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1. Introduction

This article is a survey about analogues of Hilbert’s Tenth Problem over various rings, es-
pecially rings of interest to number theorists and algebraic geometers. For more details about
most of the topics considered here, the conference proceedings [DLPVG00] is recommended.

2. The original problem

Hilbert’s Tenth Problem (from his list of 23 problems published in 1900) asked for an
algorithm to decide whether a diophantine equation has a solution. More precisely, the
input and output of such an algorithm were to be as follows:

input: a polynomial f(x1, . . . , xn) having coefficients in Z
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output: YES or NO, according to whether ∃~a = (a1, . . . , an) ∈ Zn with f(~a) = 0.

Matijasevič [Mat70], building on earlier work of Davis, Putnam, and Robinson [DPR61],
showed that no such algorithm exists.

3. Turing machines and decision problems

To make sense of this negative result, we need a precise notion of algorithm. In Hilbert’s
time, a mathematically precise notion had not yet been developed. In the 1930s, several
rigorous models of computation were proposed, one of which was the Turing machine. These
were soon proved to be equivalent, in terms of what they could compute. This made believ-
able the Church-Turing thesis, which is the assertion that every purely mechanical procedure
can be carried out by a Turing machine. Because of this, “algorithm” will be taken to mean
“Turing machine”.

An informal description of a Turing machine may be more enlightening than a mathe-
matically precise definition. (For the latter, see [HU79].) A Turing machine is equivalent
to a finite-length program (in C++, say) running on a physical computer, except that the
computer is not subject to physical errors (such as data loss from power outages) and its
memory is unlimited. In the model, the memory is sometimes taken as an infinite tape,
initialized to the binary representation of the nonnegative integer input, such as

· · · 0 0 0 0 0 1 1 0 1

or to all zeros if there is no input. During the operation of the computer, it reads and writes
characters to the memory tape, and may or may not print characters on a separate output
tape, following the rules of its program. It might run forever, or it might halt when some
condition specified by the program is satisfied.

We can consider Turing machines accepting other objects as input if we fix an encoding
of these objects as nonnegative integers. For example, a polynomial with integer coefficients
could be represented by the concatenation of the ASCII codes of the characters in a TEX file
giving the polynomial. The exact encoding procedure does not matter, as long as a Turing
machine can convert between the proposed encodings.

Definition 3.1. A decision problem is simply a subset S of the possible inputs. We say that
a Turing machine solves the decision problem S if

(1) for each possible input, it halts after a finite number of steps; and
(2) when it halts, the content of the output tape is “YES” if the input belonged to S,

and “NO” otherwise.

Remark 3.2. Each Turing machine can be encoded by a nonnegative integer, namely the
ASCII code for the C++ program. Thus there are only countably many Turing machines.
On the other hand, there are uncountably many decision problems, so some decision problems
cannot be solved by Turing machines.

The modern interpretation of Hilbert’s Tenth Problem is that it asks whether there exists
a Turing machine that can solve the decision problem where the input is a multivariable
polynomial equation, and S is the set of such polynomial equations that have a solution in
integers.
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4. Recursive and listable sets

Definition 4.1. A subset S ⊆ Z is called recursive if there exists an algorithm (Turing
machine) with input and output as follows:

input: an integer n
output: YES or NO, according to whether n ∈ S.

Remark 4.2. Although the algorithm is required to halt on every input, there is no require-
ment on the running time of the algorithm. If for a given decision problem, there exists
an algorithm whose running time is bounded by some polynomial function of the bit length
of the input, then the problem is said to belong to the class P. For example, it is obvious
that the set of prime numbers is recursive, but it is a nontrivial theorem [AKS02] that this
decision problem is in P.

Remark 4.3. Quantum computers cannot solve any more decision problems than Turing
machines, because they can be simulated by Turing machines. A difference in computational
power can exist only when running times are taken into account: the simulation of an n-
step quantum computation seems to require an exponential number of steps on a Turing
machine, so it is conjectured that the class QP of problems solvable by a quantum computer
in polynomial time is strictly larger than P.

Definition 4.4. A subset S ⊆ Z is called listable or recursively enumerable if there is a
Turing machine such that S is the set of integers that it prints out when left running forever.

Remark 4.5. The definition of listable is unchanged if we insist that the Turing machine
print each element of S exactly once: if there is a Turing machine T that prints exactly the
elements of S, but possibly prints some elements many times, one can find another Turing
machine T ′ that prints the same elements, but each exactly once. Namely, T ′ can mimic the
operation of T , but store in a table the integers that have been printed so far, and censor
the output of T whenever T would have printed an integer that is already in the table.

Proposition 4.6. Every recursive subset S ⊆ Z is listable.

Proof. We are given a Turing machine T that decides membership in S. Construct a new
Turing machine T ′ that applies T to test 0, 1, −1, 2, −2, . . . for membership in S, in order,
printing those integers n for which T shows that n ∈ S. Since T spends only a finite amount
of time testing each integer, running T ′ forever eventually prints out all elements of S, and
nothing else. �

Example 4.7. Let

S = { a ∈ Z : ∃x, y, z ∈ Z such that x3 + y3 + z3 = a }.
Then S is listable, since one can write a program that loops over B = 1, 2, . . . and for each B,
loops over x, y, z in the range −B to B, and computes and prints x3 +y3 +z3. It is unknown
whether S is recursive! (It has been conjectured that S = { a ∈ Z : a 6≡ ±4 (mod 9) }; if
this were true, then of course S would be recursive.)

5. The Halting Problem

The Halting Problem asks whether there exists a Turing machine with input and output
as follows:
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input: a computer program p and integer x. (The program can be encoded as
a nonnegative integer for input into the Turing machine.)

output: YES or NO, according to whether the program eventually halts (instead
of entering an infinite loop) when run on input x.

Theorem 5.1 (Turing). The Halting Problem is undecidable; that is, no Turing machine
can solve it.

Proof. We will use an encoding of programs as nonnegative integers, and identify programs
with numbers. Suppose there were an algorithm for deciding when program p halts on input
x. Then we could write a new program H such that

H halts on input x ⇐⇒ program x does not halt on input x.

Taking x = H, we find a contradiction: H halts on input H if and only if H does not halt
on input H. �

Corollary 5.2. There exists a listable set that is not recursive.

Proof. Let S be the set of numbers 2p3x such that program p halts on input x. By Theo-
rem 5.1, S cannot be recursive. On the other hand, we can write a program that eventually
lists all elements of S: loop over N = 1, 2, . . . , and during iteration N , for each p, x ≤ N ,
run program p on input x for N steps, and print 2p3x if it halts within these N steps. Hence
S is listable. �

6. Diophantine sets

Definition 6.1. A subset S ⊆ Zn is diophantine if there is a polynomial

p(~t, ~x) ∈ Z[t1, . . . , tn, x1, . . . , xm]

such that

S = {~a ∈ Zn : (∃~x ∈ Zm) p(~a, ~x) = 0 }.

Example 6.2. The subset N := {0, 1, 2, . . . } of Z is diophantine, since for a ∈ Z,

a ∈ N ⇐⇒ (∃x1, x2, x3, x4 ∈ Z) x2
1 + x2

2 + x2
3 + x2

4 = a.

Example 6.3. The subset Z − {0} of Z is diophantine, because every nonzero integer is the
product of an integer coprime to 2 and an integer coprime to 3: we have

a 6= 0 ⇐⇒ (∃b, c ∈ Z) a = bc ∧ (b, 2) = (1) ∧ (c, 3) = (1)

(b, 2) = (1) ⇐⇒ (∃p, q ∈ Z) bp+ 2q = 1

(c, 3) = (1) ⇐⇒ (∃r, s ∈ Z) cr + 3s = 1.

so

a 6= 0 ⇐⇒ (∃b, c, p, q, r, s ∈ Z) (a− bc)2 + (bp+ 2q − 1)2 + (cr + 3s− 1)2 = 0.

(Alternatively, one could make use of Z − {0} = Z>0 ∪ Z<0, and prove that a union of two
diophantine subsets of Z is diophantine, but the first method we used generalizes more easily
to rings of integers of arbitrary number fields.)
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Earlier we defined “listable” only for subsets of Z, but the same definition makes sense for
subsets of Zn. Diophantine subsets of Zn are listable: an example of this was already given
in Example 4.7, and the same proof works in general.

Much deeper is the fact that the converse holds; this very important result was conjectured
by M. Davis:

Theorem 6.4 (Davis-Putnam-Robinson and Matijasevič). A subset of Zn is diophantine if
and only if it is listable.

We will refer to Theorem 6.4 as the DPRM Theorem; a proof will be sketched in the next
section. For now, we give some corollaries.

Corollary 6.5. Hilbert’s Tenth Problem has a negative answer.

Proof. By Corollary 5.2, there exists a subset S ⊆ Z that is listable but not recursive. By
Theorem 6.4, S is diophantine, so there exists a polynomial p(t, ~x) ∈ Z[t, x1, . . . , xm] such
that

S = { a ∈ Z : (∃~x ∈ Zm) p(a, ~x) = 0 }.
If the answer to Hilbert’s Tenth Problem were positive, then in particular, we would have an
algorithm that could decide, given a ∈ Z, whether p(a, ~x) = 0 has a solution ~x ∈ Zn. In other
words, we would be able decide whether a given integer a belongs to S. This contradicts the
fact that S is not recursive. �

Before the DPRM Theorem was proved, it was known that it would have also the following
amusing corollary. Some people at the time viewed this as evidence against the DPRM
Theorem.

Corollary 6.6 (Prime-producing polynomials). There exists a polynomial F ∈ Z[x1, . . . , xn]
such that

{F (~a) : ~a ∈ Zn } ∩ Z>0

is exactly the set of prime numbers.

Proof. The set P of primes is listable. By Theorem 6.4, it is therefore diophantine, so there
exists a polynomial p(t, ~x) ∈ Z[t, x1, . . . , xm] such that

P = { a ∈ Z : (∃~x ∈ Zm) p(a, ~x) = 0 }.
Then the polynomial

F (y1, y2, y3, y4, ~x) := (1− p(y2
1 + y2

2 + y2
3 + y2

4, ~x)
2)(y2

1 + y2
2 + y2

3 + y2
4)

has the desired property: F (y1, y2, y3, y4, ~x) will be positive exactly when p(y2
1 + y2

2 + y2
3 +

y2
4, ~x) = 0, which for given y1, . . . , y4 is possible if and only if y2

1 + y2
2 + y2

3 + y2
4 is prime; in

this case the value of F is that prime. �

7. Outline of proof of the DPRM Theorem

The proof of the DRPM theorem we outline is not the original one; it has been simplified
over the years by many authors. We need a few definitions.

Definition 7.1. A function Zn → Zm is diophantine if and only if its graph is a diophantine
subset of Zn+m. Similarly one can say what it means for a relation to be diophantine.
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Definition 7.2. An exponential polynomial is an expression built up from positive integers
and variables using addition, multiplication, and exponentiation.

Example 7.3. The expression 2x3yxz+x2
+ 5 is an exponential polynomial.

Definition 7.4. A subset S ⊆ Zn
>0 is exponential diophantine if there are exponential poly-

nomials E1, E2 in variables t1, . . . , tn, x1, . . . , xm such that

S = {~a ∈ Zn
>0 : (∃~x ∈ Zm

>0) E1(~a, ~x) = E2(~a, ~x) }.

The proof of the DPRM Theorem now proceeds as follows:

(1) Show that exponentiation is diophantine. More precisely, the 3-variable relation
a = bc (restricted to positive integers, say) is diophantine. Historically, this part
came last. This part of the proof is purely number-theoretic, and is the trickiest,
even though the number theory involved is elementary. It uses nothing deeper than
the fact that the Pell equation x2 − dy2 = 1 for nonsquare d ∈ Z>0 has infinitely
many solutions in positive integers.

(2) Using the fact that exponentiation is diophantine, show that various other number-
theoretic relations are diophantine. For example, the 3-variable binomial coefficient
relation c =

(
a
b

)
is diophantine. The 2-variable relation a � b saying that the locations

of the 1’s in the binary representation of a are a subset of the locations for b is
diophantine: an 1852 theorem of Kummer states that a � b if and only if

(
b
a

)
is odd.

This step involves more elementary number theory.
(3) Using the “subroutines” built in the previous step, show that there are exponential

polynomials E1 and E2 such that program t eventually prints u if and only if there
exists ~x = (x1, . . . , xm) with E1(t, u, ~x) = E2(t, u, ~x). To do this, x1 could for example
represent the number of steps in a partial computation, and some of the other vari-
ables xi could encode the the complete operation of the Turing machine during the
first x1 steps, and the exponential equation should say imply these xi are such that
they represent a valid computation that results in program t printing u in step x1.
(Actually, it is easier to work with register machines instead of Turing machines: this
is another model of computation, whose operation is easier to model by exponential
equations, but which is equivalent in computational power.)

For more details, see the exposition in [JM91].

8. First order formulas

In this section we reinterpret some of the earlier concepts using terminology of first order
logic. For a precise definition of “first order formula” and so on, see Chapter II of [EFT94].

Loosely speaking, a first order formula in the language of rings is an expression built up
from the symbols +, ·, 0, 1,=, (, ), the logical relations ∧ (“and”), ∨ (“or”), ¬ (“not”), the
quantifers ∀ (“for all”) and ∃ (“there exists”), and variables x, y, z, . . . . For instance,

(∀y)(∃z)(∃w) (x · z + 3 = y2) ∨ ¬(z = x+ w)

is a first order formula. In this example, the variables y, z, w are bound by quantifiers, and
the variable x is free. A first order formula in which all variables are bound by quantifiers is
called a first order sentence.
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If a first order formula is of the form

(∃x1)(∃x2) . . . (∃xn) S

where S is a combination of equations involving +, ·, 0, 1,=,∧,∨ and variables but no quan-
tifiers and no ¬, then it is called a positive existential formula. If moreover S consists of a
single equation (no logical operators), then this first order formula is called a diophantine
formula.

Let R be any ring. (All our rings are commutative with 1.) A first order sentence has a
truth value obtained by interpreting it in the usual way, letting the bound variables run over
the elements of R. On the other hand, if φ(x1, . . . , xn) is only a first order formula (where
x1, . . . , xn are the free variables), then we get a truth value φ(a1, . . . , an) only after values
ai ∈ R are substituted for the xi. Thus a first order formula φ with n free variables defines
a subset of Rn, namely {~a ∈ Rn : φ(a1, . . . , an) }.

Definition 8.1. A subset of Rn arising in this way from a positive existential (resp. diopha-
tine) formula is called positive existential over R (resp. diophantine over R).

Example 8.2. The notion of “a subset that is diophantine over Z” agrees with the definition
of “diophantine subset of Zn” given in Section 6.

Remark 8.3. Adding a symbol for − does not change the notion of positive existential set
or diophantine set, since x− y = z is equivalent to x = y + z.

Remark 8.4. The collection of positive existential subsets of Rn is closed under finite unions
and intersections.

Occasionally we may consider the notions above where the language of rings is supple-
mented by symbols for certain elements of R. For example, if R = Z[t], then we might allow
equations involving the symbol “t”.

Proposition 8.5. Let R be a ring for which there exist polynomials f(x, y), g(x, y) ∈ R[x, y]
such that for a, b ∈ R,

f(a, b) = 0 ⇐⇒ a = 0 and b = 0,

g(a, b) = 0 ⇐⇒ a = 0 or b = 0.

If the language is supplemented with enough symbols for elements that the coefficients of f
and g can be expressed in terms of these elements, then the collection of positive existential
sets equals the collection of diophantine sets.

Proof. The nontrivial part is to show that positive existential sets are diophantine. We
transform an arbitrary positive existential formula into a diophantine formula defining the
same subset by repeatedly performing the following operations:

• Transform each polynomial equation p = q to p− q = 0.
• Transform each conjunction of polynomial equations (p = 0)∧ (q = 0) to f(p, q) = 0.
• Transform each disjunction of polynomial equations (p = 0) ∨ (q = 0) to g(p, q) = 0.

�

Corollary 8.6. If R is an integral domain whose fraction field K is not algebraically closed,
then the collection of positive existential sets equals the collection of diophantine sets, provided
that enough symbols for constants have been added to the language.
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Proof. We apply Proposition 8.5. Take g(x, y) = xy. Choose a nontrivial finite extension
K ′ of K, let {α, β} be part of a K-basis of K ′, and let f(x, y) = rNK′/K(αx + βy) where
NK′/K denotes the norm, and r ∈ R − {0} is chosen to clear denominators, so that f has
coefficients in R. This works provided that enough symbols have been added to the language
so that the coefficients of f are expressible in terms of the elements of R represented by these
symbols. �

Definition 8.7. The first order theory (resp. positive existential theory) of R in the language
of rings is the set of first order sentences (resp. positive existential sentences) in the language
that are true when the variables are considered to run over elements in R. (“First order
theory” is often abbreviated to “theory”.) The theory (resp. positive existential theory) is
called decidable if there is a Turing machine that takes as input a first order sentence (resp.
positive existential sentence) and decides whether it belongs to the theory.

Remark 8.8. These definitions make sense also for languages supplemented by a finite collec-
tion of symbols. (They might make sense for some languages with countably many symbols
as well, but in this case, one must take care to specify how the sentences are encoded as
integers for input into the Turing machine.)

By Corollary 8.6, to say that Hilbert’s Tenth Problem has a negative answer is equiva-
lent to the statement that the positive existential theory of Z (in the language of rings) is
undecidable.

9. Generalizing Hilbert’s Tenth Problem to other rings

Definition 9.1. Let R be a ring.

(1) Hilbert’s Tenth Problem over R asks whether there exists an algorithm with input
and output as follows:

input: f ∈ Z[x1, . . . , xn]
output: YES or NO, according to whether (∃~a ∈ Rn) f(~a) = 0. (There is a

unique ring homomorphism Z → R, so it makes sense to evaluate f
at elements of R.)

(2) If S ⊆ R, then Hilbert’s Tenth Problem over R with coefficients in S is the same as
above, except that f has coefficients in S instead of Z; this terminology assumes that
an encoding of elements of S has been specified.

An argument similar to that proving Corollary 8.6 implies that for many rings R, Hilbert’s
Tenth Problem over R is equivalent to asking whether the positive existential theory of R is
decidable.

10. Hilbert’s Tenth Problem over particular rings: summary

As usual, Q is the field of rational numbers, R is the field of real numbers, C the field of
complex numbers, Qp is the field of p-adic numbers (where p is a prime), and Fq is the finite
field of q elements (where q is a prime power). A number field is a finite extension K of Q,
and its ring of integers OK is defined as the integral closure of Z in K. A global function
field is a finite extension of the rational function field Fp(t) for some prime p, where t is an
indeterminate. A p-adic field is a finite extension of Qp for some prime p.

Table 1 contains, for various rings R, the answers to the questions
8



Ring R Hilbert’s 10th Problem First order theory

C YES YES (elimination theory)
R YES YES [Tar51]

Fq YES YES (trivial)

p-adic fields YES [Ner63] YES [AK66], [Erš65a]
Fq((t)) ? ?

number field ? NO [Rob59]
Q ? NO [Rob49]

global function field NO [Shl92], [Eis03] NO
Fq(t) NO [Phe91], [Vid94] NO [Erš65b], [Pen73]

C(t) ? ?
C(t, u) NO [KR92b] NO
R(t) NO [Den78] NO

OK ? (NO for some OK) NO (corollary of NO for K)
Z NO [Mat70] NO [Göd31]

Table 1. Answer to Hilbert’s Tenth Problem, and decidability of the first
order theory, for various rings

(1) Does Hilbert’s Tenth Problem over R have a positive answer? That is, is there an
algorithm to decide whether a multivariable polynomial with integer coefficients has
a zero over R? (In certain cases, we allow other coefficients: see below.)

(2) Is the first order theory of R decidable?

A question mark ? signifies that the answer is not known, except that the answer to Hilbert’s
Tenth Problem over the rings of integers OK of number fields is known for some number
fields K (the answer is NO when it is known): see Section 14. In particular, the answer to
Hilbert’s Tenth Problem over a number field K is not known for any K.

In the case where R is Fq(t) or a finite extension (another global function field) or Fq((t)),
we consider Hilbert’s Tenth Problem over R with coefficients in Fq(t), and for the first order
theory, we augment the language by including a symbol for t and a symbol for a field generator
of Fq. In the cases of C(t), R(t), and C(t, u), we consider polynomials with coefficients in
Z[t] or Z[t, u], and introduce symbols for t and u, as appropriate. In all other cases, the
input polynomials in Hilbert’s Tenth Problem have coefficients in (the image of) Z, and the
language used is simply the language of rings, with no added symbols for constants other
than 0 and 1.

The rings in Table 1 are grouped as follows: archimedean fields, finite fields, nonar-
chimedean local fields, global fields, function fields over archimedean fields, and rings of
integers. They are listed roughly in order of increasing “arithmetic complexity”. There is
no formal definition of arithmetic complexity, but for example, for fields k we can measure
the size of the absolute Galois group Gal(ks/k), where ks is a separable closure of k. Al-
though this may go against conventional wisdom, global function fields may be considered
more complex than number fields, because their arithmetic contains “extra structure” com-
ing from the Frobenius endomorphism; in any case this is what has been used in proving a
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negative answer to Hilbert’s Tenth Problem over such fields. Domains may be considered
more complex than their fraction fields, since they have “extra structure” coming from the
divisibility relation.

Remark 10.1. For any ring, the decidability of the first order theory implies a positive answer
to Hilbert’s Tenth Problem. This explains why we have not given references in every box
in Table 1. When the answer in one of the two boxes in a row was known before the other,
references are given in both boxes.

11. Decidable fields

In the cases where the first order theory is decidable, the decidability is a consequence
of an effective elimination of quantifiers for a theory in some (possibly enlarged) language.
Elimination of quantifiers means that given a first order formula φ involving bound variables
xi and free variables yj, there is a quantifier-free formula ψ involving only the yj such that the
set of ~y for which φ is true equals the corresponding set for ψ. The elimination of quantifiers
is effective if there is a Turing machine that takes φ as input and outputs a possible ψ.
If a theory admits an effective elimination of quantifiers, and the truth of quantifier-free
sentences is decidable, then the theory is decidable.

The fact that C in the language of rings has an effective elimination of quantifiers was
essentially known in the 19th century, except that they did not think to state things in
this way. In fact, there is an elimination of quantifiers for any algebraically closed field k:
it is equivalent to Chevalley’s Theorem in algebraic geometry which states that the image
of a constructible set under a projection is constructible. (A subset of kn, where k is an
algebraically closed field, is called constructible if it is a Boolean combination of sets of the
form { ~x ∈ kn : f(~x) = 0 } for f ∈ k[x1, . . . , xn]. By projection, we mean a surjective k-linear
map kn → km.)

The theory of R in the language of rings does not admit elimination of quantifiers, since
the formula (∃x) y = x2 is not equivalent to an quantifier-free formula involving only y: a
Boolean combination of subsets of R defined by polynomial equations either is finite or has
finite complement in R, and hence cannot equal R≥0. On the other hand, Tarski [Tar51]
showed that the theory of R in the language of rings augmented by a symbol ≤ (interpreted
in the usual way) does admit an effective elimination of quantifiers. For instance, (∃x) y = x2

is equivalent to the quantifier-free formula 0 ≤ y.
Similarly, the theory of a p-adic field k in the language of rings does not admit elimination

of quantifiers, but Macintyre [Mac76] showed that it does after one introduces symbols V
and Pd for each d ≥ 2, corresponding to the 1-variable predicates

V (x) ⇐⇒ x is in the valuation ring of k,

Pd(x) ⇐⇒ x is a dth power in k.

Remark 11.1. The first proofs of decidability for p-adic fields were not based on this elimi-
nation of quantifiers.

12. Hilbert’s Tenth Problem over Q

12.1. Existence of rational points on varieties. Let Q be an algebraic closure of Q.
We refer to Chapter 1 of [Sil92] for the definitions regarding algebraic sets and varieties. In
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particular, varieties are assumed to be quasi-projective and Q-irreducible. If X is a variety
over Q, then X(Q) denotes the set of rational points; if X is affine, then X(Q) is simply the
set of solutions in rational numbers to the system of polynomial equations defining X.

Proposition 12.1. Hilbert’s Tenth Problem over Q is equivalent to the question of whether
there exists a Turing machine with input and output as follows:

input: a variety X over Q
output: YES or NO, according to whether X(Q) 6= ∅.

We also get an equivalent problem if “variety” is replaced by “algebraic set” or by “nonsin-
gular affine variety”.

Proof. Assume that there is an algorithm for deciding the most special of these problems,
namely the existence of rational points on nonsingular affine varieties. We must construct
an algorithm for arbitrary algebraic sets X. The new algorithm will work by induction on
dimX.

Every algebraic set can be written as a finite union of irreducible components, so we may
assume that X is irreducible (over Q). If X is not Q-irreducible, and Y1, . . . , Yr are the
Q-irreducible components, then Gal(Q/Q) acts transitively on the Yi, but any rational point
of X is fixed by Gal(Q/Q) and hence must lie in

⋂r
i=1 Yi, which is an algebraic subset over

Q of lower dimension. Thus, by induction, we may assume that X is a variety. The singular
locus of X is a closed subset of smaller dimension, so by induction, we reduce to considering
its complement, which is a nonsingular variety. Any nonsingular variety is a finite union of
affine subvarieties, and these will also be nonsingular.

Finally, we remark that all these reductions can be done effectively by a Turing machine.
�

Remark 12.2. One gets an equivalent problem even if one allows “abstract varieties” in the
sense of Weil (see [Har77, II.§4]), because these too can written as a finite union of affine
subvarieties.

Question 12.3. Does one get an equivalent problem if one replaces “variety” by “nonsingular
projective variety”? The answer is not clear.

Definition 12.4. Let X be an algebraic set over Q, and S ⊆ X(Q). Then S is called
diophantine over Q if there exists a morphism of algebraic sets f : Y → X such that
S = f(Y (Q)).

Remark 12.5. It is easy to see that a subset S of An(Q) = Qn is diophantine in this new sense
if and only if S is positive existential over Q in the sense of Definition 8.1, and Corollary 8.6
says the latter is equivalent to S being diophantine over Q in the sense of Definition 8.1.

12.2. Inheriting a negative answer from Z? Suppose that Z were diophantine over Q.
Then given a polynomial equation f(x1, . . . , xn) = 0 over Z we could construct a system of
polynomial equations over Q by taking the original equation over Z together with, for each
i = 1, 2, . . . , n, an extra equation gi(xi, . . . ) = 0 involving xi and a new set of variables, such
that in any rational solution of the system, the equation gi = 0 forces xi ∈ Z. In other
words, the original polynomial equation has a solution over Z if and only if the associated
system has a solution over Q. Also, by Corollary 8.6, the system over Q is equivalent to a
single polynoimal equation over Q. Thus we could encode Hilbert’s Tenth Problem over Z

11



as a subproblem of Hilbert’s Tenth Problem over Q, and this could be done effectively. Since
Hilbert’s Tenth Problem over Z has a negative answer, it would follow that Hilbert’s Tenth
Problem over Q has a negative answer.

A similar argument proves more generally that if there is a diophantine model of the ring
Z over Q, then the negative answer to Hilbert’s Tenth Problem over Z implies a negative
answer over Q. By a diophantine model, we mean the following:

Definition 12.6. A diophantine model of the ring Z over Q is a diophantine set S ⊆ X(Q)
for some algebraic set X over Q, equipped with a bijection φ : Z→ S such that the graphs of
addition and multiplication (subsets of Z3) correspond to diophantine subsets of S3 ⊆ X3(Q).

Remark 12.7. If (S, φ) is a diophantine model of Z over Q, then φ is automatically a recursive
function (i.e., a Turing machine can compute its value on any input). The Turing machine
can search the subset G+ of S3 corresponding to the graph of + for a triple of the form
(a0, a0, a0) to find the point a0 that is φ(0). then φ(0) must be a0. Then it can search
the subset G· of S3 corresponding to the graph of · for a triple of the form (a1, a1, a1) with
a1 6= a0; this gives the point a1 with φ(1) = a1. Search G+ for (a1, a1, a2); then φ(2) = a2.
Search G+ for (a−1, a1, a0); then φ(−1) = a−1, and so on.

Remark 12.8. If E is an elliptic curve over Q, then E can be made into a group variety, and
this makes the set E(Q) into a group. The Mordell-Weil Theorem [Sil92, VIII.4.1] states
that E(Q) is a finitely generated abelian group. (Actually this was proved by Mordell alone;
Weil generalized the result to abelian varieties over arbitrary number fields.) Moreover,
one can find an elliptic curve E over Q such that E(Q) ' Z. It has been suggested that
in this case E(Q) might be a good candidate for a diophantine model of Z over Q, since
under the bijection Z → E(Q), the graph of + on Z already corresponds to a diophantine
subset of E3(Q). Unfortunately it is not clear whether the graph of · on Z corresponds to a
diophantine subset of E3(Q).

12.3. Mazur’s Conjecture. If X is an algebraic set over Q, then the set X(R) inherits
a topology from the topology of R. In particular, if X is affine, contained in An, then
X(R) ⊆ Rn is given the subspace topology. Several variants of the following conjecture are
discussed in [Maz92] and [Maz95].

Conjecture 12.9 (Mazur). If X is a variety over Q, then the topological closure of X(Q)
in X(R) has at most finitely many connected components.

Mazur’s Conjecture is known to hold when X is a curve: this follows from the Mordell-
Weil Theorem and Faltings’ Theorem [Fal83] that X(Q) is finite for curves X of genus > 1.
It is also known for abelian varieties, where again it follows from the Mordell-Weil Theorem.

Remark 12.10. Mazur originally asked also whether for a smooth variety X over Q such
that X(Q) was Zariski dense in X, the topological closure of X(Q) in X(R) is the union of
connected components of X(R). This stronger version of the question turned out to have a
negative answer [CTSSD97].

Proposition 12.11. Assume Mazur’s Conjecture. If X is any algebraic set, and S is a
diophantine subset of X(Q) then the closure of S in X(R) has at most finitely many connected
components.
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Proof. The reduction process in Section 12.1 shows that Mazur’s Conjecture for varieties
implies the analogous statement for algebraic sets. Now suppose S ⊆ X(Q) is diophantine.
Then there is a morphism of algebraic sets f : Y → X such that S = f(Y (Q)). We

know that the topological closure Y (Q) of Y (Q) in Y (R) has finitely many components,
say n of them. Since f : Y (R) → X(R) is continuous, it maps connected subsets of Y (R)

to connected subsets of X(R), so f(Y (Q)) has at most n connected components. The
closure of a connected set is connected, and the closure of a finite union is the union of the

closures, so f(Y (Q)) has at most n connected components. But elementary topology shows

f(Y (Q)) = f(Y (Q)), and the latter is S. �

Corollary 12.12. If Z is diophantine over Q, then Mazur’s Conjecture is false.

Less obvious is the following result from [CZ00]. We give a slightly simplified version of
their original proof.

Proposition 12.13. If there exists a diophantine model of the ring Z over Q, then Mazur’s
Conjecture is false.

Proof. If there is a diophantine model of Z, then by Example 6.2, there is also a diophantine
model S of N = {0, 1, 2, . . . } with + and · over Q. Any algebraic set can be partitioned into
finitely many affine algebraic sets, which can then be embedded in a single affine algebraic
set, so without loss of generality we may assume that S is a diophantine subset of X(Q) for
some affine algebraic set X. We are also given a bijection φ : N→ S, which by the argument
of Remark 12.7 is recursive.

Case 1. S is discrete as a subset of X(R).
Then each point of S is a connected component of S, so S has infinitely many connected

components. Thus Proposition 12.11 implies that Mazur’s Conjecture is false.

Case 2. There is a non-isolated point s ∈ S.
Fix an embedding X ↪→ An, and let | | be the Euclidean norm on An(R) = Rn. Let

m0 = 0, and for i ≥ 1, let mi be the smallest integer greater than mi−1 such that

0 < |φ(mi)− s| ≤ 1/i,

Since s is non-isolated, mi exists. Then M := {mi : i = 0, 1, 2, . . . } is a listable subset of
Z, so it is diophantine, and it follows that φ(M) is diophantine. But φ(M) is a sequence of

distinct points in Rn tending to a limit, so φ(M) has infinitely many connected components.
Proposition 12.11 applied to φ(M) implies that Mazur’s Conjecture is false. �

Summarizing, we have the following implications:

Z is diophantine/Q +3

��

∃ diophantine model of Z over Q

px jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

��

Mazur’s Conjecture is false Hilbert’s Tenth Problem/Q has a negative answer
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Remark 12.14. There is an object more general than “diophantine model of Z over Q” whose
existence would still imply a negative answer to Hilbert’s Tenth Problem over Q. Namely,
define a diophantine interpretation (this terminology is not standard outside this paper) of
the ring Z in Q to be a diophantine set S equipped with a diophantine equivalence relation
∼ and a surjection φ : S → Z inducing an bijection S

∼
∼→ Z such that the inverse images

of the graphs of addition and multiplication on Z are diophantine subsets of S3. It is not
known whether the existence of a diophantine interpretation of Z in Q would violate Mazur’s
Conjecture.

13. Global function fields

Here we outline Pheidas’s proof [Phe91] that Hilbert’s Tenth Problem over k := Fq(t)
(with coefficients in k) has a negative answer for any odd prime power q.

(1) Show that the set
{ tps

: s ∈ N }
is diophantine over k. (This fact should not surprise those who are familiar with
the analogue of Faltings’ Theorem for isotrivial curves over function fields of positive
characteristic.)

(2) Using the previous step, show that

P := { (x, y) ∈ k2 : y = xps

for some s ∈ N }
is diophantine over k.

(3) Define the discrete valuation vt : k → Z∪{+∞} by v(tnp(t)/q(t)) = n whenever p, q ∈
Fq[t] have nonzero constant terms, and by v(0) = +∞. Show that the corresponding
valuation ring V := Fq[t](t) is diophantine over k.

(4) Define an equivalence relation ∼ on k× by

x ∼ y ⇐⇒ vt(x) = vt(y).

This relation is diophantine over k, since k× is diophantine, and since for x, y ∈ k×,

vt(x) = vt(y) ⇐⇒ (∃c)(∃d) (x = cy) ∧ (y = dx).

Let |p denote the binary relation on Z defined by

x |p y ⇐⇒ (∃s ∈ Z) y = psx.

Then (Z, 0, 1,+, |p) admits a diophantine interpretation in k: the valuation vt induces

an isomorphism k×

∼ → Z under which 1 maps to 0, t maps to 1, multiplication in k×

corresponds to + in Z, and the relation P corresponds to |p.
(5) Finally, show that the graph of multiplication is positive existential in the structure

(Z, 0, 1,+, |p). Then the ring Z admits a diophantine interpretation in k. Hence
Hilbert’s Tenth Problem over Z can be encoded as a subproblem of Hilbert’s Tenth
Problem over k (with coefficients in k). The negative answer to the former now
implies a negative answer to the latter.

Remark 13.1. By encoding elements of Fq(t) as nonnegative integers in some reasonable way,
one can say what it means for a subset of Fq(t) to be listable. It is not known whether all
listable subsets of Fq(t) are diophantine over Fq(t). It is not even known whether subsets
such as Fq[t] or { tn : n ∈ N } are diophantine over k.
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Remark 13.2. The extensions of Pheidas’s result to arbitrary global function fields in [Shl92],
[Vid94], and [Eis03] are nontrivial, but the main ideas are the same. These ideas have been
successfully applied also to some function fields over infinite fields of positive characteristic:
see [Shl00] and [Eis03].

14. Rings of integers of number fields

This will be discussed by the group of students working on the project at the 2003 Arizona
Winter School, so here we will only state what is known.

Theorem 14.1. Let K be a number field, and let OK be its ring of integers. Hilbert’s Tenth
Problem over OK has a negative answer if any of the following hold:

(1) K is totally real [Den80].
(2) K is a quadratic extension of a totally real number field or of an imaginary quadratic

extension [DL78].
(3) K has exactly one conjugate pair of nonreal embeddings [Phe88], [Shl89].
(4) There exists an elliptic curve E over Q such that the abelian groups E(Q) and E(K)

both have rank 1 [Poo02b].

Methods involving p-adic L-series can be used to show that the last condition is satisfied by
infinitely many fields K not covered by the other conditions.

Update (January 18, 2010): In 2003, Poonen and Shlapentokh showed that if for every
Galois prime-degree extension L/K, there exists an elliptic curve E over K such that E(K)
and E(L) have the same positive rank, then Hilbert’s Tenth Problem has a negative answer
over the ring of integers of each number field. In 2009, the hypothesis was verified by Mazur
and Rubin, conditionally on (a weak form of) the conjecture that Shafarevich-Tate groups
of elliptic curves are finite.

15. Subrings of Q

Let P = {2, 3, 5, . . . } be the set of prime numbers. Then there is a bijection

{subsets of P} ↔ {subrings of Q}
S 7→ Z[S−1]

P ∩R× ←[ R

where R× denotes the group of invertible elements of the ring R.
For S ⊆ P , what can be said about Hilbert’s Tenth Problem over Z[S−1]? If S = ∅,

then Z[S−1] = Z and the answer is negative. If S = P , then Z[S−1] = Q, and the answer
is unknown. If for some S the answer is yes, then the answer to Hilbert’s Tenth Problem
over Q also is yes, since Q admits a diophantine interpretation in Z[S−1] (first generalize
Example 6.3 to show that the subset of nonzero elements of Z[S−1] is diophantine over
Z[S−1] [Shl94, Theorem 4.2], and then represent elements of Q as fractions of elements of
Z[S−1]).

The following proposition is implicit in the work of J. Robinson, and proved explicitly as
Proposition 3.1 of [KR92a].

Proposition 15.1. The subring Z(p) of rational numbers whose denominator is not divisible
by p is diophantine over Q.
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We will not give the proof, but instead simply say that it relies on the Hasse principle for
quadratic forms, which is the statement that a homogeneous polynomial of degree 2 with
coefficients in Q has a nontrivial zero over Q if and only if it has a nontrivial zero over R
and over Qp for every prime p.

Corollary 15.2. If S = P − F for some finite subset F ⊂ P, then the answer to Hilbert’s
Tenth Problem over Z[S−1] is the same as the answer to Hilbert’s Tenth Problem over Q.

Proof. By Proposition 15.1, and the fact that an intersection of diophantine subsets over Q
is diophantine, we see that Z[S−1] is diophantine over Q. On the other hand, as remarked
above, Q can be interpreted in Z[S−1]. Thus a positive answer to Hilbert’s Tenth Problem
for either ring implies a positive answer to the other. �

Corollary 15.3. If S is finite, then Hilbert’s Tenth Problem over Z[S−1] has a negative
answer.

Proof. Using the interpretation of Q in Z[S−1], the fact that Z(p) is diophantine over Q for
any p, and the fact that Z = Z[S−1] ∩

⋂
p∈S Z(p) one can show that Z is diophantine in

Z[S−1]. Hence the known negative answer for Hilbert’s Tenth Problem over Z implies a
negative answer for Hilbert’s Tenth Problem over Z[S−1]. �

The first answers for infinite S were proved in November 2002 [Poo02a]:

Theorem 15.4. There exist disjoint recursive sets of primes T1, T2 ⊆ P of natural density
zero such that if T1 ⊆ S ⊆ P − T2, then

(a) There is an affine curve E ′ over Z[S−1] such that the topological closure of E ′(Z[S−1])
in E ′(R) has infinitely many connected components.

(b) There exists a diophantine model of the ring Z over Z[S−1].
(c) Hilbert’s Tenth Problem over Z[S−1] has a negative answer.

Remark 15.5.

(i) The natural density of a subset T ⊆ P is defined as

lim
X→∞

#{p ∈ T : p ≤ X}
#{p ∈ P : p ≤ X}

,

if the limit exists.
(ii) This result was inspired by an earlier result of Shlapentokh [Shl03] which proves

statements similar to part (a) of Theorem 15.4 for certain infinite localizations of
rings of integers of certain number fields other than Q.

Let us sketch the proof of Theorem 15.4:

(1) Start with an elliptic curve E over Q such that the finitely generated abelian group
E(Q) has rank 1. To simplify the argument, it helps if E(Q) ' Z, E(R) is connected,
and E has no complex multiplication over C. The nonsingular projective model of
y2 = x3 + x + 1 is such a curve. Then the affine curve E ′ will be E with the origin
(i.e., point at infinity) removed. Let P be a generator of E(Q).

(2) Use Vinogradov’s Theorem [Vin54, p. 180] about equidistribution of the prime multi-
ples of an irrational number modulo 1 to show that the prime multiples of P in E(Q)
are dense in E(R), and that in fact every nonempty open subset of E(R) contains
`P for a positive density of primes `.
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(3) Using the previous result, pick a suitable sequence of primes `1 < `2 < . . . such that
if yj is the y-coordinate of `jP , then

|yj − j| ≤
1

10j

for all j ≥ 1.
(4) Choose T1 so that ±`jP ∈ E ′(Z[S−1]) for all j, and choose T2 so that almost no other

multiples of P are in E ′(Z[S−1]), whenever T1 ⊆ S ⊆ P − T2. Check that if the `j
are chosen carefully, then it is possible to choose T1 and T2 as above so that they are
recursive and of natural density zero. This already proves part (a) of Theorem 15.4.

(5) Show that Y = {y1, y2, . . . } is a diophantine model of Z>0 over Z[S−1], when we use
the bijection Z>0 → Y mapping j to yj. For this, we use

m+ n = q ⇐⇒ |ym + yn − yq| ≤ 3/10

m2 = q ⇐⇒ |y2
m − yq| ≤ 4/10

to show that addition and squaring on Z>0 correspond to diophantine relations on
Y . Then multiplication can be defined in terms of addition and squaring, since

mn = q ⇐⇒ (m+ n)2 = m2 + n2 + q + q,

and a diophantine model of Z over Z[S−1] can easily be built out of a diophantine
model of Z>0 over Z[S−1].

(6) Finally, the negative answer to Hilbert’s Tenth Problem over Z together with the dio-
phantine model constructed in the previous step gives a negative answer to Hilbert’s
Tenth Problem over Z[S−1].

References

[AK66] James Ax and Simon Kochen, Diophantine problems over local fields. III. Decidable fields, Ann.
of Math. (2) 83 (1966), 437–456.

[AKS02] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, PRIMES is in P, August 6, 2002, preprint.
[CTSSD97] J.-L. Colliot-Thélène, A. N. Skorobogatov, and Peter Swinnerton-Dyer, Double fibres and double

covers: paucity of rational points, Acta Arith. 79 (1997), no. 2, 113–135.
[CZ00] Gunther Cornelissen and Karim Zahidi, Topology of Diophantine sets: remarks on Mazur’s

conjectures, Hilbert’s tenth problem: relations with arithmetic and algebraic geometry (Ghent,
1999), Amer. Math. Soc., Providence, RI, 2000, pp. 253–260.

[Den78] J. Denef, The Diophantine problem for polynomial rings and fields of rational functions, Trans.
Amer. Math. Soc. 242 (1978), 391–399.

[Den80] J. Denef, Diophantine sets over algebraic integer rings. II, Trans. Amer. Math. Soc. 257 (1980),
no. 1, 227–236.

[DL78] J. Denef and L. Lipshitz, Diophantine sets over some rings of algebraic integers, J. London
Math. Soc. (2) 18 (1978), no. 3, 385–391.

[DLPVG00] Jan Denef, Leonard Lipshitz, Thanases Pheidas, and Jan Van Geel (eds.), Hilbert’s tenth prob-
lem: relations with arithmetic and algebraic geometry, American Mathematical Society, Prov-
idence, RI, 2000, Papers from the workshop held at Ghent University, Ghent, November 2–5,
1999.

[DPR61] Martin Davis, Hilary Putnam, and Julia Robinson, The decision problem for exponential dio-
phantine equations, Ann. of Math. (2) 74 (1961), 425–436.

[EFT94] H.-D. Ebbinghaus, J. Flum, and W. Thomas, Mathematical logic, second ed., Undergraduate
Texts in Mathematics, Springer-Verlag, New York, 1994, Translated from the German by Margit
Meßmer.

17
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(1983), no. 3, 349–366, Erratum in: Invent. Math. 75 (1984), 381. Translated in: pp. 9–27
of Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986.

[Göd31] K. Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter System
I, Monatshefte für Math. und Physik 38 (1931), 173–198, English translation by Elliot Mendel-
son: “On formally undecidable propositions of Principia Mathematica and related systems I”
in M. Davis, The undecidable, Raven press, 1965.

[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in
Mathematics, No. 52.

[HU79] John E. Hopcroft and Jeffrey D. Ullman, Introduction to automata theory, languages, and
computation, Addison-Wesley Publishing Co., Reading, Mass., 1979, Addison-Wesley Series in
Computer Science.
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