, —vp||? <4d® + € —4d? = €2
so {v,} is Cauchy. Since H is complete, v,, — v € C, since C is closed. Moreover,
the distance is continuous so ||v|| = lim, o ||| = d.

Thus v exists and uniqueness follows again from the parallelogram law. If v
and v’ are two points in C with [jv]| = ||v/|| = d then (v+v")/2 € C so

(3.42) lv = 'II* = 2[|vl* + 2[|[v'|]* = 4ll(v + v")/2|* <O = v ="

9. Orthocomplements and projections

PRrROPOSITION 3.6. If W C H is a linear subspace of a Hilbert space then

(3.43) Wt={uecH;(uw =0YweW}
is a closed linear subspace and W N’ W+ = {0}. If W is also closed then
(3.44) H=WaoWw"

meaning that any u € H has a unique decomposition u = w + w' where w € W
and wt € W+,

PRrOOF. That W+ defined by (3.43) is a linear subspace follows from the lin-
earity of the condition defining it. If w € W' and v € W then u L u by the
definition so (u,u) = ||ul|> = 0 and u = 0; thus W N W+ = {0}. Since the map
H > u — (u,w) € Cis continuous for each w € H its null space, the inverse image
of 0, is closed. Thus

(3.45) Wt = ﬂ {u € H; (u,w) =0}
weWw
is closed.
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Now, suppose W is closed. If W = H then W+ = {0} and there is nothing to
show. So consider u € H, v ¢ W and set

(3.46) C=u+W={eH;v=u+w, weW}

Then C is closed, since a sequence in it is of the form u!, = u + w,, where w,, is a
sequence in W and u/, converges if and only if w,, converges. Also, C' is non-empty,
since u € C and it is convex since v’ = u + w’ and v” = u + w” in C implies
(v +u")2=u+ (v +w")/2 € C.

Thus the length minimization result above applies and there exists a unique
v € C such that ||v]| = inf, cc ||¢/]. The claim is that this v is orthogonal to W —
draw a picture in two real dimensions! To see this consider an aritrary point w € W
and A € C then v + Aw € C and

(3.47) lv + Mw||* = [[o]]* + 2Re(Av, w)) + [AP*|w]*.

Choose A = te¥ where t is real and the phase is chosen so that €% (v, w) = |(v,w)| >
0. Then the fact that ||v|| is minimal means that

lol* + 2t[(v, w))| + £ |w]|* > [|v]|* =

(349 K2, )|+ tw]?) 20V t € R = [(v,w)| =0

which is what we wanted to show.

Thus indeed, given u € H \ W we have constructed v € W+ such that u =
v+ w, w € W. This is (3.44) with the uniqueness of the decomposition already
shown since it reduces to 0 having only the decomposition 0+ 0 and this in turn is
W nwt ={o}. O

Since the construction in the preceding proof associates a unique element in W,
a closed linear subspace, to each u € H, it defines a map

(3.49) Oy :H — W.

This map is linear, by the uniqueness since if u; = v; + w;, w; € W, (v;, w;) = 0 are
the decompositions of two elements then

(350) A1Uq + Aug = ()\11}1 + /\21]2) + ()\111}1 + )\2’(1)2)

must be the corresponding decomposition. Moreover IIyyw = w for any w € W
and |lu|? = ||v||* + ||w||?, Pythagoras’ Theorem, shows that

(3.51) Iy =, [Hwul < |lul] = [ < 1.

Thus, projection onto W is an operator of norm 1 (unless W = {0}) equal to its
own square. Such an operator is called a projection or sometimes an idempotent
(which sounds fancier).

There are always non-closed subspaces in an infinite-dimensional Hilbert space.
Finite-dimensional subspaces are always closed by the Heine-Borel theorem.

LEMMA 3.3. If{e;} is any finite or countable orthonormal set in a Hilbert space
then the orthogonal projection onto the closure of the span of these elements is

(3.52) Pu= Z(u, €k)C-

PROOF. We know that the series in (3.52) converges and defines a bounded
linear operator of norm at most one by Bessel’s inequality. Clearly P? = P by the
same argument. If W is the closure of the span then (u— Pu) L W since (u—Pu) L
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ey for each k and the inner product is continuous. Thus u = (v — Pu) + Pu is the
orthogonal decomposition with respect to W. (]

LEMMA 3.4. If W C H is a linear subspace of a Hilbert space which contains
the orthocomplement of a finite dimensional space then W is closed and W+ is
finite-dimensional.

Proor. If U C W is a closed subspace with finite-dimensional orthocomple-
ment then each of the N elements, v;, of a basis of (Id —II;)W is the image of some
w; € W. Since U is the null space of Id —Il; it follows that any element of W can
be written uniquely in the form

N
(3.53) w=u-+ Zciwi, u=Iyw e U, ¢; = {(w,v;).

i=1
Then if ¢, is a sequence in W which converges in H it follows that Il ¢,, converges
in U and (¢n,v;) converges and hence the limit is in W. O

Note that the existence of a non-continuous linear functional H — C is equiv-
alent to the existence of a non-closed subspace of H with a one-dimensional comple-
ment. Namely the null space of a non-continuous linear functional cannot be closed,
since from this continuity follows, but it does have a one-dimensional complement
(not orthocomplement!)

QUESTION 1. Does there exist a non-continuous linear functional on an infinite-
dimensional Hilbert space?

1

10. Riesz’ theorem

The most important application of the convexity result above is to prove Riesz’
representation theorem (for Hilbert space, there is another one to do with mea-
sures).

THEOREM 3.3. If H is a Hilbert space then for any continuous linear functional
T : H — C there exists a unique element ¢ € H such that
(3.54) T(u) = (u,¢) VueH.

PROOF. If T is the zero functional then ¢ = 0 gives (3.54). Otherwise there
exists some v’ € H such that T'(u') # 0 and then there is some u € H, namely
u=v'/T(u') will work, such that T'(u) = 1. Thus

(3.55) C={ue H;T(u) =1} =T {1}) #0.

The continuity of T implies that C is closed, as the inverse image of a closed set
under a continuous map. Moreover C is convex since

(3.56) T((u+u")/2) = (T(u) +T())/2.
Thus, by Proposition 3.5, there exists an element v € C of minimal length.
IThe existence of such a functional requires some form of the Axiom of Choice (maybe a little

weaker in the separable case). You are free to believe that all linear functionals are continuous
but you will make your life difficult this way.
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Notice that C' = {v + w;w € N} where N = T1({0}) is the null space of T.
Thus, as in Proposition 3.6 above, v is orthogonal to N. In this case it is the unique
element orthogonal to N with T'(v) = 1.

Now, for any v € H,

(3.57) u—T(u)v satisfies T'(u — T'(u)v) = T(u) — T(u)T(v) =0 =
u=w+T(u)v, we N.

Then, (u,v) = T(u)||v||? since (w,v) = 0. Thus if ¢ = v/||v||* then

(3.58) u=w+ (u, ¢)v = T(u) = (u,$)T(v) = (u, ).

11. Adjoints of bounded operators

As an application of Riesz’ Theorem we can see that to any bounded linear
operator on a Hilbert space

(3.59) A:H — H, |Aul| <Cllu| Y ue H

there corresponds a unique adjoint operator. This has profound consequences for
the theory of operators on a Hilbert space, as we shall see.

PROPOSITION 3.7. For any bounded linear operator A : H — H on a Hilbert
space there is a unique bounded linear operator A* : H — H such that

(3.60) (Au,v)g = (u, A*v)g ¥ u,v € H and ||A| = ||A*].

PrROOF. To see the existence of A*v we need to work out what A*v € H should
be for each fixed v € H. So, fix v in the desired identity (3.60), which is to say
consider

(3.61) H > u— (Au,v) € C.

This is a linear map and it is clearly bounded, since

(3.62) |[(Au, v)| < [|Au]l||v]] < ([[Al[l[v]D]l]-

Thus it is a continuous linear functional on H which depends on v. In fact it is just
the composite of two continuous linear maps

u—s Au w—(w,v)

(3.63) H H C.

By Riesz’ theorem there is a unique element in H, which we can denote A*v (since
it only depends on v) such that

(3.64) (Au,v) = (u, A*v) Y u e H.
This defines the map A* : H — H but we need to check that it is linear and
continuous. Linearity follows from the uniqueness part of Riesz’ theorem. Thus if
v1, v € H and ¢y, ¢g € C then
(3.65) (Au,civ1 + cova) = 1 {Au, v1) + c2(Au, vs)

=t1{u, A*v1) + T2 {u, A*va) = (u,c1 A" vy + ca A vq)

where we have used the definitions of A*vy and A*vy — by uniqueness we must have
A*(Cl’Ul + CQ’UQ) = ClA*’Ul + CQA*'UQ.
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Using the optimality of Cauchy’s inequality
(3.66) [A%[| = sup [(u, A™v)[ = sup [(Au,v)| < [|All[|v]].

[lull=1 flull=1
This shows that A* is bounded and that
(3.67) A < [|A]l.

The defining identity (3.60) also shows that (A*)* = A so the reverse equality
in (3.67) also holds and so

(3.68) 1A% = [l Al

One useful property of the adjoint operator is that
(3.69) Nul(A*) = (Ran(A))*.

Indeed w € (Ran(A))' means precisely that (w, Av) = 0 for all v € H which
translates to

(3.70) w € (Ran(A))* <= (A*w,v) =0 <= A*w = 0.

Note that in the finite dimensional case (3.69) is equivalent to Ran(A) = (Nul(4*))+
but in the infinite dimensional case Ran(A) is often not closed in which case this
cannot be true and you can only be sure that

(3.71) Ran(A4) = (Nul(4%))*+.
12. Compactness and equi-small tails

A compact subset in a general metric space is one with the property that any
sequence in it has a convergent subsequence, with its limit in the set. You will recall,
with pleasure no doubt, the equivalence of this condition to the (more general since
it makes good sense in an arbitrary topological space) covering condition, that any
open cover of the set has a finite subcover. So, in a Hilbert space the notion of a
compact set is already fixed. We want to characterize it, actually in two closely
related ways.

In any metric space a compact set is both closed and bounded, so this must be
true in a Hilbert space. The Heine-Borel theorem gives a converse to this, for R™
or C" (and hence in any finite-dimensional normed space) any closed and bounded
set is compact. Also recall that the convergence of a sequence in C" is equivalent
to the convergence of the n sequences given by its components and this is what is
used to pass first from R to C and then to C™. All of this fails in infinite dimensions
and we need some condition in addition to being bounded and closed for a set to
be compact.

To see where this might come from, observe that

LEMMA 3.5. In any metric space a set, S, consisting of the points of a conver-
gent sequence, s : N — M, together with its limit, s, is compact.

PROOF. The set here is the image of the sequence, thought of as a map from
the integers into the metric space, together with the limit (which might or might
not already be in the image of the sequence). Certainly this set is bounded, since
the distance from the initial point is bounded. Moreover it is closed. Indeed, the
complement M \ S is open —if p € M \ S then it is not the limit of the sequence,
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so for some € > 0, and some N, if n > N then s(n) ¢ B(p, €). Shrinking e further if
necessary, we can make sure that all the s(k) for K < N are not in the ball either
— since they are each at a positive distance from p. Thus B(p,e) C M\ S.

Finally, S is compact since any sequence in S has a convergent subsequence.
To see this, observe that a sequence {¢;} in S either has a subsequence converging
to the limit s of the original sequence or it does not. So we only need consider the
latter case, but this means that, for some e > 0, d(t;, s) > ¢; but then t; takes values
in a finite set, since S\ B(s,€) is finite — hence some value is repeated infinitely
often and there is a convergent subsequence. (Il

LEMMA 3.6. The image of a convergent sequence in a Hilbert space is a set with
equi-small tails with respect to any orthonormal sequence, i.e. if ey is an othonormal
sequence and u, — u is a convergent sequence then given € > 0 there exists N such
that

(3.72) Z |(Un, er)|* < €2V n.

k>N

PROOF. Bessel’s inequality shows that for any u € H,

(3.73) S, el < Jull.
k

The convergence of this series means that (3.72) can be arranged for any single
element u, or the limit v by choosing N large enough, thus given ¢ > 0 we can
choose N’ so that

(3.74) > Huser)? < €/2.

k>N’

Consider the closure of the subspace spanned by the e, with & > N. The
orthogonal projection onto this space (see Lemma 3.3) is

(3.75) Pynu = Z (u, ex)eg.

k>N

Then the convergence u, — w implies the convergence in norm || Pyuy,| — || Pyvu/,
$0

(3.76) | Prnun||* = Z |(un, er)|? < €, n>n'.
k>N

So, we have arranged (3.72) for n > n’ for some N. This estimate remains valid if
N is increased — since the tails get smaller — and we may arrange it for n < n’ by
choosing N large enough. Thus indeed (3.72) holds for all n if N is chosen large
enough. ([l

This suggests one useful characterization of compact sets in a separable Hilbert
space since the equi-smallness of the tails, as in (3.72), for all u € K just means
that the Fourier-Bessel series converges uniformly.

PROPOSITION 3.8. A set K C H in a separable Hilbert space is compact if and
only if it is bounded, closed and the Fourier-Bessel sequence with respect to any
(one) complete orthonormal basis converges uniformly on it.
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PRrROOF. We already know that a compact set in a metric space is closed and
bounded. Suppose the equi-smallness of tails condition fails with respect to some
orthonormal basis ey. This means that for some € > 0 and all p there is an element
u, € K, such that

(3.77) > Hup, ex)|* > €.

k>p

Consider the subsequence {u,} generated this way. No subsequence of it can have
equi-small tails (recalling that the tail decreases with p). Thus, by Lemma 3.6,
it cannot have a convergent subsequence, so K cannot be compact if the equi-
smallness condition fails.

Thus we have proved the equi-smallness of tails condition to be necessary for
the compactness of a closed, bounded set. It remains to show that it is sufficient.

So, suppose K is closed, bounded and satisfies the equi-small tails condition
with respect to an orthonormal basis ey and {u,} is a sequence in K. We only
need show that {u,} has a Cauchy subsequence, since this will converge (H being
complete) and the limit will be in K (since it is closed). Consider each of the
sequences of coefficients (u,,er) in C. Here k is fixed. This sequence is bounded:

(3.78) [(tn, ex)| < [[unll < C

by the boundedness of K. So, by the Heine-Borel theorem, there is a subsequence
U, such that (u,,,e;) converges as | — oo.

We can apply this argument for each £k = 1,2, .... First extract a subsequence
{tn,1} of {un} so that the sequence (uy, 1, e1) converges. Then extract a subsequence
U2 Of Uy 1 so that (uy 2, e2) also converges. Then continue inductively. Now pass
to the ‘diagonal” subsequence vy, of {u,} which has kth entry the kth term, u j in
the kth subsequence. It is ‘eventually’ a subsequence of each of the subsequences
previously constructed — meaning it coincides with a subsequence from some point
onward (namely the kth term onward for the kth subsquence). Thus, for this
subsequence each of the (v, e) converges.

Consider the identity (the orthonormal set ey is complete by assumption) for
the difference

||vn - Un+l||2 = Z |<Un - Un+l76k>|2 + Z |<vn - Un+laek>|2

k<N k>N

<Y on = Vg )P +2 ) [ons e +2 D (v, ex)]

k<N k>N k>N

(3.79)

where the parallelogram law on C has been used. To make this sum less than €2
we may choose N so large that the last two terms are less than €2/2 and this may
be done for all n and [ by the equi-smallness of the tails. Now, choose n so large
that each of the terms in the first sum is less than €2/2N, for all [ > 0 using the
Cauchy condition on each of the finite number of sequence (v, ex). Thus, {v,} is
a Cauchy subsequence of {u,} and hence as already noted convergent in K. Thus
K is indeed compact. O

This criterion for compactness is useful but is too closely tied to the existence
of an orthonormal basis to be easily applicable. However the condition can be
restated in a way that holds even in the non-separable case (and of course in the
finite-dimensional case, where it is trivial).
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ProroOSITION 3.9. A subset K C H of a Hilbert space is compact if and only if
it is closed and bounded and for every € > 0 there is a finite-dimensional subspace
W C H such that

3.80 inf fu—w| <e.
(3.80) sup inf llu—wll <e

So we see that the extra condition needed is ‘finite-dimensional approximability’.
PROOF. Before proceeding to the proof consider (3.80). Since W is finite-

dimensional we know it is closed and hence the discussion in § 9 applies. In partic-
ular u = w + w’ with w € W and w' L W where

81 inf |lu—w| = |lw".
(381) o flu = wl] = ]
This can be restated in the form

(3.82) sup ||(Id —IIy )ul| < €

ueK

where Iy is the orthogonal projection onto W (so Id —Ily is the orthogonal pro-
jection onto W).

Now, let us first assume that H is separable, so we already have a condition
for compactness in Proposition 3.8. Then if K is compact we can consider an
orthonormal basis of H and the finite-dimensional spaces Wy spanned by the first IV
elements in the basis with IIy the orthogonal projection onto it. Then ||(Id =TIy )u||
is precisely the length of the ‘tail’ of w with respect to the basis. So indeed, by
Proposition 3.8, given € > 0 there is an N such that ||(Id —IIy)u|| < €/2 for all
u € K and hence (3.82) holds for W = Wi.

Now suppose that K C H and for each ¢ > 0 we can find a finite dimensional
subspace W such that (3.82) holds. Take a sequence {u,} in K. The sequence
wu, € W is bounded in a finite-dimensional space so has a convergent sub-
sequence. Now, for each j € N there is a finite-dimensional subspace W; (not
necessarily corresponding to an orthonormal basis) so that (3.82) holds for e = 1/5.
Proceeding as above, we can find successive subsequence of u,, such that the image
under II; in W; converges for each j. Passing to the diagonal subsequence u,, it
follows that II;u,, converges for each j since it is eventually a subsequence of the
jth choice of subsequence above. Now, the triangle inequality shows that

(3-83)  lun; — || < ML (un; — ) lwy + ([ (T =TT ), [| + [ (Td =TT ), |

Given ¢ > 0 first choose j so large that the last two terms are each less than
1/j < €/3 using the choice of W;. Then if 4,k > N is large enough the first term
on the right in (3.83) is also less than €/3 by the convergence of IIu,,. Thus up,
is Cauchy in H and hence converges and it follows that K is compact.

This converse argument does not require the separability of H so to complete
the proof we only need to show the necessity of (3.81) in the non-separable case.
Thus suppose K is compact. Then K itself is separable — has a countable dense
subset — using the finite covering property (for each p > 0 there are finitely many
balls of radius 1/p which cover K so take the set consisting of all the centers for
all p). It follows that the closure of the span of K, the finite linear combinations of
elements of K, is a separable Hilbert subspace of H which contains K. Thus any
compact subset of a non-separable Hilbert space is contained in a separable Hilbert
subspace and hence (3.81) holds. O
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13. Finite rank operators

Now, we need to starting thinking a little more seriously about operators on
a Hilbert space, remember that an operator is just a continuous linear map T :
H — H and the space of them (a Banach space) is denoted B(H) (rather than the
more cumbersome B(H,H) which is needed when the domain and target spaces are
different).

DEFINITION 3.4. An operator T € B(H) is of finite rank if its range has fi-
nite dimension (and that dimension is called the rank of T'); the set of finite rank
operators will be denoted R(H).

Why not F(H)? Because we want to use this for the Fredholm operators.
Clearly the sum of two operators of finite rank has finite rank, since the range
is contained in the sum of the ranges (but is often smaller):

(3.84) (T + T5)u € Ran(Ty) + Ran(T2) V u € H.

Since the range of a constant multiple of T is contained in the range of T it follows
that the finite rank operators form a linear subspace of B(H).
What does a finite rank operator look like? It really looks like a matrix.

LEMMA 3.7. If T : H — H has finite rank then there is a finite orthonormal
set {ex}E_, in H such that

L
(3.85) Tu = Z cij(u, ej)e;.

i,j=1

PROOF. By definition, the range of T, R = T'(H) is a finite dimensional sub-
space. So, it has a basis which we can diagonalize in H to get an orthonormal basis,
e;, 7 =1,...,p. Now, since this is a basis of the range, Tu can be expanded relative
to it for any u € H :

p

(3.86) Tu= Z(Tw ei)e;.

i=1
On the other hand, the map u — (T'u, e;) is a continuous linear functional on H,
so (Tu,e;) = (u,v;) for some v; € H; notice in fact that v; = T*e;. This means the
formula (3.86) becomes

P

(3.87) Tu = Z(u, Vi )€;.

i=1
Now, the Gram-Schmidt procedure can be applied to orthonormalize the sequence
€1, .-+, €p, V1...,Up Tesulting in ey,...,er. This means that each v; is a linear
combination which we can write as

L
(3.88) vi =Y Te;.
j=1

Inserting this into (3.87) gives (3.85) (where the constants for ¢ > p are zero). O

It is clear that
(3.89) B e B(H) and T € R(#H) then BT € R(H).
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Indeed, the range of BT is the range of B restricted to the range of 7" and this is
certainly finite dimensional since it is spanned by the image of a basis of Ran(T).
Similalry TB € R(H) since the range of T'B is contained in the range of 7. Thus
we have in fact proved most of

ProrosITION 3.10. The finite rank operators form a x-closed two-sided ideal
in B(H), which is to say a linear subspace such that

(3.90) Bi, By € B(H), T € R(H) = BiTB,, T* € R(H).

PROOF. It is only left to show that T is of finite rank if 7 is, but this is an
immediate consequence of Lemma 3.7 since if T is given by (3.85) then

N
(3.91) T 'u = Z Ci; (u, e;)e;
ij=1
is also of finite rank. O

LEMMA 3.8 (Row rank=Colum rank). For any finite rank operator on a Hilbert
space, the dimension of the range of T' is equal to the dimension of the range of T*.

PRrROOF. From the formula (3.87) for a finite rank operator, it follows that the
v;, © = 1,...,p must be linearly independent — since the e; form a basis for the
range and a linear relation between the v; would show the range had dimension less
than p. Thus in fact the null space of T is precisely the orthocomplement of the
span of the v; — the space of vectors orthogonal to each v;. Since
P

(Tu, w) = Z(u,vi><ei,w> =
(3.92) (w,Tu) = Z@mU) (w,e;) =
i=1

P
T w = Z(w, ei)v;
i=1
the range of T is the span of the v;, so is also of dimension p. O

14. Compact operators

DEFINITION 3.5. An element K € B(H), the bounded operators on a separable
Hilbert space, is said to be compact (the old terminology was ‘totally bounded’
or ‘completely continuous’) if the image of the unit ball is precompact, i.e. has
compact closure — that is if the closure of K{u € H; |lull¢ < 1} is compact in H.

Notice that in a metric space, to say that a set has compact closure is the same
as saying it is contained in a compact set; such a set is said to be precompact.

PROPOSITION 3.11. An operator K € B(H), bounded on a separable Hilbert
space, is compact if and only if it is the limit of a norm-convergent sequence of
finite rank operators.

PROOF. So, we need to show that a compact operator is the limit of a conver-
gent sequence of finite rank operators. To do this we use the characterizations of
compact subsets of a separable Hilbert space discussed earlier. Namely, if {e;} is
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an orthonormal basis of H then a subset I C H is compact if and only if it is closed
and bounded and has equi-small tails with respect to {e;}, meaning given ¢ > 0
there exits N such that

(3.93) Z (v, e)? < Vvel
i>N
Now we shall apply this to the set K(B(0,1)) where we assume that K is
compact (as an operator, don’t be confused by the double usage, in the end it turns
out to be constructive) — so this set is contained in a compact set. Hence (3.93)
applies to it. Namely this means that for any ¢ > 0 there exists n such that

(3.94) > (Kue)* < VueH, July <1
i>n
For each n consider the first part of these sequences and define

(3.95) Kou=Y (Ku,e)e;.

k<n
This is clearly a linear operator and has finite rank — since its range is contained in
the span of the first n elements of {e;}. Since this is an orthonormal basis,

(3.96) 1Ku — Koul = 37 [(Ku, )2
i>n
Thus (3.94) shows that ||[Ku — K,ul» < e. Now, increasing n makes ||Ku — K, ul|
smaller, so given € > 0 there exists n such that for all N > n,
(3.97) I~ Kl = s 160 Kl <
1

llwll

Thus indeed, K,, — K in norm and we have shown that the compact operators are
contained in the norm closure of the finite rank operators.

For the converse we assume that T,, — K is a norm convergent sequence in
B(H) where each of the T, is of finite rank — of course we know nothing about the
rank except that it is finite. We want to conclude that K is compact, so we need to
show that K(B(0,1)) is precompact. It is certainly bounded, by the norm of K. By
a result above on compactness of sets in a separable Hilbert space we know that it
suffices to prove that the closure of the image of the unit ball has uniformly small
tails. Let Iy be the orthogonal projection off the first N elements of a complete
orthonormal basis {ex} — so

(3.98) u= Z (u, egyer + Myu.
k<N
Then we know that ||IIy|| = 1 (assuming the Hilbert space is infinite dimensional)

and [[IIyu|| is the ‘tail’. So what we need to show is that given € > 0 there exists
n such that

(3.99) lu]| <1 = |UxKul <e.
Now,
(3.100) Iy Kl < [y (K = o)l + [T Tou

so choosing n large enough that |K — T,,|| < €¢/2 and then using the compactness
of T,, (which is finite rank) to choose N so large that

(3.101) Jull < 1= [y Toul| < ¢/2
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shows that (3.99) holds and hence K is compact. O

PROPOSITION 3.12. For any separable Hilbert space, the compact operators form
a closed and *-closed two-sided ideal in B(H).

PROOF. In any metric space (applied to B(H)) the closure of a set is closed,
so the compact operators are closed being the closure of the finite rank operators.
Similarly the fact that it is closed under passage to adjoints follows from the same
fact for finite rank operators. The ideal properties also follow from the correspond-
ing properties for the finite rank operators, or we can prove them directly anyway.
Namely if B is bounded and T is compact then for some ¢ > 0 (namely 1/|| B
unless it is zero) ¢B maps B(0,1) into itself. Thus ¢T'B = T'¢B is compact since
the image of the unit ball under it is contained in the image of the unit ball under
T; hence T'B is also compact. Similarly BT is compact since B is continuous and
then

(3.102) BT(B(0,1)) C B(T'(B(0,1))) is compact

since it is the image under a continuous map of a compact set. O

15. Weak convergence

It is convenient to formalize the idea that a sequence be bounded and that each
of the (u,,ex), the sequence of coefficients of some particular Fourier-Bessel series,
should converge.

DEFINITION 3.6. A sequence, {u,}, in a Hilbert space, H, is said to converge
weakly to an element u € H if it is bounded in norm and (u;,v) — (u,v) converges
in C for each v € H. This relationship is written

(3.103) Uy — U

In fact as we shall see below, the assumption that [|u,| is bounded and that u
exists are both unnecessary. That is, a sequence converges weakly if and only if
(tn,v) converges in C for each v € H. Conversely, there is no harm in assuming
it is bounded and that the ‘weak limit’ u € H exists. Note that the weak limit is
unique since if v and ' both have this property then (v —u', v) = limy, o (U, v) —
lim,, o0 (ty, v) = 0 for all v € H and setting v = u — ' it follows that u = u’.

LEMMA 3.9. A (strongly) convergent sequence is weakly convergent with the
same limit.

PRrOOF. This is the continuity of the inner product. If u,, — u then
(3.104) [(un, v) = (u, )| < [lun = ull[[of| =0
for each v € H shows weak convergence. O

LEMMA 3.10. For a bounded sequence in a separable Hilbert space, weak con-
vergence s equivalent to component convergence with respect to an orthonormal
basts.

PROOF. Let e be an orthonormal basis. Then if u, is weakly convergent
it follows immediately that (u,,er) — (u,er) converges for each k. Conversely,
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suppose this is true for a bounded sequence, just that (u,,ex) — ¢ in C for each
k. The norm boundedness and Bessel’s inequality show that

(3.105) Z lex|?> = lim Z |(tn, ex)[* < C?sup ||un||?
k<p " k< "

for all p. Thus in fact {cx} € [? and hence
(3.106) U= chek eH
k

by the completeness of H. Clearly (uy,er) — (u,ex) for each k. It remains to show
that (u,,v) — (u,v) for all v € H. This is certainly true for any finite linear
combination of the e, and for a general v we can write

(3‘107) <unvv> - <U,U> = <un7v;ﬂ> - <u?vp> + <unvv - vp> - <u,v - U;D> =
[ty 0) = (1, )] < [t 0p) = (1, 03)| + 20 = |

where v, = 3~ (v, e)ey is a finite part of the Fourier-Bessel series for v and C'is a
k<p

bound for ||u,|. Now the convergence v, — v implies that the last term in (3.107)

can be made small by choosing p large, independent of n. Then the second last term

can be made small by choosing n large since v, is a finite linear combination of the

e. Thus indeed, (un,v) — (u,v) for all v € H and it follows that w, converges

weakly to u. O

PROPOSITION 3.13. Any bounded sequence {u,} in a separable Hilbert space
has a weakly convergent subsequence.

This can be thought of as an analogue in infinite dimensions of the Heine-Borel
theorem if you say ‘a bounded closed subset of a separable Hilbert space is weakly
compact’.

PRrROOF. Choose an orthonormal basis {er} and apply the procedure in the
proof of Proposition 3.8 to extract a subsequence of the given bounded sequence
such that (uy,,ex) converges for each k. Now apply the preceeding Lemma to
conclude that this subsequence converges weakly. ([

LEMMA 3.11. For a weakly convergent sequence wu, — u
(3.108) [lu]] < liminf |ju,||
and a weakly convergent sequence converges strongly if and only if the weak limit
satisfies ||u|| = im0 ||tn]]-

PrROOF. Choose an orthonormal basis e, and observe that
(3.109) D Huer)? = lim D [(un, ex) .

k<p k<p
The sum on the right is bounded by ||u,||? independently of p so
(3.110) > {u,ex)]? < liminf [Juy,||?
n
k<p
by the definition of liminf. Then let p — oo to conclude that
(3.111) |ul|? < liminf |ju, ||
n
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from which (3.108) follows.
Now, suppose u,, — u then

(3.112) lu = unll* = llull* — 2Refu, un) + [lua .

Weak convergence implies that the middle term converges to —2|u||? so if the last
term converges to |lu||? then u — u,,. O

Observe that for any A € B(H), if u,, — u then Au, — Au using the existence
of the adjoint:-

(3.113) (Aup,v) = (up, A*0) = (u, A*v) = (Au,v) Vv € H.

LEMMA 3.12. An operator K € B(H) is compact if and only if the image Ku,
of any weakly convergent sequence {uy} in H is strongly, i.e. norm, convergent.

This is the origin of the old name ‘completely continuous’ for compact operators,
since they turn even weakly convergent into strongly convergent sequences.

Proor. First suppose that u,, — u is a weakly convergent sequence in H and
that K is compact. We know that [[u,| < C is bounded so the sequence Kuy,
is contained in CK(B(0,1)) and hence in a compact set (clearly if D is compact
then so is ¢D for any constant ¢.) Thus, any subsequence of Ku,, has a convergent
subseqgeunce and the limit is necessarily Ku since Ku,, — Ku. But the condition
on a sequence in a metric space that every subsequence of it has a subsequence
which converges to a fixed limit implies convergence. (If you don’t remember this,
reconstruct the proof: To say a sequence v, does not converge to v is to say that
for some € > 0 there is a subsequence along which d(vy, ,v) > e. This is impossible
given the subsequence of subsequence condition converging to the fixed limit v.)

Conversely, suppose that K has this property of turning weakly convergent
into strongly convergent sequences. We want to show that K (B(0,1)) has compact
closure. This just means that any sequence in K(B(0,1)) has a (strongly) con-
vergent subsequence — where we do not have to worry about whether the limit is
in the set or not. Such a sequence is of the form Kwu, where u,, is a sequence in
B(0,1). However we know that the ball is weakly compact, that is we can pass to
a subsequence which converges weakly, u,, — u. Then, by the assumption of the
Lemma, Ku,; — Ku converges strongly. Thus u, does indeed have a convergent
subsequence and hence K(B(0,1)) must have compact closure. O

As noted above, it is not really necessary to assume that a sequence in a
Hilbert space is bounded, provided one has the Uniform Boundedness Principle,
Theorem 1.3, at the ready.

ProrosiTiON 3.14. If u, € H is a sequence in a Hilbert space and for all
ve H

(3.114) (tn,v) — F(v) converges in C
then ||un || g is bounded and there exists w € H such that u, — w.

ProOOF. Apply the Uniform Boundedness Theorem to the continuous function-
als

(3.115) T(u) = (u,un), T, : H— C
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where we reverse the order to make them linear rather than anti-linear. Thus, each
set |7y, (u)| is bounded in C since it is convergent. It follows from the Uniform
Boundedness Principle that there is a bound

(3.116) 1To] < C.

However, this norm as a functional is just ||T},|| = ||un| & so the original sequence
must be bounded in H. Define T': H — C as the limit for each u :

(3.117) T(u) = le Tn(u) = le (u, U ).
This exists for each u by hypothesis. It is a linear map and from (3.116) it is

bounded, ||T'|| < C. Thus by the Riesz Representation theorem, there exists w € H
such that

(3.118) T(u) = (u,w) VueH.

Thus (un,u) = (w,u) for all u € H so u, — w as claimed. O

16. The algebra B(H)

Recall the basic properties of the Banach space, and algebra, of bounded oper-
ators B(H) on a separable Hilbert space H. In particular that it is a Banach space
with respect to the norm

(3.119) [All = sup [|Aul%

lullx=1
and that the norm satisfies
(3.120) |AB|| < [|A[[|| B
as follows from the fact that
[ABu|| < [[Al[[|Bull < [[A[[|| B[]l
Consider the set of invertible elements:
(3.121) GL(H)={A e B(H);3 Be€ B(H), BA=AB =1d}.

Note that this is equivalent to saying A is 1-1 and onto in view of the Open Mapping
Theorem, Theorem 1.4.
This set is open, to see this consider a neighbourhood of the identity.

LEMMA 3.13. If A € B(H) and ||A|| < 1 then
(3.122) Id—A € GL(H).

PrROOF. This follows from the convergence of the Neumann series. If || A < 1
then ||A7| < ||A|)Y, from (3.120), and it follows that

(3.123) B=>) A
§=0

(where A° = Id by definition) is absolutely summable in B(H) since > ||A7] con-
j=0

verges. Since B(H) is a Banach space, the sum converges. Moreover by the conti-
nuity of the product with respect to the norm

n n+1
(3.124) AB=Alim Y A lim Zl Al =B—-1d
=

n—o00
Jj=0
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and similarly BA = B —1Id. Thus (Id —A)B = B(Id —A) = Id shows that B is a
(and hence the) 2-sided inverse of Id —A. O

PROPOSITION 3.15. The invertible elements form an open subset GL(H) C
B(H).

PROOF. Suppose G € GL(H), meaning it has a two-sided (and unique) inverse
Gl eB(H):

(3.125) G'G=GG ' =1d.

Then we wish to show that B(G;e) C GL(H) for some € > 0. In fact we shall see
that we can take e = ||G~1||~!. To show that G + B is invertible set

(3.126) E=-G'B=G+B=G(Id+G'B) =G(1d-E)
From Lemma 3.13 we know that

(3.127) |B|| < 1/]|G7Y| = ||G™'B|| <1 = 1d —E is invertible.

Then (Id —E)~!G~! satisfies

(3.128) (Id-E)'G*(G+B)=(1d-E) *(1d—FE) =1d.

Moreover E' = —BG~1! also satisfies || E’|| < ||B|||G7}|| < 1 and

(3.129) (G+B)G '1d—E)' = 1d-E)Id-E)"* =1d.

Thus G + B has both a ‘left’ and a ‘right’ inverse. The associativity of the operator
product (that A(BC) = (AB)C) then shows that

(3.130) G ' (Id—-E)' = (1d-E)'G"Y(G+B)G'(1d-E')' = (1d-E)'G™*
so the left and right inverses are equal and hence G + B is invertible. ([

Thus GL(H) C B(H), the set of invertible elements, is open. It is also a group
— since the inverse of G1G4 if Gy, G2 € GL(H) is G2_1G1_1.

This group of invertible elements has a smaller subgroup, U(#), the unitary
group, defined by

(3.131) U(H)={U € GL(H); Ut =U*}.

The unitary group consists of the linear isometric isomorphisms of H onto itself —
thus

(3.132) (Uu,Uv) = (u,v), |Uu| = |lu|| Vu,veH, UecUH).

This is an important object and we will use it a little bit later on.

The groups GL(H) and U(H) for a separable Hilbert space may seem very
similar to the familiar groups of invertible and unitary n x n matrices, GL(n) and
U(n), but this is somewhat deceptive. For one thing they are much bigger. In
fact there are other important qualitative differences. One important fact that
you should know, and there is a proof towards the end of this chapter, is that
both GL(H) and U(H) are contractible as metric spaces — they have no significant
topology. This is to be constrasted with the GL(n) and U(n) which have a lot of
topology, and are not at all simple spaces — especially for large n. One upshot of
this is that U(H) does not look much like the limit of the U(n) as n — oco. Another
important fact that we will discuss below is that GL(H) is not dense in B(H), in
contrast to the finite dimensional case. In other words there are operators which
are not invertible and cannot be made invertible by small perturbations.
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17. Spectrum of an operator

Another direct application of Lemma 3.13, the convergence of the Neumann se-
ries, is that if A € B(H) and A € C has |A| > ||A|| then [[A"1A]| < 1so (Id —A"1A4)~!
exists and satisfies

(3.133) ATd—AATd-A"TA) " =Td = A" Td-A"1A) T (A - A).
Thus, A\Id —A € GL(H), which we usually abbreviate to A — A, has inverse (A —
A)~t = X"1(Id —A~1A)~L. The set of A for which this operator is invertible is called
the resolvent set and we have shown
Res(4) ={A € C;(A\Id—A4) e GL(H)} c C

{IAl > [[A[]} < Res(A).

From the discussion above, it is an open, and non-empty, set on which (A — \)~1,
called the resolvent of A, is defined. The complement of the resolvent set is called
the spectrum of A

(3.135) Spec(A) ={A e C;AId—A ¢ GL(H)} Cc {) € C; |\ < ||Al|}-

As follows from the discussion above it is a compact set — in fact it cannot be empty.
One way to show that A € Spec(A) is to check that A — A is not injective, since
then it cannot be invertible. This means precisely that A is an eigenvalue of A :

(3.136) J0#£ueHst Au=du.

However, you should strongly resist the temptation to think that the spectrum is
the set of eigenvalues of A, this is sometimes but by no means always true. The
other way to show that A € Spec(A) is to prove that A — A is not surjective. Note
that by the Open Mapping Theorem if A — A is both surjective and injective then
A € Res(A4).
For a finite rank operator the spectrum does consist of the set of eigenvalues.
For a bounded self-adjoint operator we can say more quite a bit more.

(3.134)

ProrosiTION 3.16. If A: H — H is a bounded operator on a Hilbert space
and A* = A then A — XId is invertible for all X € C\ [—|| 4|, ||Al]] and conversely
at least one of A — ||A||1d and A + ||A||Id is not invertible.

The proof of this depends on a different characterization of the norm in the
self-adjoint case.

LEMMA 3.14. If A* = A € B(H) then
(3.137) Al = sup [{Au,u)]|.

flufl=1

ProoF. Certainly, |(Au,u)| < ||Al|||lul|* so the right side can only be smaller
than or equal to the left. Set

a= sup |(Au,u)|.
flull=1

Then for any u, v € H, |(Au,v)| = (Ae?u, v) for some 6 € [0,27), so we can arrange
that (Au,v) = [{Av/,v)| is non-negative and ||v'|| = 1 = ||u|| = ||v||. Dropping the
primes and computing using the polarization identity

(3.138) 4({Au,v)

= (A(u+v),u+v) — (A(u—v),u —v) +i(A(u+iv),u+iv) —i{A(u—v),u —iv).
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By the reality of the left side we can drop the last two terms and use the bound to
see that

(3.139) 4(Au,v) < aflu+ol* + lu = vl*) = 2a(fJul® + [Jv]*) = 4a

Thus, [|A]l = supjy=vj=1 [{Au, v)| < a and hence [|A]| = a. O

This suggests an improvement on the last part of the statement of Proposi-
tion 3.16, namely

If A* = A € B(H) then a_, a4 € Spec(A) and Spec(A) C [a—,a4]

where a_ = | ir‘|1f1<Au7u>, ay = | iI||1f1<Au,u>.

(3.140)

Observe that Lemma 3.14 shows that either || A|| = max(a4, —a_).

PROOF OF PROPOSITION 3.16. First we show that if A* = A then Spec(A4) C
R. Thus we need to show that if A = s 4 it where ¢t # 0 then A — ) is invertible.
Now A — A= (A—s)—it and A — s is bounded and selfadjoint, so it is enough to
consider the special case that A = it. Then for any v € H,

(3.141) Im((A — it)u,u) = —t||ul|®.

So, certainly A — it is injective, since (A — it)u = 0 implies uw = 0 if ¢ # 0. The
adjoint of A — it is A + it so the adjoint is injective too. It follows from (3.71) that
the range of A —it is dense in ‘H. By this density of the range, if w € H there exists
a sequence u, € H with w, = (A —it)u,, — w. So again we find that

(3.142) [ Tm{(A = it) (ttn — tm)s (ttn = wm))| = [#llttn — 202

= | Im((wn — W), (Un — um))| < |wn — W ||[[un — ]

= i = ] < gl =
Since w,, — w it is a Cauchy sequence and hence u,, is Cauchy so by completeness,
u, — u and hence (A — it)u = w. Thus A — it is 1-1 and onto and ||A~Y|| < 1/]¢]..
So we have shown that Spec(4) C R.

We already know that Spec(A) C {z € C; |z| < ||A||} so finally then we need to
show that one of A+ ||A|Id is NOT invertible. This follows from (3.137). Indeed,
by the definition of sup there is a sequence w,, € H with ||u, | = 1 such that either
(Aup,un) = ||A|l or (Aup,u,) — —||A||. We may pass to a weakly convergent
subsequence and so assume u,, — u. Assume we are in the first case, so this means
((A = ||A|)ttn, ) — 0. Then

1A = ADual® = | Aun|* — 20| All(Aun, wn) + [|A]?[|un |

(3.143)
= | Aun | = 2 AI(A = [ AlDwny wn) = [ AN |unll.

The second two terms here have limit — || A||? by assumption and the first term is less
than or equal to || A|%. Since the sequence is positive it follows that || (A—||A|)un|| —
0. This means that A — ||A||Id is not invertible, since if it had a bounded inverse B
then 1 = |lu,| < ||BJ|||(A— ||A|)un|| which is impossible. The other case is similar
(or you can replace A by —A) so one of A £ ||A]| is not invertible. O

Only slight modifications of this proof are needed to give (3.140) which we
restate in a slightly different form.
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LEmMA 3.15. If A= A* € B(H) then
(3.144) Spec(A) C [a—, ay] <= a_ < (Au,u) < ay Yu € H, |u| =1.

PrROOF. Take ay to be defined as in (3.140) then set b = (a4 — a_)/2 and
consider B = A — bId which is self-adjoint and clearly satisfies
(3.145) sup [(Bu,u)| =10

[lull=1

Thus ||B|| = b and Spec(B) C [—b,b] and the argument in the proof above shows
that both end-points are in the spectrum. It follows that

(3.146) {a_}U{at} C Spec(A) C [a_, ay]
from which the statement follows. O

In particular if A = A* then
(3.147) Spec(A) C [0,00) <= (Au,u) > 0.

18. Spectral theorem for compact self-adjoint operators

One of the important differences between a general bounded self-adjoint op-
erator and a compact self-adjoint operator is that the latter has eigenvalues and
eigenvectors — lots of them.

THEOREM 3.4. If A € K(H) is a self-adjoint, compact operator on a separable
Hilbert space, so A* = A, then H has an orthonormal basis consisting of eigenvec-
tors of A, u; such that

(3.148) Auj = Ajuy, Aj € R\ {0},

consisting of an orthonormal basis for the possibly infinite-dimensional (closed)
null space and eigenvectors with non-zero eigenvalues which can be arranged into a
sequence such that |\;| is non-increasing and \; — 0 as j — oo (in case Nul(A)+
is finite dimensional, this sequence is finite).

The operator A maps Nul(A)+ into itself so it may be clearer to first split off the null
space and then look at the operator acting on Nul(A)* which has an orthonormal
basis of eigenvectors with non-vanishing eigenvalues.

Before going to the proof, let’s notice some useful conclusions. One is that we
have ‘Fredholm’s alternative’ in this case.

COROLLARY 3.3. If A € K(H) is a compact self-adjoint operator on a separable
Hilbert space then the equation

(3.149) u—Au=f

either has a unique solution for each f € H or else there is a non-trivial finite

dimensional space of solutions to

(3.150) u—Au=0

and then (3.149) has a solution if and only if f is orthogonal to all these solutions.
PRrROOF. This is just saying that the null space of Id —A is a complement to

the range — which is closed. So, either Id —A is invertible or if not then the range

is precisely the orthocomplement of Nul(Id —A). You might say there is not much

alternative from this point of view, since it just says the range is always the ortho-
complement of the null space. O
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Let me separate off the heart of the argument from the bookkeeping.

LEmMA 3.16. If A € K(H) is a self-adjoint compact operator on a separable
(possibly finite-dimensional) Hilbert space then

(3.151) F(u) = (Au,u), F:{ueH;|u|=1} — R
s a continuous function on the unit sphere which attains its supremum and infimum
where
(3.152) sup |F(u)] = || A].

lul=1
Furthermore, if the mazimum or minimum of F(u) is non-zero it is attained at an
eivenvector of A with this extremal value as eigenvalue.

PRrROOF. Since |F(u)| is the function considered in (3.137), (3.152) is a direct
consequence of Lemma 3.14. Moreover, continuity of F' follows from continuity of
A and of the inner product so

(3.153) |F(u)—F(u')] < [(Au, u) — (Au, v')|+[(Au, u') — (A, o) < 2[| Al [lu—']

since both © and «’' have norm one.

If we were in finite dimensions this almost finishes the proof, since the sphere
is then compact and a continuous function on a compact set attains its sup and inf.
In the general case we need to use the compactness of A. Certainly F' is bounded,
(3.154) |F(u)] < sup |[(Au, u)| < [|A].

ul|=1

Thus, there is a sequence u;” such that F(u,”) — sup F' and another u,, such that
F(u,) — inf F. The weak compactness of the unit sphere means that we can pass
to a weakly convergent subsequence in each case, and so assume that u} — u®
converges weakly. Then, by the compactness of A, Auf — Au® converges strongly,
i.e. in norm. But then we can write

(3.155)  |F(uy) — F(u™)] < |[(Aluy —u™),up)| + [(Au™, uyy — u®)]

+ +y ,+ + + + + +
= |(Alu, — u™), uy)| + [(w™, Auy, — u™))] < 2[Au;; — Au™||

to deduce that F(u*) = lim F(u}) are respectively the sup and inf of F. Thus
indeed, as in the finite dimensional case, the sup and inf are attained, and hence
are the max and min. Note that this is NOT typically true if A is not compact as
well as self-adjoint.

Now, suppose that AT = supF’ > 0. Then for any v € H with v L u™ and
|lv]| = 1, the curve
(3.156) Ly : (—m,7) 2 0 — cos fu™ + sin fv

lies in the unit sphere. Expanding out
(3.157) F(L,(9)) =
(AL,(0), L,(0)) = cos? OF (u™) 4 2sin(260) Re(Au™,v) + sin?(0) F (v)

we know that this function must take its maximum at § = 0. The derivative there
(it is certainly continuously differentiable on (—m, 7)) is Re(Au™,v) which must
therefore vanish. The same is true for v in place of v so in fact

(3.158) (Aut v) =0V v Lu", ||v]| =1
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Taking the span of these v’s it follows that (Au*,v) = 0 for all v L u™ so ATu
must be a multiple of u™ itself. Inserting this into the definition of F' it follows
that Au™ = ATu™ is an eigenvector with eigenvalue AT = sup F.

The same argument applies to inf F' if it is negative, for instance by replacing
A by —A. This completes the proof of the Lemma. O

PROOF OF THEOREM 3.4. First consider the Hilbert space Ho = Nul(4)*+ C
H. Then, as noted above, A maps Hj into itself, since

(3.159) (Au,v) = (u, Av) =0V u € Hy, v € Nul(4) = Au € H,.

Moreover, Ay, which is A restricted to Hy, is again a compact self-adjoint operator
— where the compactness follows from the fact that A(B(0,1)) for B(0,1) C Hy is
smaller than (actually of course equal to) the whole image of the unit ball.

Thus we can apply the Lemma above to Ag, with quadratic form Fy, and find
an eigenvector. Let’s agree to take the one associated to sup Fy unless sup Fy <
—inf Fy in which case we take one associated to the inf. Now, what can go wrong
here? Nothing except if Fy = 0. However in that case we know from Lemma 3.14
that ||A|| =0s0 A=0.

So, we now know that we can find an eigenvector with non-zero eigenvalue
unless A = 0 which would implies Nul(4) = H. Now we proceed by induction.
Suppose we have found N mutually orthogonal eigenvectors e; for A all with norm
1 and eigenvectors A\; — an orthonormal set of eigenvectors and all in Hg. Then we
consider

(3.160) Hy = {u € Ho = Nul(A)*; (u,e;) =0, j=1,...,N}.
From the argument above, A maps Hy into itself, since
(3.161) (Au,e;) = (u, Aej) = Aj(u,ej) =0if u € Hy = Au € Hn.

Moreover this restricted operator is self-adjoint and compact on Hy as before so
we can again find an eigenvector, with eigenvalue either the max of min of the new
F for Hp. This process will not stop uness F' = 0 at some stage, but then A = 0
on Hy and since Hy L Nul(A) which implies Hy = {0} so Hy must have been
finite dimensional.

Thus, either H is finite dimensional or we can grind out an infinite orthonormal
sequence e; of eigenvectors of A in Hy with the corresponding sequence of eigen-
values such that |);| is non-increasing — since the successive Fy’s are restrictions
of the previous ones the max and min are getting closer to (or at least no further
from) 0.

So we need to rule out the possibility that there is an infinite orthonormal
sequence of eigenfunctions e; with corresponding eigenvalues A; where inf; |A;| =
a > 0. Such a sequence cannot exist since e; — 0 so by the compactness of A,
Ae; — 0 (in norm) but |Ae;| > a which is a contradiction. Thus if null(4)* is
not finite dimensional then the sequence of eigenvalues constructed above must
converge to 0.

Finally then, we need to check that this orthonormal sequence of eigenvectors
constitutes an orthonormal basis of Hg. If not, then we can form the closure of the
span of the e; we have constructed, H’, and its orthocomplement in Hy — which
would have to be non-trivial. However, as before F' restricts to this space to be
F' for the restriction of A’ to it, which is again a compact self-adjoint operator.
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So, if F’ is not identically zero we can again construct an eigenfunction, with non-
zero eigenvalue, which contracdicts the fact the we are always choosing a largest
eigenvalue, in absolute value at least. Thus in fact F/ = 0 so A’ = 0 and the
eigenvectors form and orthonormal basis of Nul(A)+. This completes the proof of
the theorem. |

19. Functional Calculus

As we have seen, the non-zero eigenvalues of a compact self-adjoint operator A
form the image of a sequence in [—||A||,||Al|]] either converging to zero or finite. If
e; an orthonormal sequence of eigenfunctions which spans Nul(A)* with associated
eigenvalues \; then

(3.162) A= Z)\ipia Pu = (u, €;)e;

being the progection onto the span Ce;. Since P;P; = 0 if i # j and P? = P; it fol-
lows inductively that the positive powers of A are given by similar sums converging

in B(H) :
(3.163) AF =N"MP;, Pu= (u,ei)e;, k€N

There is a similar formula for the identity of course, except we need to remember
that the null space of A then appears (and the series does not usually converge in
the norm topology on B(H)) :

(3.164) Id =) P+ Py, N =Nul(A).

The sum (3.164) can be interpreted in terms of a strong limit of operators, meaning
that the result converges when applied term by term to an element of H, so

(3.165) u=Y Pu+Pyu, VuecH
which is a form of the Fourier-Bessel series. Combining these formula we see that
for any polynomial p(z)

(3.166) Zp )i + p(0) Py

converges strongly, and in norm provided p(0) = 0.
In fact we can do this more generally, by choosing f € C°([—||A|,|Al|) and
defining an operator by

(3.167) f(A) e B(H), f(Au= Zf (u,e;)e

This series converges in the norm topology provided f(0) = 0 so to a compact
operator and if f is real it is self-adjoint. Of course if f(0) # 0 we can define
g(A) = f(A) — f(0) and then f(A) = f(0)Id +g(A) differs from a multiple of the
identity by a compact operator. You can easily check that, always for A = A*
compact here, this formula defines a bounded linear map

(3.168) CO([=llAll, 1Al — B(H)
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which has nice properties. Most importantly

(3.169) (f9)(A) = fF(A)g(A), (f(A)" = f(A)
so it takes the product of two continuous functions to the product of the operators.
We will proceed to show that such a map exists for any bounded self-adjoint
operator. Even though it may not have eigenfunctions — or even if it does, it might
not an orthonormal basis of eigenvectors. Even so, it is still possible to define f(A)
for a continous function defined on [a_,ay] if Spec(A4) C [a—, A4]. (In fact it only
has to be defined on the compact set Spec(A) which might be quite a lot smaller).
This is an effective replacement for the spectral theorem in the compact case.
How does one define f(A)? Well, it is easy enough in case f is a polynomial,
since then we can simply substitute A™ in place of z™. If we factorize the polynomial
this is the same as setting

(3.170) f(2) =c(z—21)(2z—22) ... (2—2n) = f(A) = c(A—21)(A—22) ... (A—2zN)

and this is equivalent to (3.167) in case A is also compact.

Notice that the result does not depend on the order of the factors or anything
like that. To pass to the case of a general continuous function we need to estimate
the norm in the polynomial case.

PROPOSITION 3.17. If A= A* € B(H) is a bounded self-adjoint operator on a
Hilbert space then for any polynomial with real coefficients

(3.171) [F(AI < sup ]lf(Z)\v Spec(4) C [a—, ay].

zela—,a4

PRrROOF. For a polynomial we have defined f(A) by (3.170). We can drop the
constant ¢ since it will just contribute a factor of |¢| to both sides of (3.171). Now,
recall from Lemma 3.14 that for a self-adjoint operator the norm can be realized as

(3.172) 1F (Al = sup{]t[; ¢ € Spec(f(A))}.

That is, we need to think about when f(A) — t is invertible. However, f(z) —¢
is another polynomial (with leading term 2™ because we normalized the leading
coefficient to be 1). Thus it can also be factorized:

N
) —t=]]E=G),

(3.173) )
fA) =t =JJA-¢®)

where the (; € C are the roots (which might be complex even though the polynomial
is real). Written in this way we can see that

N

(3.174) (f(A) =)' = TT(A = ¢() " if ¢(¢) ¢ Spec(A) V .

j=1
Indeed the converse is also true, i.e. the inverse exists if and only if all the A —(;(t)
are invertible, but in any case we see that

(3.175) Spec(f(A)) C {t € C;¢;(t) € Spec(A), for some j =1,...,N}
since if ¢ is not in the right side then f(A) — ¢ is invertible.



98 3. HILBERT SPACES

Now this can be restated as
(3.176) Spec(f(A)) C f(Spec(A))

since t ¢ f(Spec(A)) means f(z) # ¢ for z € Spec(A) which means that there is no
root of f(z) =t in Spec(A) and hence (3.175) shows that ¢ ¢ Spec(f(A)).
Now, (3.171) follows from (3.172), the norm is the sup of |t|, for t € Spec(f(4))
S0
IF(AI < sup [f(2)].

teSpec(A)
U

This allows one to pass by continuity to f in the uniform closure of the poly-
nomials, which by the Stone-Weierstrass theorem is the whole of C%([a_, ay.).

THEOREM 3.5. If A= A* € B(H) for a Hilbert space H then the map defined
on polynomials, through (3.170) extends by continuity to a bounded linear map

(8.177) C"(la—,a4]) — B(H) if Spec(A) C [a_,a4], Spec(f(A)) C f([a,ay]).

PROOF. By the Stone-Weierstrass theorem polynomials are dense in continous
functions on any compact interval, in the supremum norm. (I

REMARK 3.1. You should check the properties of this map, which also follow by
continuity, especially that (3.169) holds in this more general context. In particular,
f(A) is self-adjoint if f € C%([a—, a4 ]) is real-valued and is non-negative if f > 0
on Spec(A).

20. Spectral projection

I have not discussed this in lectures but it is natural at this point to push a
little further towards the full spectral theorem. If A € B(H) is self-adjoint, and
[a_,ay] D Spec(A), we have defined f(A) € B(H) for A € C°([a_,ay]) real-valued
and hence, for each u € H,

(3.178) C'([a—,ay]) > f — (f(A)u,u) € R.

Thinking back to the treatment of the Lebesgue integral, you can think of this as a
replacement for the Riemann integral and ask whether it can be extended further,
to functions which are not necessarily continuous.

In fact (3.178) is essentially given by a Riemann-Stieltjes integral and this
suggest finding the function which defines this. Of course we have the rather large
issue that this depends on a vector in Hilbert space as well — clearly we want to
allow this to vary too.

One direct approach is to try to define the ‘integral’ for the characteristic
function (—oo, a] for fixed a € R. One way to do this is to consider

(8179) Qu(u) = mf{(f(A)u,u); f € C°(la—,a4]), F(t) =0, f(t) =1 on [a_,al}.

Since f > 0 we know that (f(A)u,u) > 0 so the infimum exists and is non-negative.
In fact there must exist a sequence f,, such that
(3.180)

Qa(u) = lm(fn(A)u,u), fn € CO([Q—7G+])7 fon=0, fult) =1, a- <t <a,
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where the sequence f,, could depend on u. Consider an obvious choice for f, given
what we did earlier, namely

1 -<t<a
(3.181) gn(t)=<1—(t—a)/n a<t<a+1/n
0 t>a+1/n.
Certainly
(3.182) Qa(u) < lim(gy, (A)u, u)

where the limit exists since the sequence is decreasing.
LEMMA 3.17. For any a € [a_,a4],
(3.183) Qo(u) = lim{g, (A)u, u).

PRrROOF. For any given f as in (3.179), and any € > 0 there exists n such that
f@&)>1/(1+¢€)ina <t <a-+1/n, by continuity. This means that (1+¢)f > g,
and hence (f(A)u,u) > (1 + €)1 {f,(A)u,u) from which (3.183) follows, given

(3.182). 0

Thus in fact one sequence gives the infimum for all u. Now, use the polarization
identity to define

1
(3.184) Qa(u,v) = 1 (Qa(u+v) = Qa(u —v) +iQq(u +iv) — iQq(u — iv)).
The corresponding identity holds for < g, (A)u,v) so in fact
(3.185) Qalu,v) = lim (g, (A)u,v).

n— oo

It follows that @Q,(u,v) is a sesquilinear form, linear in the first variable and an-
tilinear in the second. Moreover the g, (A) are uniformly bounded in B(H) (with
norm 1 in fact) so

(3.186) |Qa(u,v)] < Cllull]lv].

Now, using the linearity in v of Q,(u,v) and the Riesz Representation theorem it
follows that for each u € H there exists a unique Q,u € H such that

(3.187) Qa(u,v) = (Qau,v), Vv € H, [|Qqul| < [|ul|.

From the uniqueness, H 3 u — Q,u is linear so (3.187) shows that it is a bounded
linear operator. Thus we have proved most of

PROPOSITION 3.18. For each a € [a_,a4] D Spec(A) there is a uniquely defined
operator Qq € B(H) such that

(3.188) Qa(u) = (Qqu, u)
recovers (3.183) and QF = Q, = Q2 is a projection satisfying
(3.189) QuQy=Qp inb<a, [Qu,f(A)] =0V feCa_,a]).

This operator, or really the whole family Q,, is called the spectral projection of A.
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PROOF. We have already shown the existence of Q, € B(H) with the property
(3.188) and since we defined it directly from Q,(u) it is unique. Self-adjointness

follows from the reality of Qq(u) > 0 since (Qqu,v) = (u, Q,v) then follows from
(3.187).
From (3.185) it follows that

<QaU7 U> = nli_>H;O<gn (A)u> U> =

(Quu, f(A)) = Tim (g (A)u, f(A)0) = (Quf(A)u,v)

since f(A) commutes with g, (A) for any continuous f. This proves the commutator
statement in (3.189). Since g, gm = gm if m > n, the definition of @, implies that

(3.191) Qo) = 1 (fn(Au, fu(A)0) = (fu(4)Quu,v)

(3.190)

and now letting n — oo shows that Q2 = Q,. A similar argument shows the first
identity in (3.189). O

Returning to the original thought that (3.178) represents a Riemann-Stieltjes
integral for each u we see that collectively what we have is a map

(3.192) [a_,ay] > a+— Q, € B(H)

taking values in the self-adjoint projections and increasing in the sense of (3.189).
A little more application allows one to recover the functional calculus as an integral
which can be written

(3193) = e

a_,a4
which does indeed reduce to a Riemann-Stieltjes integral for each u :
(3.194) (A, u) = /[ Q).

a_,a4

This, meaning (3.193), is the spectral resolution of the self-adjoint operator A,
replacing (and reducing to) the decomposition as a sum in the compact case

(3.195) FA) =" f(\)P;
where the P; are the orthogonal projections onto the eigenspaces for ;.

21. Polar Decomposition

One nice application of the functional calculus for self-adjoint operators is to
get the polar decomposition of a general bounded operator.

LEMMA 3.18. If B € B(H) then E = (A*A)2, defined by the functional calculus,
is a non-negative self-adjoint operator.

ProOOF. That F exists as a self-adjoint operator satisfying E? = A* A follows
directly from Theorem 3.5 and positivity follows as in Remark 3.1. O

PrOPOSITION 3.19. Any bounded operator A can be written as a product

(3196)  A=U(A"A)?, U € B(H), U'U = 1d ~Tua), UU" = T,
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PROOF. Set E = (A*A)2. We want to define U and we can see from the first
condition, A = UFE, that

(3.197) U(w) = Av, if w= Ewv.

This makes sense since Ev = 0 implies (Ev, Ev) = 0 and hence (A*Av,v) = 0 so
[|[Av]| = 0 and Av = 0. So let us define

U(w) = {Av if w € Ran(E), w= Ev

(3.198) 0 ifwe (Ran(E))> .

So U is defined on a dense subspace of H, Ran(E) @ (Ran(E))* which may not be
closed if Ran(FE) is not closed. It follows that

(3199) U(w1 + UJQ) = U(wl) = Av] = ||U(w1 + w2)|\2 = ‘<AU1,A’01>‘2
= (B%01,v1) = [|[Bor||? = [lwi||? < [Jwr + wal|?
if w; = Ev, wy € (Ran E)*.

Thus U is bounded on the dense subspace on which it is defined, so has a unique
continuous extension to a bounded operator U € B(H). From the definition of U
the first, factorization, condition in (3.196) holds.

From the definition U vanishes on Ran(A4)*. We can now check that the con-
tinuous extention is a bijection

(3.200) U : Ran(E) — Ran(A4).

Indeed, if w € Ran(E) then ||w| = |[Uw|| from (3.199) so (3.200) is injective. The
same identity shows that the range of U in (3.200) is closed since if Uw,, converges,

lwn, — wp| = ||U(wn — wy,)|| shows that the sequence w,, is Cauchy and hence
converges; the range is therefore Ran(A). This same identity, ||[Uw| = |w]|, for
w € Ran(F), implies that

(3.201) (Uw,Uw") = (w,w"), w,w" € Ran(E).

This follows from the polarization identity

(3.202)
AUw,Uw') = ||U(w+w)|* = U (w — w")|* +il|U (w +iw')|* = | U (w — iw’)|?
= Jlw + w'[* = [lw — || + illw + iw'[|* — iflw - iw'||* = 4w, w')
The adjoint U* of U has range contained in the orthocomplement of the null space

of U, so in Ran(E), and null space precisely Ran(A4)* so defines a linear map from
Ran(A) to Ran(FE). As such it follows from (3.202) that

(3.203) U*U =1d on Ran(E) = U* = U~! on Ran(A)

since U is a bijection it follows that U* is the two-sided inverse of U as a map in
(3.200). The remainder of (3.196) follows from this, so completing the proof of the
Proposition. O

A bounded linear operator with the properties of U above, that there are two
decompositions of H = Hy @& Hy = H3 ® H, into orthogonal closed subspaces, such
that U = 0 on He and U : Hy — Hj3 is a bijection with [|[Uw]| = |Jw]| for all
w € Hy is called a partial isometry. So the polar decomposition writes a general
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bounded operator as product A = UE where U is a partial isometry from Ran(FE)
onto Ran(A) and E = (A*A)z.

EXERCISE 1. Show that in the same sense, A = FV where F = (AA*)z and
V is a partial isometry from Ran(A*) to Ran F.

22. Compact perturbations of the identity

I have generally not had a chance to discuss most of the material in this section,
or the next, in the lectures.

Compact operators are, as we know, ‘small’ in the sense that the are norm
limits of finite rank operators. If you accept this, then you will want to say that an
operator such as

(3.204) Id-K, K € K(H)

is ‘big’. We are quite interested in this operator because of spectral theory. To say
that A € C is an eigenvalue of K is to say that there is a non-trivial solution of

(3.205) Ku— Au=0

where non-trivial means other than than the solution v = 0 which always exists. If
A is an eigenvalue of K then certainly A € Spec(K), since A— K cannot be invertible.
For general operators the converse is not correct, but for compact operators it is.

LEMMA 3.19. If K € B(H) is a compact operator then A € C\ {0} is an
eigenvalue of K if and only if A € Spec(K).

PROOF. Since we can divide by A we may replace K by A™' K and consider the
special case A = 1. Now, if K is actually finite rank the result is straightforward.
By Lemma 3.7 we can choose a basis so that (3.85) holds. Let the span of the e;
be W — since it is finite dimensional it is closed. Then Id —K acts rather simply —
decomposing H =W @ W, u = w + v’

(3.206) (Md-K)(w+w")=w+ (ldw —K')u', K' : W — W

being a matrix with respect to the basis. It follows that 1 is an eigenvalue of K
if and only if 1 is an eigenvalue of K’ as an operator on the finite-dimensional
space W. A matrix, such as Idy —K’, is invertible if and only if it is injective, or
equivalently surjective. So, the same is true for Id — K.

In the general case we use the approximability of K by finite rank operators.
Thus, we can choose a finite rank operator F' such that ||[K — F| < 1/2. Thus,
(Id—K + F)~! = Id —B is invertible. Then we can write

(3207) Id—K =Id—(K — F)— F = (Id—(K — F))(Id—L), L = (Id—B)F.

Thus, Id — K is invertible if and only if Id —L is invertible. Thus, if Id —K is not
invertible then Id —L is not invertible and hence has null space and from (3.207) it
follows that Id — K has non-trivial null space, i.e. K has 1 as an eigenvalue. (Il

A little more generally:-
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PROPOSITION 3.20. If K € K(H) is a compact operator on a separable Hilbert
space then

null(Id —=K) = {u € H; Idg)u = 0} is finite dimensional
(3.208) Ran(Id—K) ={v e H;Ju € H, v = (Id —K)u} is closed and
Ran(Id —K)* = {w € H#; (w, Ku) = 0 Y u € H} is finite dimensional
and moreover
(3.209) dim (null(Id —K)) = dim (Ran(Id —K)™*) .
PROOF OF PROPOSITION 3.20. First let’s check this in the case of a finite rank
operator K = T. Then
(3.210) Nul(Id -T') = {u € H;u = Tu} C Ran(T).

A subspace of a finite dimensional space is certainly finite dimensional, so this
proves the first condition in the finite rank case.

Similarly, still assuming that 7T is finite rank consider the range
(3.211) Ran(Id —T') = {v € H;v = (Id —=T)u for some u € H}.

Consider the subspace {u € H;Tu = 0}. We know that this this is closed, since T
is certainly continuous. On the other hand from (3.211),

(3.212) Ran(Id —T") D Nul(T)).

Remember that a finite rank operator can be written out as a finite sum
N

(3.213) Tu=Y (u,e)f;
i=1

where we can take the f; to be a basis of the range of T. We also know in this
case that the e; must be linearly independent — if they weren’t then we could write
one of them, say the last since we can renumber, out as a sum, ey = Y ¢;e;, of

J<N
multiples of the others and then find
N—1
(3.214) Tu="Y " (ue)(fi +fn)
i=1

showing that the range of T" has dimension at most N — 1, contradicting the fact
that the f; span it.

So, going back to (3.213) we know that Nul(T") has finite codimension — every
element of H is of the form

N
(3.215) u=u+ Z die;, u' € Nul(T).

i=1
So, going back to (3.212), if Ran(Id —T") # Nul(T), and it need not be equal, we
can choose — using the fact that Nul(T") is closed — an element g € Ran(Id —T') \
Nul(T) which is orthogonal to Nul(T). To do this, start with any a vector ¢’ in
Ran(Id —=T') which is not in Nul(T). It can be split as ¢’ = u” + g where g L
Nul(T') (being a closed subspace) and u” € Nul(T'), then g # 0 is in Ran(Id —T)
and orthongonal to Nul(7T"). Now, the new space Nul(T) @ Cg is again closed and
contained in Ran(Id —T'). But we can continue this process replacing Nul(T") by
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this larger closed subspace. After a a finite number of steps we conclude that
Ran(Id —T) itself is closed.
What we have just proved is:

LEMMA 3.20. IfV C H is a subspace of a Hilbert space which contains a closed
subspace of finite codimension in H — meaning V. O W where W is closed and there

are finitely many elements e; € H, i =1,..., N such that every element u € H is
of the form

N
(3.216) u=u + Z ciei, ¢; € C,

i=1
then V itself is closed.

So, this takes care of the case that K = T has finite rank! What about the
general case where K is compact? Here we just use a consequence of the approxi-
mation of compact operators by finite rank operators proved last time. Namely, if
K is compact then there exists B € B(H) and T of finite rank such that

1
(3.217) K=B+T, ||B| < 3

Now, consider the null space of Id —K and use (3.217) to write
(3.218) Id—K = (Id—B) - T = (Id—B)(1d-T"), T' = (I1d —B)~'T.

Here we have used the convergence of the Neumann series, so (Id —B)~! does exist.
Now, T" is of finite rank, by the ideal property, so

(3.219) Nul(Id —K) = Nul(Id —7") is finite dimensional.

Here of course we use the fact that (Id —K)u = 0 is equivalent to (Id —7")u = 0
since Id — B is invertible. So, this is the first condition in (3.208).

Similarly, to examine the second we do the same thing but the other way around
and write

(3.220) Id-K=(Id-B)—T = (1d-T")(1d —B), T" = T(1d —B)~".
Now, T" is again of finite rank and
(3.221) Ran(Id —K) = Ran(Id —7") is closed

again using the fact that Id — B is invertible — so every element of the form (Id —K)u
is of the form (Id —7")u’ where v’ = (Id —B)u and conversely.

So, now we have proved all of (3.208) — the third part following from the first
as discussed before.

What about (3.209)?7 This time let’s first check that it is enough to consider
the finite rank case. For a compact operator we have written
(3.222) (Id-K)=G(Id-T)
where G = Id —B with || B| < 3 is invertible and T is of finite rank. So what we
want to see is that
(3.223) dim Nul(Id —K) = dim Nul(Id —T") = dim Nul(Id —K™).
However, Id —K* = (Id =T*)G* and G* is also invertible, so
(3.224) dim Nul(Id —K™*) = dim Nul(Id —T™)
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and hence it is enough to check that dim Nul(Id —T") = dim Nul(Id —7™*) — which is
to say the same thing for finite rank operators.

Now, for a finite rank operator, written out as (3.213), we can look at the
vector space W spanned by all the f;’s and all the e;’s together — note that there is
nothing to stop there being dependence relations among the combination although
separately they are independent. Now, T': W — W as is immediately clear and

N

(3.225) T v =Y (v, fi)e;

i=1

soT : W — W too. In fact Tw' = 0 and T*w’ = 0 if w’ € W+ since then
(w',e;) =0 and (w', f;) = 0 for all 7. It follows that if we write R : W +— W for
the linear map on this finite dimensional space which is equal to Id =T acting on
it, then R* is given by Id —T™ acting on W and we use the Hilbert space structure
on W induced as a subspace of H. So, what we have just shown is that
(3.226)

(Id-T)u=0<«<=ueWand Ru=0, Id-T")u=0<= u e W and R*u = 0.

Thus we really are reduced to the finite-dimensional theorem
(3.227) dim Nul(R) = dim Nul(R*) on W.

You no doubt know this result. It follows by observing that in this case, every-
thing now on W, Ran(W) = Nul(R*)* and finite dimensions

(3.228)  dim Nul(R) 4+ dim Ran(R) = dim W = dim Ran(W) 4+ dim Nul(R").

23. Hilbert-Schmidt, Trace and Schatten class operators

As well as the finite rank and compact operators there are other important
ideals. The proofs of many results listed here are relegated to problems.
First consider the Hilbert-Schmidt operators. The definition is based on

LEMMA 3.21. For a separable Hilbert space, H, if A € B(H) then once the sum
for any one orthonormal basis {e;}

(3.229) 1Alfs = D ldeil|?

is finite it is finite for any other orthonormal basis with the same sum.

PROOF. See Problem ... O

It is straightforward to show that the operators of finite rank satisfy (3.229);
this is basically Bessel’s inequality.

PROPOSITION 3.21. The operators for which (3.229) is finite form a 2-sided
ideal HS(H) C B(H), contained in the ideal of compact operators, it is a Hilbert
space and the norm satisfies

2

(3.230) |Alls < [|Alluas = (Z ||A€i||2>
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The inner product is

(A,B)us = » (Ae;, Be;), A, B € HS(H).

1
That this is independent of the orthonormal basis used to define it can be seen
directly, but in any case follows from ProlbemN.
Note that for a compact operator the polar decomposition can be given a more
explicit form.

PROPOSITION 3.22. If A € K(H) then there exists orthonormal bases e; of
Nul(A4)* and f; of Nul(A*)L such that

Au=>"s;(u,e;)f;
i
where the s; are the non-zero eigenvalues of (A * A)% repeated with multiplicity.

The s; are called the characteristic values of A.

PrOOF. First take a basis e; of eigenvectors of A*A restricted to Nul(A)L =
Nul(A*A)+ with eigenvalues s? > 0, so the s; are the non-zero eigenvalues of
|A| = (A*A)z. Then A = U|A| with U a unitary operator from Ran(|A[) = Nul(A)+
to Ran(A) so (3.22) follows by taking f; = Ue,. O

Extending the e; to an orthonormal basis of H it follows that

%
[Allns = (Z S?) = [|sxls=-
[

So to say that A is Hilbert-Schmidt is to say that the sequence of its characteristic
values is in [? (with the caveat that the sequence might be finite).

One reason that the Hilbert-Schmidt operators are of interest is their relation
to the ideal of operators ‘of trace class’, T(H).

DEFINITION 3.7. The space T (H) C B(H) for a separale Hilbert space consists
of those operators A for which

(3.231) [All7e = sup Y [{Aes, fi)] < o0

where the supremum is over pairs of orthonormal sequences {e;} and {f;}.

PROPOSITION 3.23. The trace class operators form an ideal contained in the
Hilbert-Schmidt operators; the following two conditions are equivalent to A € T (H) :

(1) The operator defined by the functional calculus,
(3.232) (A*A)% € HS(H).
(2) There are operators B;, B, € HS(H) such that

N
(3.233) A=> BB
1=1

and T (H) is a Banach space with respect to the norm (3.231) satisfying
Lo
(3.234) [Alls < |Allze, [[Allas < [|AlI51IAllf,-
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PRrROOF. Note first that Tr(H) is a linear space and that || - ||, is a norm on it.
Suppose A € Tr(H) and consider its polar decomposition A = U(A*A)%.
Here U is a partial isometry mapping Ran(A4*A)z to Ran(A) and vanishing on
_ 1 _—
Ran(A*A)z . Consider an orthonormal basis {e;} of Ran(A*A)z. This is an or-
thonormal sequence in H as is f; = Ue;. Inserting these into (3.231) shows that

1

(3.235) Z| U(A*A %ezvfz‘_Z| AT A)ie;, (A" A)ie;)| < oo

where we use the fact that U* f; = U*Ue; = e;. Since the closure of the range of
(A*A)7 is the same as the closure of the range of (A*A)z it follows from (3.235)
that (3.232) holds (since adding an orthonormal basis of Ran((A*A)%)L does not
increase the sum).

Next assume that (3.232) holds for A € B(H). Then the polar decomposition
can be written A = (U(A*A)3)(A*A)7 showing that A is the product of two
Hilbert-Schmidt operators, so in particular of the form (3.233).

Now assume that A is of the form (3.233), so is a sum of products of Hilbert-
Schmidt operators. The linearity of 7 (H) means it suffices to assume that A = BB’
where B, B’ € HS(H). Then,

(3.236) ((Ae, fi)| = [(B'ei, B* fi)| < ||B'eil|ul|B" fill -

Taking a finite sum and applying Cauchy-Schwartz inequality

N N
(3.237) Yo lde, fi)l < O lIBeal*) 3 ( Z IB* fill*)2.
1=1 =1

If the sequences are orthonormal the right side is bounded by the product of the
Hilbert-Schmidt norms so

(3.238) IBB|lre < || Bllus||B'[lus

and A= BB' € T(H).
The first inequality in (3.234) follows the choice of single unit vectors v and v
as orthonormal sequences, so

(3.239) [(Au, )| < [[A]le = | A]l < [[A]l7e-

The completeness of T (H) with respect to the trace norm follows standard
arguments which can be summarized as followsL

(1) If A, is Cauchy in 7 (H) then by the equality just established, it is Cauchy
in B(H) and so converges in norm to A € B(H).

(2) A Cauchy sequence is bounded, so there is a constant C' = sup,, || Am ||
such that for any IV, any orthonormal sequences ¢e;, f;,

N
(3.240) S Anei fi)] < C.
i=1

Passing to the limit A,, — A in the finite sum gives the same bound with
A, replaced by A and then allowing N — oo shows that A € T(H).
Similarly the Cauchy condition means that for € > there exists M such
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that for all NV, and any orthonormal sequences e;, f;
N
(3.241) mn > M= [((An — Am)ei, ;)| < €.
i=1
Passing first to the limit m — oo in the finite sum and then N — oo
shows that
n>M=—||A, — A|| <e€

and so 4,, — A in the trace norm.

PROPOSITION 3.24. The trace functional
(3.242) Tr(H) > Ar— Tr(A) = ) (Aeie;)
i
is a continuous linear functional (with respect to the trace norm) which is indepen-
dent of the choice of orthonormal basis {e;} and which satsifies

(3.243) Tr(AB — BA) =0 if Ae T(H), B € B(H) or A, B € HS(H).
PRrooF. It suffices to assume that A and B are self-adjoint and A € T(H).

Then we can choose an orthonormal basis of eigenvectors for A with eigenvalues \;
which satisfy > |A\;| < oo and see that
i

(3.244) Tr(AB— BA) = ((Be;, Ae;) — (Ae;, Be;))

%

= >~ (i(Berex) = Mifer Bei)) = 0.
0

This is the fundamental property of the trace functional, that it vanishes on
commutators where one of the elements is of trace class and the other is bounded.

Next we turn to the more general Schatten classes. Note that the definitions
of trace class and Hilbert-Schmidt ideals are included here.

DEFINITION 3.8. An operator A € K(H) is ‘of Schatten class,” A € Sc,(H),
p € [0,00) if and only if |A]P € T(H), i.e.

1
P
(3.245) 1T |sc, = (Z sf> < 00
i
where s; are the non-zero characteristic values of A repeated with multiplicity.

So T(H) =Sci1(H), HS(H) = Sco(H).
Of course the notation is suggestive, but we need to be a bit careful in proving
the results which are implied by the notation!

PROPOSITION 3.25. The Schatten classes form two-sided x-ideals in B(H) which
are Banach spaces with respect to the norm given by (3.245) which is also given by

(3.246) |T|[&,, =sup > _ [(Tes, fi)l”
1
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with the supremum over orthonormal sequences, with finiteness implying that T €
Scp(H). If q is the conjugate index to p € (0,00) then
(3.247) A€ Scy(H), B €Scy(H) = ABc T(H), [|[AB|/1: < [|Allsc, || Bllsc,
and conversely, if A € B(H) then A € Sc,(H) if and only if AB € T(H) for all
B € Sc,(H) and

[Allse, = sup  [|AB|r:.

I Bllscg=1
I have never covered this in lectures so the proof is brief and incomplete.

PRrROOF. The alternate realization of the Schatten norm in (3.246) is particu-
larly useful since whilst it is clear from the definition that ¢I'" € Sc,(H) if T €
Sc,(H) and ¢ € C, it is not otherwise immediately clear that the space is linear (or
that the triangle inequality holds).

Working from the definition (3.245) note that if 7' is self-adjoint then T €
Scp(H) if and only if

(3.248) sup > [(Tfi, fl” = IIT &

with the supremum over orthonormal sequences. To see this let e; be an orthormal
basis of eigenvectors for T. Then expanding in the Fourier-Bessel series

(3:249) (Tfi, fi) = > _ Nil{fine))* < Z I I(Fis ) 721 fir )[4
J
< (Z')\jlp<fi,€] % Zl fzaej % = Zp‘ | fzaej )%
J

by Holder’s inequality, so

(3250) Z| sz;fz ‘p < Z ‘)‘ |pz fzaej Z |)‘ |p = ”T”Scp

This proves (3.248) when T' =T € K(H).

Now consider (3.246). Let Px be the orthogonal projection onto the span
of the eigenspaces corresponding to the the largest N eigenvalues of |T'|. Then
we replace T' by Ty = T Pp; certainly TPy — T in norm. Since T has finite
rank, both Nul(Tx) and Nul(T}) are infinite dimensional so we can write the polar
decomposition as

Ty = UNAN, AN = PN|T|PN
and take Uy to be unitary (rather than a partial isometry) by extending it by
an isometric isomorphism Nul(Ty)* — Nul(T%)*. Then using Cauchy-Schwartz
inequality and then (3.248) for Ay,

3251 Zl TNez,fz Z| NezaA2 UNfZH
ZHA i|)% ZHAEUJ*VfiIIQp)%
< Z| ANei,ez 2‘Z| ANUNqu fz>|p)%

<N ANlse, = ITNlIse, < 17T ls, -
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As usual dropping to a finite sum on the left we can pass to the limit as N — oo
and obtain a uniform bound on an finite sum for T' from which (3.246) follows.
At this point we know that if A € Sc,(H) and Uy, U, are unitary then

U AU, € SCP(H) and ||U1AU2||Scp = ||A||Scp-

From (3.246) it follows directly that Sc,(H) is linear, that the triangle inequal-
ity holds, so that || - [|sc, is a norm, and Sc,(H) is complete and that it is *-closed.

Now, if A € Scq(H) and B € Sc,(H) for conjugate indices p, g € (0, 00) choose
a finite rank orthogonal projection P and consider ABP which is of finite rank, and
hence of trace class. We can compute its trace with respect to any orthonormal
basis. Choose an orthonormal basis e; of the range of PAP and f; so that the polar
decomposition of PAP becomes

PAPfl = S;6; —> PA*Pei = Slfz

where the s; are the characteristic values of PA. Now with finite sums

(3.252) |Tr(PAPBP)|=|» (PAP’BPe;,e;)|

N
=|Y (PBPe;, PA*Pe;)| <Y si|(PBPe;, f;)|

=1
< (O _sHa(d_[(PBPe;, £)|")# < ||PAP|sc,|[PBP|sc,

by Holder’s inequality. Now |PBP| = P|B|P (and similarly for A) and from
minimax arguments discussed earlier it follows that, s;(|[PBP|) < s,(|B]) for all j.
So we see that

(3.253) | Te(PAPBP)| < || Allsc, | Bllsc, -

Fixing B this is true for any A, so A can be replaced by UA with U unitary, in
such a way that APB = |[APB|. We also know that ||[UA|sc, = ||Alsc, and since
P|APBIP is positive and

(3.254) Tr(PAPBP) = Tr(P|APB|P) = ||P|APB|P||1: < ||Allsc, || Bllsc, -

Taking an increasing sequence of projections Py, it follows that Py|APyB|Py —
|AB] in trace norm and that (3.247) holds.

The proof of optimality in this ‘con-commutative Holder inequality’ is left as
an exercise. That Sc,(H) is an ideal then follows from the fact that 7(H) is an
ideal. (]

24. Fredholm operators

DEFINITION 3.9. A bounded operator F' € B(H) on a Hilbert space is said to
be Fredholm, written F' € F(H), if it has the three properties in (3.208) — its null
space is finite dimensional, its range is closed and the orthocomplement of its range
is finite dimensional.

For general Fredholm operators the row-rank=colum-rank result (3.209) does not
hold. Indeed the difference of these two integers, called the index of the operator,

(3.255) ind(F) = dim (null(Id —K)) — dim (Ran(Id —K)J‘)

is a very important number with lots of interesting properties and uses.
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Notice that the last two conditions in (3.208) are really independent since the
orthocomplement of a subspace is the same as the orthocomplement of its closure.
There is for instance a bounded operator on a separable Hilbert space with trivial
null space and dense range which is not closed. How could this be? Think for
instance of the operator on L?(0,1) which is multiplication by the function z.
This is assuredly bounded and an element of the null space would have to satisfy
zu(z) = 0 almost everywhere, and hence vanish almost everywhere. Moreover the
density of the L? functions vanishing in z < ¢ for some (non-fixed) ¢ > 0 shows
that the range is dense. However it is clearly not invertible.

Before proving this result let’s check that, in the case of operators of the form
Id — K, with K compact the third conclusion in (3.208) really follows from the first.
This is a general fact which I mentioned, at least, earlier but let me pause to prove
it.

PROPOSITION 3.26. If B € B(H) is a bounded operator on a Hilbert space and
B* is its adjoint then

(3.256) Ran(B)* = (Ran(B))* = {v € H; (v,w) = 0V w € Ran(B)} = Nul(B*).

PRrOOF. The definition of the orthocomplement of Ran(B) shows immediately
that

(3.257) v € (Ran(B))* <= (v,w) =0V w € Ran(B) < (v,Bu) =0V u € H
< (B*v,u) =0V u € H < B*v=0<= v e Nul(B").

On the other hand we have already observed that V+ = (V) for any subspace —
since the right side is certainly contained in the left and (u,v) = 0 for all v € V
implies that (u,w) = 0 for all w € V by using the continuity of the inner product
to pass to the limit of a sequence v,, — w. ([

Thus as a corrollary we see that if Nul(Id —K) is always finite dimensional for
K compact (i. e. we check it for all compact operators) then Nul(Id —K™*) is finite
dimensional and hence so is Ran(Id —K)=.

There is a more ‘analytic’ way of characterizing Fredholm operators, rather
than Definition 3.9.

LEMMA 3.22. An operator F € B(H) is Fredholm, F € F(H), if and only if it
has a generalized inverse P satisfying

PF = 1d ~Tlyy(r)

(3.258) FP =1d ~Ilgan(pyr

with the two projections of finite rank.

PrOOF. If (3.258) holds then F' must be Fredholm, since its null space is finite
dimensional, from the second identity the range of F' must contain the range of
Id —Piyy(ry+ and hence it must be closed and of finite codimension (and in fact
be equal to this closed subspace.

Conversely, suppose that F' € F(H). We can divide H into two pieces in two
ways as H = Nul(F) @ Nul(F)+ and H = Ran(F)* @ Ran(F) where in each case
the first summand is finite-dimensional. Then F' defines four maps, from each of
the two first summands to each of the two second ones but all but one of these
is zero and so F corresponds to a bounded linear map F : Nul(F)* — Ran(F).
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These are two Hilbert spaces with bounded linear bijection between them, so the
inverse map, P : Ran(F) — Nul(F)= is bounded by the Open Mapping Theorem
and we can define

(3.259) P = PoIINul(F)1v).
Then (3.258) follows directly. O

What we want to show is that the Fredholm operators form an open set in
B(H) and that the index is locally constant. To do this we show that a weaker
version of (3.258) also implies that F' is Fredholm.

LEMMA 3.23. An operator F € F(H) is Fredholm if and only if it has a para-
metrix Q € B(H) in the sense that

QF =1d —Ep

(3.260) PO —1dE,

with Er and Ep of finite rank. Moreover any two such parametrices differ by a
finite rank operator.

Proor. If F is Fredholm then ) = P certainly is a parameterix in this
sense. Conversely suppose that @ as in (3.260) exists. Then Nul(Id —Fg) is fi-
nite dimensional — from (3.208) for instance. However, from the first identity
Nul(F) ¢ Nul(QF) = Nul(Id —FEg) so Nul(F) is finite dimensional too. Simi-
larly, the second identity shows that Ran(F') D Ran(F'Q) = Ran(Id —Fp) and the
last space is closed and of finite codimension, hence so is the first.

Now if @ and @’ both satisfy (3.260) with finite ranke error terms Ef, and E},
for Q' then

(3.261) (Q'—Q)F =Er— Ejp

is of finite rank. Applying the generalized inverse, P of F' on the right shows that
the difference

(3.262) (Q'—Q) = (Er — ER)P + (Q" — Q)lxu(r)
is indeed of finite rank. O

Now recall (in 2014 from Problems7) that finite-rank operators are of trace
class, that the trace is well-defined and that the trace of a commutator where one
factor is bounded and the other trace class vanishes. Using this we show

LEMMA 3.24. If @Q and F satisfy (3.260) then
(3.263) ind(F) = Tr(EL) — Tr(ER).

PROOF. We certainly know that (3.263) holds in the special case that Q = P
is the generalized inverse of F, since then Fy, = Ilxyr) and Egr = Hganr)r and
the traces are the dimensions of these spaces.

Now, if @ is a parameterix as in (3.260) consider the straight line of operators
Q: = (1 —t)P + Q. Using the two sets of identities for the generalized inverse and
paramaterix

QiF = (1 — t)PF +tQF =1d —(1 — t)IIxw(r) — tEL,

3.264
(8.264) FQi=(1—t)FP+tFQ =1d—(1 — t)llgay (). — tEg.
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Thus @y is a curve of parameterices and what we need to show is that
(3265) J(t) = TI‘((I - t)HNul(F) + tEL) - Tr((l — t)HRan(F)L + tER)
is constant. This is a linear function of ¢ as is ;. We can differentiate (3.264) with

respect to ¢t and see that

d d
(3.266)  — ((1 — )llxui(r) +tEL) = — (1 = OlRan(r)r +tER) = [Q — P, F]

dt dt
= J'(t)=0
since it is the trace of the commutator of a bounded and a finite rank operator
(using the last part of Lemma 3.23. (Il

PROPOSITION 3.27. The Fredholm operators form an open set in B(H) on which
the indez is locally constant.

PRrROOF. We need to show that if F' is Fredholm then there exists € > 0 such
that F' + B is Fredholm if || B|| < e. Set B’ = HRan(r) Bllxypy+ then || B’ < [|B|
and B— B’ is finite rank. If F is the operator constructed in the proof of Lemma 3.22
then F + B’ is invertible as an operator from Nul(F)* to Ran(F) if € > 0 is small.
The inverse, Pj, extended as 0 to Nul(F') as P is defined in that proof, satisfies

Pp(F + B) = 1d ~Txyr) + Pp(B - B),
(F + B)Pp = Id —II)Ran(F)* + (B — B]) Py
and so is a parametrix for F'+ B. Thus the set of Fredholm operators is open.
The index of F'+ B is given by the difference of the trace of the finite rank error

terms in the second and first lines here. It depends continuously on B in |B]| < €
so, being integer valued, is constant.

(3.267)

This shows in particular that there is an open subset of B(H) which contains
no invertible operators, in strong contrast to the finite dimensional case. Still even
the Fredholm operators do no form a dense subset of B(H). One such open subset
consists of the sem-Fredholm operators, those with closed range and with either
null space of complement of range finite-dimensional.

25. Kuiper’s theorem

For finite dimensional spaces, such as CV, the group of invertible operators,
denoted typically GL(N), is a particularly important example of a Lie group. One
reason it is important is that it carries a good deal of ‘topological’ structure. In
particular — I'm assuming you have done a little topology — its fundamental group
is not trivial, in fact it is isomorphic to Z. This corresponds to the fact that a
continuous closed curve ¢ : S — GL(N) is contractible if and only if its winding
number is zero — the effective number of times that the determinant goes around
the origin in C. There is a lot more topology than this and it is actually quite
complicated.

Perhaps surprisingly, the corresponding group of the bounded operators on a
separable (complex) infinite-dimensional Hilbert space which have bounded inverses
(or equivalently those which are bijections in view of the open mapping theorem)
is contractible. This is Kuiper’s theorem, and means that this group, GL(H), has
no ‘topology’ at all, no holes in any dimension and for topological purposes it is
like a big open ball. The proof is not really hard, but it is not exactly obvious
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either. It depends on an earlier idea, ‘Eilenberg’s swindle’, which shows how the
infinite-dimensionality is exploited. As you can guess, this is sort of amusing (if
you have the right attitude ...).

Let’s denote by GL(H) this group, as remarked above in view of the open
mapping theorem we know that

(3.268) GL(H) = {A € B(H); A is injective and surjective.}.
Contractibility is the topological notion of ‘topologically trivial’. It means precisely
that there is a continuous map

~v:10,1] x GL(H) — GL(H) s.t.
v(0,4) = A, v(1,A) =1d, V A € GL(H).
Continuity here means for the metric space [0, 1] x GL(H) where the metric comes
from the norms on R and B(H).

As a warm-up exercise, let us show that the group GL(H) is contractible to
the unitary subgroup
(3.270) U(H)={U e GL(H);U ' =U"*}.

These are the isometric isomorphisms.

(3.269)

PROPOSITION 3.28. There is a continuous map
(3.271)
I':[0,1] x GL(H) — GL(H) s.t. T'(0,A) = A, T'(1,A) € U(H) V A € GL(H).

PRrOOF. This is a consequence of the functional calculus, giving the ‘polar
decomposition’ of invertible (and more generally bounded) operators. Namely, if
AGL(H) then AA* € GL(H) is self-adjoint. Its spectrum is then contained in an
interval [a,b], where 0 < a < b = ||A|%. Tt follows from what we showed earlier
that R = (AA*)? is a well-defined bounded self-adjoint operator and R2 = AA*.
Moreover, R is invertible and the operator Uy = R™'A € U(H). Certainly it is
bounded and U} = A*R™! so UjUs = A*R72A = Id since R72 = (AA*)™! =
(A*)71A~L. Thus U} is a right inverse of Uy, and (since U, is a bijection) is the
unique inverse so Uy € U(H). So we have shown A = RU4 (this is the polar
decomposition) and then

(3.272) (s, A) = (sId+(1 — s)R)Uq, s € [0,1]
satisfies (3.271). O

Initially we will consider only the notion of ‘weak contractibility’. This has
nothing to do with weak convergence, rather just means that we only look for an
homotopy over compact sets. So, for any compact subset X C GL(H) we seek a
continuous map

v:[0,1] x X — GL(H) s.t.
7(0,4)=A, v(1,A)=1d, V A e X,

note that this is not contractibility of X, but of X in GL(H).

In fact, to carry out the construction without having to worry about too many
things at one, just consider (path) connectedness of GL(H) meaning that there is
a continuous map as in (3.273) where X = {A} just consists of one point — so the
map is just 7 : [0,1] — GL(H) such that v(0) = 4, v(1) =1d.

The construction of « is in three stages

(3.273)
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(1) Creating a gap
(2) Rotating to a trivial factor
(3) Eilenberg’s swindle.

This approach follows ideas of B. Mityagin, [3].
LEMMA 3.25 (Creating a gap). If A € B(H) and € > 0 is given there is a
decomposition H = Hi @& Hy, ® Hp into three closed mutually orthogonal infinite-

dimensional subspaces such that if Q is the orthogonal projections onto Hy for
I =K, L, O then

(3.274) 1QLBQk| <e.

Proor. Choose an orthonormal basis e;, j € N, of H. The subspaces H; will
be determined by a corresponding decomposition

(3.275) N=KULUO, KNL=KnNO=LNO =0.

Thus H; has orthonormal basis ey, k € I, I = K, L, O. To ensure (3.274) we choose
the decomposition (3.275) so that all three sets are infinite and so that

(3.276) |(e1, Bep)| < 27" teVie L, k€ K.

Once we have this, then for u € H, Qxu € Hg can be expanded to > (Qru, ex)ex
kEK
and expanding in Hj similalry,

QLBQru =Y (BQru,er)er =Y > (Bex,e)(Qru,ex)e

IeL kel keK
(3.277) = [|QLBQxul* < > ((Qkuvek)QZ (B€k761)|2>
kEK IEL
1 2 2 1 2 2
< 3¢ Z |(Qru, er)|” < 5€ [[ul

keK

giving (3.274). The absolute convergence of the series following from (3.276).

Thus, it remains to find a decomposition (3.275) for which (3.276) holds. This
follows from Bessel’s inequality. First choose 1 € K then (Bej,e;) — 0 as | — oo
so |(Bey,er,)| < €/4 for I large enough and we will take I > 2k;. Then we use
induction on N, choosing K(N), L(N) and O(N) with

K(N) :{kl =1<ky < ...,kN},
LIN)={li<la < - <In}, Iy > 2k, ky >1,—1 for 1 <r < N and
O(N) ={1,...,In} \ (K(N) UL(N)).

Now, choose ky 41 > Iy by such that |(e;, Beg,y,,)| < 277N, for alll € L(N), and
then [y41 > 2kn 1 such that |(egy,,, Br)| < e V" 1"Fefork € K(N+1) = K(N)U
{kn+1} and the inductive hypothesis follows with L(N +1) = N(N)U{ix+1}. O

Given a fixed operator A € GL(H) Lemma 3.25 can be applied with ¢ =
|[A=Y|~t. It then follows, from the convergence of the Neumann series, that the
curve

(3278) A(S) =A—-sQrLAQk, s € [0, 1]
lies in GL(H) and has endpoint satisfying
(3:279) QLBQk =0, B=A(1), Q1Qx =0=QxQr, Qx = Q%, QL = Q7
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where all three projections, @, Qk and Id —Qx — @, have infinite rank.

These three projections given an identification of H = H & H & H and so
replace the bounded operators by 3 x 3 matrices with entries which are bounded
operators on H. The condition (3.279) means that

Bi1 Bz Bis 1 00 0 0O
(3.280) B=| 0 By By|,Qx=(000],Q =010
B31 B3y Bss 0 0 0 0 0 O

So, now we have a ‘little hole’. Under the conditions (3.279) consider
(3.281) P =BQygB Y(1d-Qp).
The condition @ BQx = 0 and the definition show that QP = 0 = PQr. More-
over,

P? = BQxB~'(1d—QL)BQxkB ' (1d—Q.) = BQx B 'BQxB~'(I1d—Q) = P.

So, P is a projection which acts on the range of Id —Q; from its definition, the
range of P is contained in the range of BQ k. Since

PBQyk = BQxB '(1d—Q1)BQk = BQk

it follows that P is a projection onto the range of BQx.

The next part of the proof can be thought of as a result on 3 x 3 matrices
but applied to a decomposition of Hilbert space. First, observe a little result on
rotations.

LEMMA 3.26. If P and QQ are projections on a Hilbert space with PQ = QP =0
and M = MP = QM restricts to an isomorphism from the range of P to the range
of Q with ‘inverse’ M' = M'Q = PM' (so M'M = P and MM’ = Q)

(3.282)
[-7/2,7/2] 2 0 — R(0) = cos P + sinOM — sin @M’ + cos0Q + (Id—P — Q)

is a path in the space of invertible operators such that
(3.283) R(0)P = P, R(n/2)P = M'P.

ProoFr. Computing directly, R(6)R(—6) = Id from which the invertibility fol-
lows as does (3.283). O

We have shown above that the projection P has range equal to the range of
BQr; apply Lemma 3.26 with M = S(BQx)~'P where S is a fixed isomorphism
of the range of Qk to the range of Q. Then

(3.284)  Ly(6) = R(A)B has L1(0) = B, L(r/2) = B’ with B'Qx = QLSQx

an isomorphism onto the range of Q.
Next apply Lemma 3.26 again but for the projections Qx and @ with the
isomorphism S, giving

(3.285) R'(0) = cos0Qk +sin S —sin S’ + cos0Q 1, + Qo.
Then the curve of invertibles

Ls(0) = R'(0 — 0')B’ has L(0) = B', L(n/2) = B", B"Qx = Qx.
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So, we have succeed by succesive homotopies through invertible elements in
arriving at an operator

, (ld E
(3.286) B" = (0 F)

where we are looking at the decomposition of H = H @ H according to the projec-
tions Qi and Id —Q . The invertibility of this is equivalent to the invertibility of
F and the homotopy

(3.287) B"(s) = <I§ ! _FS)E>
zj;:ts e I (151 2) (B"(s))"! = (Iéi -1 _Fs)lEF—1>

through invertibles.

The final step is ‘Eilenberg’s swindle’. Start from the form of L in (3.288),
choose an isomorphism Ran(Qg) = I2(H) @ [?(H) and then consider the successive
rotations in terms of this 2 x 2 decomposition

cosf  sinfF~!
(3.289) L(e):(_smaF e ) 6 0,7/2),

cosfF~1 sinfF~!
L(9) = (sin@F cosF > , 0 € [m/2,7]
extended to be the constant isomorphism F on the extra factor. Then take the
isomorphism

(3.290) I2(H) @ 2(H) ® H — L2(H) & 2(H), ({w}, fwi},0) — {u}, {v,w;})

in which the last element of H is place at the beginning of the second sequence.
Now the rotations in (3.289) act on this space and L(m — 6) gives a homotopy
connecting B to the identity.

THEOREM 3.6 (Kuiper). For any compact subset X C GL(H) there is a retrac-
tion v as in (3.273).

PROOF. It is only necessary to go through the construction above, for the fam-
ily parameterized by X to check continuity in the variable B € X. Compactness of
X is used in the proof of the extension of Lemma 3.25; to arrange (3.276) uniformly
for the whole family we need to use the compactness of the images of various finite
sets under the action of all the elements of X — namely that the Fourier-Bessel
series converges uniformly for such sets. After that it is only necessary to check
that the choices made are either fixed for the family, or depend continuously on it
(as is the case for the operators P and M for instance). g






