Set Theory

Sets

A set is a collection of objects, called its elements. We write $x \in A$ to mean that x is an element of a set A, we also say that x belongs to A or that x is in A.

If A and B are sets, we say that B is a subset of A if every element of B is an element of A. In this case we also say that A contains B, and we write $B \subset A$. Two sets are considered equal iff $A \subset B$ and $B \subset A$.

Curly bracket notation

We often define sets by listing their elements, or pairing down sets we already have by describing subsets via formulas.

- The symbol $\{x, y, z\}$ describes the set whose elements are precisely x, y, and z.
- The symbol $\{x: p(x)\}$ describes the set of all x such that the sentence p(x) is true.
- The symbol $\{x \in A : p(x)\}$ describes the set of all $x \in A$ such that the sentence p(x) is true.

Warning. The notation $\{x : p(x)\}$ is not always meaningful. For example, assuming $\{\text{sets } A : A \notin A\}$ is a set leads to a logical contradiction (known as Russel's paradox). Axiomatic set theory has precise rules dictating when $\{x : p(x)\}$ is well-defined. If A is a set, the set $\{x \in A : p(x)\}$ is always well-defined (provided p(x) is).

Examples

- The symbol \emptyset denotes the set with no elements, denoted $\{\}$ in braces notation. The set \emptyset is called *the empty set* and it is characterized by the property $x \notin \emptyset$ for all x.
- The following sets of numbers might be familiar: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$
 - the set $\mathbb{N} = \{0, 1, 2, \ldots\}$ of natural numbers,

- the set $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ of integers,
- the set $\mathbb{Q} = \{\frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0\}$ of rational numbers,
- the set \mathbb{R} of real numbers.

Exercise 1. Why do you think I avoided describing \mathbb{R} by curly brackets? Can you think of a simple way to build \mathbb{R} from \mathbb{Q} , \mathbb{Z} , or \mathbb{N} ?

Operations with sets

One good thing to do with a new mathematical object is to think of ways you can produce new ones from old ones. What follows is a list of such constructions. Let A and B be sets:

- union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$
- intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}$
- More generally, if $(A_i)_{i\in I}$ is a family of sets indexed by a set I, we can define the union and intersection over I as follows

$$\bigcup_{i \in I} A_i = \{x : x \in A_i \text{ for some } i \in I\}$$

$$\bigcap_{i \in I} A_i = \{x : x \in A_i \text{ for every } i \in I\}$$

- difference: $A \setminus B = \{x \in A : x \notin B\}$
- product: $A \times B = \{(x, y) \in A : x \in A \text{ and } y \in B\}$
- sum: $A \coprod B = (A \times \{0\}) \cup (B \times \{1\})$ (this is also called *disjoint union*)
- power set: $\mathcal{P}(A) = \{B : B \subset A\}$, the set of subsets of A.

Exercise 2. How might we generalize the product so that it can be indexed by a set I? The sum?

Functions

Let A and B be sets. A $map\ f$ from A to B is a subset $f \subset A \times B$ such that, for every $a \in A$, there is a unique $b \in B$ so that the pair (a,b) is in f; this element b is often denoted f(a). In other words, a map from A to B assigns to every element $a \in A$ an element $f(a) \in B$. A map is also called a function. The set A is called the *domain* or *source* of f, and the set B is called the *codomain* or *target* of f. We denote a map f from A to B by

$$f: A \to B$$

 $a \mapsto f(a)$.

Examples. The following functions are each given as assignments, some of which have also been described as a subset.

- $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ is defined by the subset $\{(x,y) \in \mathbb{R} \times \mathbb{R} : y = x^2\} \subset \mathbb{R} \times \mathbb{R}$, sometimes known as the *graph* of the function.
- $f:\{0,1\} \to \{a,b\}, \quad 0 \mapsto a,1 \mapsto b$ is defined by the subset $\{(0,a),(1,b)\} \subset \{(0,a),(0,b),(1,a),(1,b)\}$
- For every set A, there is an identity map $id_A: A \to A$, $a \mapsto a$.
- More generally, if $B \subset A$, there is an inclusion map $B \to A$, $b \mapsto b$.

Exercise 3. How are the last two examples above described as subsets of the product set?

The set of all maps from A to B is denoted by B^A , and can be shown to be a set by observing that $B^A \subset \mathcal{P}(A \times B)$.

Definition 1. Let $f:A\to B$ and $g:B\to C$ be maps. The *composition* of f and g is the map

$$g \circ f : A \to C$$

 $a \mapsto g(f(a))$

Definition 2. A map $f: A \to B$ is

- injective if for all $y \in B$, there is at most one $x \in A$ so that f(x) = y. Another way to say this is if $x, z \in A$ satisfy f(x) = f(z), then in fact x = z.
- surjective if for all $y \in B$ there exists at least one $x \in A$ so that f(x) = y.
- bijective if it is injective and surjective.

Proposition 1. A map $f: A \to B$ is bijective iff there exists a map $g: B \to A$ such that

$$g \circ f = \mathrm{id}_A$$
 and $f \circ g = \mathrm{id}_B$

Proof. (\Rightarrow) Suppose that f is bijective. Define a subset $g \subset B \times A$ by pairing each element $g \in B$ with the unique element $a \in A$ such that f(x) = y. The subset g is a map because f is bijective, and by its very definition we see that $g \circ f = \mathrm{id}_A$ and $f \circ g = \mathrm{id}_B$.

 (\Leftarrow) Suppose now that the map g exists. To see f is injective, assume that f(x) = f(z) and apply the map g to obtain:

$$x = g(f(x)) = g(f(z)) = z.$$

To see that f is surjective, observe that any element $y \in B$ satisfies f(g(y)) = y.

Remark. In this case, the function g is uniquely determined by the bijective function f. It is called the *inverse* of f and denoted $f^{-1}: B \to A$.

Definition 3. Let $f: A \to B$ be a map.

- If $U \subset A$, the *image* of U by f is the set $f(U) \equiv \{y \in B : y = f(x) \text{ for some } x \in U\}.$
- If $V \subset B$, the preimage of V by f is the set $f^{-1}(V) = \{x \in A : f(x) \in V\}$.

Warning. We use the same notation for the preimage of a function f, which is always defined, and the inverse of a function, which is defined in the case that f is bijective. Notice that when f is bijective, we have the following relationship between the preimage and the inverse of f for any element $g \in B$:

$$f^{-1}({y}) = {f^{-1}(y)}.$$

Remark. A map $f: A \to B$ is surjective iff f(A) = B.

Definition 4. A set A is

- finite if there exists an $n \in \mathbb{N}$ and a bijection $\{1, 2, \dots, n\} \to A$.
- countably infinite if there exists a bijection $\mathbb{N} \to A$
- countable if it is finite or countably infinite
- uncountable if it is not countable.

Examples. The sets

- $\mathbb{N}, \mathbb{Z}, \mathbb{O}$ are all countably infinite,
- \mathbb{R} , $\mathcal{P}(\mathbb{N})$ are uncountable.

Theorem 1 (Least Number Principle). Every nonempty subset $X \subset \mathbb{N}$ has a least element, ie, there is an $x \in X$ such that $x \leq y$ for all $y \in X$.

Remark. As was pointed out in class, this theorem requires some version of itself as an axiom. As such, we won't try to prove it here.

Corollary 1 (Induction Principle). Let p(n) be a statement depending on a natural number n. Suppose that p(0) is true, and that $p(n) \Rightarrow p(n+1)$ for every $n \in \mathbb{N}$. Then p(n) is true for all $n \in \mathbb{N}$.

Proof. Consider the set $X \equiv \{n \in \mathbb{N} : p(n) is false\}$. By assumption, 0 is not a member of this set. If this set were nonempty, there would be a least element $x \in X$ (and it would be bigger than 0). Since x > 0, x - 1 is also a natural number, and this pair would satisfy p(x - 1) is true (since x is a least element of X), p(x) is false (since $x \in X$). Since we have assumed $p(x - 1) \Rightarrow p(x)$, no such element can exist, and X must be empty.

Topological Spaces

Let X be a set. A topology τ on X is a collection of subsets of X, ie, $\tau \subset \mathcal{P}(X)$ such that

- $\emptyset \in \tau$ and $X \in \tau$
- If $(U_i)_{i\in I}$ is a family of elements of τ , then $\bigcup_{i\in I} U_i \in \tau$
- If $U, V \in \tau$, then $U \cap V \in \tau$.

A topological space is a pair (X, τ) where X is a set and τ is a topology on X. Elements of τ are called *open subsets* of X.

Examples. For every X, the set $\tau = \{\emptyset, X\}$ is a topology on X, called the *coarse topology*. For every set X, the set $\tau = \mathcal{P}(X)$ is a topology on X called the *discrete topology*.

In real analysis one often encounters *metric spaces*. These are sets with some notion of distance satisfying certain properties. In what follows, we will show that every metric space has a natural topology.

Definition 5. Let X be a set. A *metric* on X is a function $d: X \times X \to [0, \infty)$ such that

- for every $x, y \in X$, $d(x, y) = 0 \Leftrightarrow x = y$
- for every $x, y \in X$, d(x, y) = d(y, x)
- for every $x, y, z \in X$, $d(x, z) \le d(x, y) + d(y, z)$ (triangle inequality).

A metric space is a pair (X, d) where X is a set and d is a metric on X.

Examples.

- The standard metric on \mathbb{R} : $d(x,y) = |x-y| = ((x-y)^2)^{\frac{1}{2}}$
- Some metrics on \mathbb{R}^2 (note that $x = (x_1, x_2)$ and $y = (y_1, y_2)$):
 - standard metric: $d(x,y) = ((x_1 y_1)^2 + (x_2 y_2)^2)^{\frac{1}{2}}$
 - sup metric : $d_{\infty}(x, y) = \max(|x_1 y_1|, |x_2 y_2|)$

- taxicab metrix: $d_1(x,y) = |x_1 - y_1| + |x_2 - y_2|$

• Let $\mathcal{L}^{\infty}([a,b],\mathbb{R})=\{f:[a,b]\to\mathbb{R}:\sup_{x\in[a,b]}|f(x)|<\infty\}$ and consider the function

$$d_{\infty}(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)|$$

. Then $(\mathcal{L}^{\infty}([a,b],\mathbb{R}),d_{\infty})$ is a metric space.

Exercise 4. Let $\mathcal{R}([a,b],\mathbb{R}) = \{f: [a,b] \to \mathbb{R}: \int\limits_{[a,b]} f(x) dx < \infty\}$ and consider the function $d(f,g) = \int\limits_{[a,b]} |f(x) - g(x)| dx$. Is this function a metric?

Definition 6. Let X be a set with a map $d: X \times X \to \mathbb{R}$. For any element $x \in X$ and any $\epsilon > 0$, we define the set $B(x, \epsilon) \equiv \{y \in X : d(x, y) < \epsilon\} \subset X$, and call it the ball of radius ϵ centered at x.

Proposition 2. Let X be a set and $d: X \times X \to \mathbb{R}$ be a map. Define $\tau_d \subset \mathcal{P}(X)$ as follows: $U \in \tau_d$ if and only if for all $x \in U$ there exists an $\epsilon > 0$ such that $B(x,\epsilon) \subset U$. Then τ_d is a topology on X.

Proof. We need to verify that $\tau_d \subset \mathcal{P}(X)$ satisfies the axioms:

- To see $\emptyset \in \tau_d$ note that there are no elements to check the condition on, so it is satisfied vacuously. To see $X \in \tau_d$, any ϵ will do.
- Let $(U_i)_{i\in I}$ be a family of elements of τ_d . Let $x\in\bigcup_{i\in I}U_i$. Then $x\in U_i$ for some $i \in I$, so there exists an $\epsilon > 0$ such that $B(x, \epsilon) \subset U_i \subset \bigcup_{i \in I} U_i$. Hence $\bigcup_{i \in I} U_i \in \tau_d$.
- Let $U, V \in \tau_d$. Let $x \in U \cap V$. Then there exists $\epsilon, \delta > 0$ such that $B(x,\epsilon) \subset U$ and $B(x,\delta) \subset V$. Setting $\eta = \min(\epsilon,\delta)$, we see that $B(x,\eta) \subset$ $B(x,\epsilon) \cap B(x,\delta) \subset U \cap V$. Hence $U \cap V \in \tau_d$.

Exercise 5. Consider the examples of metrics on \mathbb{R}^2 above. Prove that $\tau_d =$ $\tau_{d_1} = \tau_{d_{\infty}}$. Hint: Draw a picture of $B(x,\epsilon)$ for each of the metrics.

Bases and neighborhoods

Definition 7. Let τ be a topology on a set X. A subset $\mathcal{B} \subset \tau$ is a basis for τ if every element $U \in \tau$ is a union of elements in \mathcal{B} .

Examples.

If (X, d) is a metric space, then $\{B(x, \epsilon) : x \in X, \epsilon > 0\}$ is a basis for τ_d . The set $\{\{x\}: x \in X\}$ is a basis for the discrete topology on the set X.

Proposition 3. Let X be a set and let $\mathcal{B} \subset \mathcal{P}(X)$. Then \mathcal{B} is a basis for a topology on X iff:

- 1. every $x \in X$ belongs to some $U \in \mathcal{B}$
- 2. for every $U, V \in \mathcal{B}$ and all $x \in U \cap V$ there exists $W \in \mathcal{B}$ such that $x \in W \subset U \cap V$.

Proof. (\Rightarrow) Suppose \mathcal{B} is a basis for a topology τ on X.

- Since X is an open set, it is a union of elements of \mathcal{B} .
- Let $U, V \in \mathcal{B}$. Since $U \cap V$ is open, $U \cap V = \bigcup_{i \in I} W_i$ where each W_i in \mathcal{B} . Hence there is some i so that $x \in W_i \subset U \cap V$.

(\Leftarrow) Define $\tau_{\mathcal{B}} \subset \mathcal{P}(X)$ as follows: $U \in \tau_{\mathcal{B}}$ iff for all $x \in U$, there exists a $V \in \mathcal{B}$ such that $x \in V \subset U$. If $\tau_{\mathcal{B}}$ is a topology, then \mathcal{B} is a basis for $\tau_{\mathcal{B}}$ for the same reason that open balls were a basis for the topology on a metric space. We must verify that $\tau_{\mathcal{B}}$ is a topology:

- $\emptyset \in \tau_{\mathcal{B}}$ because \emptyset has no elements to verify; $X \in \tau_{\mathcal{B}}$ follows from (1).
- Let $(U_i)_{i\in I}$ be a family of elements of $\tau_{\mathcal{B}}$, we wish to prove that $\bigcup_{i\in I} U_i$ is in $\tau_{\mathcal{B}}$. In order to do that, we must show that for any element $x\in\bigcup_{i\in I} U_i$, there is a basic open set $W\in\mathcal{B}$ such that $x\in W\subset\bigcup_{i\in I} U_i$. Given an $x\in\bigcup_{i\in I} U_i$, there is an i so that $x\in U_i$. Since $U_i\in \tau_{\mathcal{B}}$, there is a basic open set W with $x\in W\subset U_i$, which implies $x\in W\subset\bigcup_{i\in I} U_i$ as required.
- Let U and V be elements of $\tau_{\mathcal{B}}$, we wish to prove that $U \cap V \in \tau_{\mathcal{B}}$. Given $x \in U \cap V$, we wish to find a basic open set around x in $U \cap V$. To do this, we observe that $x \in U$ implies there is a basic open set $x \in W_1 \subset U$ and $x \in V$ implies there is a basic open set $x \in W_2 \subset V$. Then $x \in W_1 \cap W_2$ and property (2) of the basis \mathcal{B} guarantees that there is a W with $x \in W \subset W_1 \cap W_2$ which implies $x \in W \subset U \cap V$ as required.

Examples. Let X and Y be topological spaces.

• The collection $\mathcal{B}_{\prod} = \{U \times V \subset X \times Y : U \text{ is open in } X \text{ and } V \text{ is open in } Y\}$ is a basis for a topology on $X \times Y$ called the *product topology*.

• The collection $\mathcal{B}_{\coprod} = \{U \times \{0\} : U \text{ is open in } X\} \cup \{V \times \{1\} : V \text{ is open in } Y\}$ $\subset X \times \{0\} \cup Y \times \{1\}$ is a basis for a topology on $X \coprod Y$ called the *sum topology*.

Definition 8. Let X be a topological space and let $x \in X$. A neighborhood of x in X is a subset $K \subset X$ such that there exists an open set U with

$$x \in U \subset K$$
.

Warning. The definition in Munkres requires K itself to be open.

Proposition 4. The following are properties of neighborhoods:

- 1. X is a neighborhood of every point. If K is a neighborhood of x and $K \subset L$ then L is a neighborhood of x.
- 2. If K and L are neighborhoods of x then $K \cap L$ is a neighborhood of x.
- 3. If K is a neighborhood of x there exists a neighborhood L of x such that K is a neighborhood of every point of L.
- 4. A subset $U \subset X$ is open iff it is a neighborhood of all of its points.

Exercise 6. Prove the above properties of neighborhoods.

Remark. There is an alternative axiomatization of topological spaces based on neighborhoods. Given a set X and a collection of subsets called neighborhoods satisfying (1)–(3), there is a unique topology on X which induces this notion of neighborhood; the open sets are determined by (4).

Closed sets and limit points

Definition 9. Let X be a topological space. A subset $C \subset X$ is *closed* if its complement, $X \setminus C$, is open.

Proposition 5. Let X be a topological space. The following are properties of the closed sets of X:

- 1. Both \emptyset and X are closed.
- 2. If $(U_i)_{i\in I}$ is a family of closed sets in X, then $\bigcap_{i\in I} U_i$ is closed.
- 3. If U, V are closed, then $U \cup V$ is closed.

Remark. There is alternative axiomatization of topological spaces based on closed sets. Given a set X and a collection of closed sets satisfying (1)–(3), there is a unique topology on X that induces this collection of closed sets. The open sets are the complements of the closed sets.

Definition 10. Let X be a topological space and let $A \subset X$ be a subset. The *interior* of A is the union of all open subsets contained in A:

$$A^{\circ} = \bigcup_{\substack{U \subset X \text{ open,} \\ U \subset A}} U \subset A.$$

The *closure* of A is defined to be the intersection of all closed sets C containing A:

$$\bar{A} = \bigcap_{\substack{C \subset X \text{ closed,} \\ A \subset C}} C \supset A.$$

We also define the boundary of A to be the difference between the closure and the interior:

$$\partial A = \bar{A} \setminus A^{\circ}.$$

Remark.

- A° is open in X and \bar{A} is closed in X.
- The complement of the interior of A is the closure of the complement of A: $X \setminus A^{\circ} = \overline{X \setminus A}$, and hence $\partial A = \overline{A} \cap \overline{X \setminus A}$.

Proposition 6. Let X be a topological space and $A \subset$, and let $x \in X$. Then $x \in \overline{A}$ if and only if every neighborhood of x has nonempty intersection with A.

Proof. We will prove the equivalent statement:

 $x \notin \bar{A}$ iff there exists a nbhd U of x such that $U \cap A = \emptyset$.

- (\Rightarrow) Recall that the complement of \bar{A} is open, so that if $x \notin \bar{A}$ then $x \in X \setminus \bar{A}$ which is open and does not intersect A.
- (\Leftarrow) Suppose there exists an open U' such that $x \in U' \subset U$ with $U \cap A = \emptyset$. Then $A \subset X \setminus U \subset X \setminus U'$. Since $X \setminus U'$ is closed, $\bar{A} \subset X \setminus U'$ and $x \notin \bar{A}$. \square

Definition 11. A sequence in a set X is a map $x : \mathbb{N} \to X$. We usually write x_n for x(n) and sometimes $(x_n)_{n \in \mathbb{N}}$ for the map x.

Definition 12. Let X be a topological space and let $x : \mathbb{N} \to X$ be a sequence. We say that x converges to $L \in X$, and write $x \to L$ if for every neighborhood U of L there exists a natural number $N \in \mathbb{N}$ such that for all n > N, $x_n \in U$.

Remark. If \mathcal{B} is a basis for a topology on X, to check that L is a limit of a sequence x, it suffices to check the condition on the neighborhoods of L that belong to \mathcal{B} .

Exercise 7. Consider \mathbb{R}^n with the standard topology. Show that a sequence x converges to $L \in \mathbb{R}^n$ as above if and only if it converges to L in the familiar sense from calculus (the ϵ - δ sense).

Warning. A sequence may have zero, one, or more limits. So we typically avoid the notation $\lim_{n\to\infty} x_n$.

Examples.

- Consider $\mathcal{L}^{\infty}([a,b],\mathbb{R})$ with the metric topology (using the sup metric $d_{\infty}(f,g) = \sup_{x \in [a,b]} |f(x) g(x)|$). Then a sequence $(f_n)_{n \in \mathbb{N}} \to f$ iff f_n converges uniformly to the function f. (Later we will see there is another topology whose limits correspond to point-wise convergence.)
- Let $\mathcal{R} \subset \mathcal{L}^{\infty}([0,1],\mathbb{R})$ be the subset of Riemann integrable functions, and let $d_1(f,g) = \int_0^1 |f(x) g(x)| dx$ for $f,g \in \mathcal{R}$. Consider the sequence

$$f_n: [0,1] \to \mathbb{R}, x \mapsto \begin{cases} n & \text{if } x < \frac{1}{2^n} \\ 0 & \text{otherwise} \end{cases}$$

Then $(f_n)_{n\in\mathbb{N}}$ converges to 0 in the topology determined by d_1 . In fact, any f such that $d_1(f,0) = \int_0^1 |f(x)| dx = 0$ is a limit of this sequence. On the other hand, this sequence has no limit in the uniform topology $\tau_{d_{\infty}}$.

Definition 13. A topological space (X, τ) is *first countable* if for every $x \in X$ there exists a countable set \mathcal{N}_x of neighborhoods of x such that every neighborhood of x contains a neighborhood which is an element of \mathcal{N}_x . A space is called second countable if there exists a countable basis $\mathcal{B} \subset \tau$.

Remark.

- Second countable implies first countable.
- Every metric space is first countable.
- The space $\mathcal{L}^{\infty}([a, b], \mathbb{R})$ with the metric d_{∞} is a metric space which is not second countable.

Proposition 7. Let X be a topological space, $A \subset X$, and let $L \in X$. If there exists $x : \mathbb{N} \to A$ such that $x_n \to L$ in X then $L \in \overline{A}$. The converse holds if X is first countable.

Proof. (\Rightarrow) Suppose $x_n \to L$ with $x_n \in A$. Then for every neighborhood U of L, by the definition of convergence, there is an element $x_k \in U$ (in fact, infinitely many). Therefore, for every neighborhood U of L, $x_k \in U \cap A \neq \emptyset$, so $L \in \overline{A}$. (\Leftarrow): Suppose $L \in \overline{A}$. Assuming that X is first countable means we have a countable set of neighborhoods $\mathcal{N}_L = \{U_0, U_1, U_2, \ldots\}$ such that every neighborhood of L contains some U_i . We want a guarantee that the neighborhoods in this list are in some sense "shrinking" toward L, so we define

$$U'_n = \cap_i^n U_i$$
.

Then each U'_n is still a neighborhood of L, so $U_n \cap A \neq \emptyset$. For each n, choose $x_n \in U' \cap A$. The claim is that $x_n \to L$. To see this, observe that given a neighborhood U of L, there is some N so that $U_N \subset U$, and then for all n > N:

$$x_n \in U_n' \cap A \subset U_n' \subset U_N \subset U$$

as required. \Box

Definition 14. A topological space X is called Hausdorff (or T_2 or separated) if for every distinct pair of points $x, y \in X$ there exists nbhds U of x and Y of y such that $U \cap V = \emptyset$.

Proposition 8. Let X be a Hausdorff topological space. Then a sequence in X has at most one limit.

Proof. Let L be a limit of $x : \mathbb{N} \to X$ and let $L' \neq L$. We want to show that L' is not a limit of x. Since X is Hausdorff, we can separate L and L' by disjoint neighborhoods: $L \in U$ and $L' \in U'$, with $U \cap U' = \emptyset$. Then because $x_n \to L$, there is some N so that for every n > N, $x_n \in U$. This means that $x_n \notin U'$, so L' can't be a limit of x.

Proposition 9.

- Let (X, d) be a metric space. Then X is Hausdorff with the metric topology.
- \bullet Let (X,<) be a totally ordered set. Then X is Hausdorff with the order topology.

Continuous maps

Theorem 2. Let $f: X \to Y$ be a map between topological spaces. The following conditions are equivalent:

- 1. For every $U \subset Y$ open, $f^{-1}(U) \subset X$ is open.
- 2. For every $C \subset Y$ closed, $f^{-1}(C) \subset X$ is closed.
- 3. For every $A \subset X$, $f(\bar{A}) \subset \overline{f(A)}$.
- 4. For every $x \in X$ and every neighborhood V of f(x) there exists a neighborhood U of x such that $f(U) \subset V$.

Definition 15. A map $f: X \to Y$ is *continuous* if it satisfies the equivalent conditions of Theorem 2.

Proof. We'll prove $(1) \Rightarrow (4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$.

- (1) \Rightarrow (4) : Let V be a neighborhood of f(x), so that $f(x) \in V' \subset V$ for some open V'. Let $U = f^{-1}(U)$. By (1), U is open, so U is a neighborhood of x, and $f(U) = f(f^{-1}(V')) \subset V' \subset V$.
- (4) \Rightarrow (3): Let $y \in f(\bar{A})$, so y = f(x) for some $x \in \bar{A}$. Given a nbhd V of y, by (4) there exists a neighborhood U of x such that $f(U) \subset V$. Since $x \in \bar{A}$, $U \cap A \neq \emptyset$, hence $\emptyset \neq f(U \cap A) \subset f(U) \cap f(A) \subset V \cap f(A)$, so that $y \in f(A)$.
- $\begin{array}{l} (3) \Rightarrow (2) : \text{Let } C \subset Y \text{ be closed. Then } \overline{f^{-1}(C)} \subset f^{-1}(f(\overline{f^{-1}(C)})) \overset{(3)}{\subset} f^{-1}(\overline{f(f^{-1}(C))}) \subset f^{-1}(\overline{C}) \subset f^{-1}(C). \text{ Since by definition } f^{-1}(C) \subset \overline{f^{-1}(C)}, \text{ we have } \overline{f^{-1}(C)} = f^{-1}(C), \text{ ie, } f^{-1}(C) \text{ is closed.} \end{array}$
- $(2) \Rightarrow (1) : \text{Let } V \subset Y \text{ be open. Then } f^{-1}(Y \setminus V) \text{ is closed and } X \setminus (f^{-1}(Y \setminus V)) = X \setminus (f^{-1}(Y) \setminus f^{-1}(V)) = X \setminus (X \setminus f^{-1}(V)) = f^{-1}(V) \text{ is open.}$

Proposition 10. Let (X, d_X) and (Y, d_Y) be metric spaces, and $f: X \to Y$ a map. Then f is a continuous map on the metric topologies of X and Y if and only if for every $x \in X$ and every $\epsilon > 0$ there exists a $\delta > 0$ such that

for every $w \in X$ satisfying $d_X(x, w) < \delta$, the image of w under f satisfies $d_Y(f(x), f(w)) < \epsilon$.

Exercise 8. Prove the above proposition. (*Hint*: use characterization (4) of continuity and the standard basis of a metric space.)

Examples.

- For every topological space X, the identity map $\mathrm{id}_X:X\to X$ is continuous.
- By the above proposition, the continuous maps from \mathbb{R} to \mathbb{R} (with the standard topology) are precisely those familiar from calculus.

Definition 16. A continuous map $f: X \to Y$ between topological spaces is a homeomorphism (or isomorphism of topological spaces) iff there is a continuous map $g: Y \to X$ such that

$$g \circ f = \mathrm{id}_X$$
 and $f \circ g = \mathrm{id}_Y$.

Two topological spaces are called homeomorphic (or isomorphic topological spaces) iff there exists a homeomorphism between them.

Remark. A continuous map $f: X \to Y$ is a homeomorphism if and only if it is bijective and its inverse is also continuous.

Warning. A continuous bijection is not necessarily a homeomorphism. For example, let S^1 denote the subset of \mathbb{R}^2 of unit distance from the origin. Then the map

$$[0, 2\pi) \to S^1, \theta \mapsto (\cos \theta, \sin \theta)$$

is a continuous bijection whose inverse is not continuous. (Why not?)

Examples.

- $f:[0,1] \to [0,2], x \mapsto 2x$ is a homeomorphism
- $\tan: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$ is a homeomorphism
- A circle is homeomorphic to a square.
- [0,1] and [0,1) and (0,1) are not homeomorphic. This will be easy to prove later.
- \mathbb{R}^n is not homeomorphic to \mathbb{R}^m when $n \neq m$. Why not?

Definition 17. A map $f: X \to Y$ between topological spaces is *sequentially continuous* if for every sequence $x: \mathbb{N} \to X$ and every limit L of x, f(L) is a limit of $f \circ x: \mathbb{N} \to Y$.

Proposition 11. A continuous map $f: X \to Y$ is sequentially continuous. The converse holds if X is first countable.

Proof. We only prove the converse, assuming X is first countable, by proving that $f(\bar{A}) \subset \overline{f(A)}$ for every $A \subset X$. Let $x \in \bar{A}$. Since X is first countable, there is a sequence $x : \mathbb{N} \to A$ such that $\underline{x_n} \to x$. Then because f is sequentially continuous, $f(x_n) \to f(x)$, so $f(x) \in \overline{f(A)}$ as required.

Proposition 12.

- 1. Any constant map $f: X \to Y$ is continuous.
- 2. If $A \subset X$ is a subset with the subspace topology, the map $i: A \to X$ is continuous.
- 3. If $f:X\to Y$ and $g:Y\to Z$ are continuous, then the composite $g\circ f:X\to Z$ is continuous.
- 4. If $f: X \to Y$ is continuous and $A \subset X$, then the map $f|_A: A \to Y$ is continuous (where A has the subspace topology).
- 5. If $f: X \to Y$ is continuous and $f(X) \subset B \subset Y$ then $f: X \to B$ is continuous.

Proof.

- 1. The inverse image under a constant map is either \emptyset or X, and so is always open.
- 2. Let $U \in X$ be open. Then $i^{-1}(U) = A \cap U$ is open in A by the definition of the subspace topology.
- 3. $(g \circ f)^{-1}(U) = g^{-1}(f^{-1}(U))$ so that continuity of f and g guarantee that the inverse image of open sets under $g \circ f$ is also open.
- 4. $f|_A = f \circ i$ where $i: A \to X$ is the inclusion map so this follows from (2) and (3).
- 5. Let $U \subset B$ be open. Then $U = V \cap B$ for some $V \subset Y$ open. Then $f^{-1}(V)$ is open, and because $f(X) \subset B$, we know that $f^{-1}(V) = f^{-1}(V \cap B) = f^{-1}(U)$ as required.

Proposition 13. Let X be a topological space, $C \subset X$ a closed set, and $A \subset C$. Then A is closed in C if and only if A is closed in X.

Proof. (\Leftarrow :) If A is closed in X, then then $X \setminus A$ is open in X, and $(X \setminus A) \cap C = C \setminus A$ so the complement of A is open in C. (\Rightarrow :) If A is closed in C, then $C \setminus A = U \cap C$ for some $U \subset X$ open. This means that $(X \setminus U) \cap C = A$, so A is the intersection of two closed sets in X and therefore is itself closed.

The following theorem confirms out intuition about continuous functions: that they are entirely determined "locally." First we provide a notion of locality.

Definition 18. Let X be a topological space. A collection of subsets of X, $(U_i)_{i \in I}$ is called a *cover* if $\bigcup_{i \in I} U_i = X$. A cover is called *open* (*closed*) if each U_i is open (resp. closed). It is called *countable* (*finite*) if the set I is a countable (resp. finite) set.

Theorem 3. (Pasting lemma) Let $f: X \to Y$ be a map between topological spaces.

- 1. Let $(U_i)_{i\in I}$ be an open cover of X. If $f|_{U_i}:U_i\to Y$ is continuous for all $i\in I$ then f is continuous.
- 2. Let $(C_i)_{i\in I}$ be a finite closed cover of X. If $f|_{C_i}: C_i \to Y$ is continuous for all $i \in I$ then f is continuous.

Proof.

- 1. Let $x \in X$ and V be a nbhd of f(x). Then $x \in U_i$ for some $i \in I$. Since $f|_{U_i}$ is continuous, there exists a neighborhood U of x in U_i so that $f(U) \subset V$. Since U_i is open in X, U is also a neighborhood of x in X, and f is continuous.
- 2. Let $D \subset Y$ be closed. Then $f^{-1}(D) = \bigcup_{i \in I} f|_{C_i}^{-1}(D)$. Since each $f|_{C_i}^{-1}(D)$ is closed, and the set I is finite, the union is closed.