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Abstract

Elimination with only the necessary row exchanges will prog the triangular
factorizationA = LP U, with the (unique) permutatio® in the middle. The entries
in L are reordered in comparison with the more familis= PLU (where P is not
unique). Elimination with three other starting points: andn, n andn, 1 produces
three more factorizations oA, including the Wiener-Hopf fornUPL and Bruhat's
U, 7 U, with two upper triangular factors.

All these starting points are useless for doubly infinitenmas. The matrix has no
first or last entry. Whert is banded and invertible, we look for a new way to establish
A= LPU. First we locate the pivot rows (and the main diagonadpfL P U connects
to the classical factorization of matrix polynomials deyedd for the periodic (block
Toeplitz) case whed (i, j) = A(i +b, j +b).
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1. Introduction.

The “pedagogical” part of this paper presents theU factorization of an invertible
by n matrix A :

A= LPU = (lower triangular) (permutation) (upper triangular)

The reader may feel that everything has been said about glebral of elimination,
which produced., P, andU. This is potentially true. But who said it, and where, is
not easy to discover. | hope you will feel that some of this st saying again. The
LPU form that algebraists like best (with in the middle instead of the more practical
A= PLU) is the least familiar within SIAM.

Once started in this direction, factorizations continueappear. If elimination
begins at the last entryl,,, and works upward, the result EPL. Those are new
factors of 4, and there must be relations to the origidalP, and U that we don’t
know. More inequivalent formsl =U; w U, and A = L, = L, come from starting
elimination at4,; and atd,,. You may be surprised that the all-time favorite of alge-
braists is Bruhat'd/; = U, : hard to comprehend (but see Sectin



(down and rightd = LPU «— |4, Ay — A= Lim Ly (down and left)

(up and right)d = Uy 7 U, «— |Am Ann| — A =UPL (up and left)

The more original part of this paper extendls= L PU to banded doubly infinite
matrices What makes this challenging is that elimination has nogtadegin.A;
is deep in the middle ofl, and algebra needs help from analysis. The choice of pivot
appears to depend on infinitely many previous choices. Time ghfficulty arose for
Wiener and Hopf, because they wantée= UL and singly infinite matrices have no
last entry4,,,. This was overcome in the periodic (block Toeplitz) casd,iarSection
6 we go further.

2. The Uniqueness ofP in A = LPU.
Theorem 1. The permutatior? in A = LPU is uniquely determined by.

Proof. Consider thes by ¢ upper left submatrices ofi and P. That part of the
multiplication A = LP U leads toa = £ pu for the submatrices, becaugeandU are

triangular:
a =| (£ Of|p =||u = . _
[* *} = [* *} [* *} [0 *} gives a =4 pu. Q)

The submatrix is s by s andu is ¢t by . Both have nonzero diagonals (therefore
invertible) since they come from the invertibleandU . Thenp has the same rank as
a =¥ pu. The ranks of all upper left submatricesare determined by, so the whole
permutationP is uniquely determinefb, 7,12].

The number ofi’'s in p is its rank. Since thosg's produce independent columns
(they come from different rows aP). The rule is thatP;, = 1 exactly where the rank
of the upper left submatrices; of A4 increases:

ranka;x = 1+ranka;_; g1 = 1+ranka; 1 x = 1 +ranka; ;. (2

In words, rowi is dependent on previous rows until columnis included, and
columnk is dependent on previous columns until rowg included. Whemd = LPU
is constructed by elimination, a pivot will appear in thj% position. The pivot row
i (k) for elimination in columnk will be the first row (the smallestl) such that (2)
becomes true. Since by convention ramk = rank por = ranka;o = rankag, =0,
the first nonzero in columh and in rowl of A will determineP;; =1 and Py, =1.

In case the leading square submatriegsare all nonsingular, which leads to
rank(a;x) = min(i, k), rule (2) puts all pivots on the diagonal;; = 1. This is the
caseP = I with no row exchanges andl= LU .

Elimination by columns produces the same pivot positioma @ifferent sequence)
as elimination by rows. For elimination with different gtag points, and also for
infinite matrices, rule (2) is to be adjusted. This rule thanhes so simply from (1) is
all-important.



The mapP(A) from invertible matricesd to permutations inrd = LPU (a map
from GL, to S,) is not continuous. We describe below hawcan jump when4
changes smoothly.

3. The Algebra of Elimination: A =LPU= PLU.

Suppose elimination starts withy; # 0, and all leading submatrices; are invertible.
Then we reactd = LU by familiar steps. For each> 1, subtract a multiple ;; of

row 1 from row j to produce zero in thg, 1 position. The next pivot positioh, 2 now
contains the nonzero entry deb,)/det(a;;) : this is the second pivot.

Subtracting multipled ;, of that second row produces zeros below the pivot in
column2. Fork =1,...,n, thekth pivot row becomes row of U. Thek, k pivot
position contains the nonzero entry @ety)/det(agx_;,x—1). For lower rows;j >k,
subtracting a multiplé ;; of rowk from row j produces zero in thg k position. Then
the magic of elimination is that the matrix of multipliers ¢ ;; times the matrixt/ of
pivot rows equals the original matrix. Suppose: =3 :

row 1 of 4 1 0 Of]|rowlofU
A=LU row2ofA|=|4; 1 0] |row2o0fU |. )
row 3 of 4 31 f3p 1 row 3 of U

The third row of thatL U multiplication correctly states that
row 3 of U = (row 3 of A) — {31 (row 1 of U) — €3, (row 2 of U). 4)

Now we face up to the possibility of zeros in one or more pivasipons. Ifayy
is the first square upper left submatrix to be singular, tepstimust change when
elimination reaches columin A lower rowi (k) must become thith pivot row. We
have an algebraic choice and an algorithmic choice :

Algebraic Choose the first row(k) that is not already a pivot row and has a nonzero
entry in columnk (to become thé&th pivot). Subtract multiples of this pivot roik)
to produce zeros in colunminof all lower nonpivot rows. This completes step

Note. ForA = LPU, the pivot rowi (k) is not moved immediately into rokvof the
current matrix. It will indeed be row of U, but it waits for the permutatio® (with
Pik),k = 1) to put it there.

Algorithmic Choose any row (k) that is not already a pivot row and has a nonzero
entry in columnk. Our choice of/(k) may maximize that pivot entry, or not.
Exchangethis new pivot rowl/ (k) with the current rowk. Subtract multiples of the
pivot row to produce zeros in coluninof all later rows.

Note.  This process normally starts immediately at columiy choosing the row
1(1) that maximizes the first pivot. Each pivot rawk) moves immediately into row
k of the current matrix and also rokof U.



The algebraic choice will lead td = LPU and the algorithmic choice td =
PLU. If the choices coincide, sd(k)=i(k), the multipliers will be the same
numbers—but they appear in different positiond.iand L because row (k) has been
moved into rowk. ThenP = P andU =U andL = P~ 'L P from the reordering of
the rows.

It is more than time for an example.

Example: The first pivot of 4 is in row i(1) =2. The only elimination step is to
subtract? times that first pivot row from row8. This reveals the second pivot in
row i(2) =3. The order of pivot rows i2,3,1 (and duringLPU elimination they
stay in that order!):

0 0 3 o o 3
A=|1 a b | £S5 |1 a b|=PU (5)
{ la+2 {Lb+c 0 2 ¢

The permutatior? hasl’s in the pivot positions. So its columns come from the idgnti
matrix in the ordee, 3, 1 given byi (k). ThenU is upper triangular:

00 3 00 171 a b
1 a b|l=|1 00||0 2 ¢|=PU (6)
02 ¢ 01 0[[o o 3

The lower triangulai. adds? times row2 of PU back to row3 of PU. That entry
L3, = £ recovers the originall from PU :

1 0 0][0o 0 3
A=|0 1 0o||1 a b|=L(PU)=LPU )
0 ¢ 1[0 2 ¢

Notice the two zeros below the diagonal &f We havelL,; =0 because
elimination did not subtract a multiple of rokv= 1 from row j = 2. (The first zero in
row 1 of 4 is the reason that the first pivot was in ré@) =2.) In generalL jx =0
when rowk is a pivot row after row; is a pivot row ThusL jz =0 whenj > k but
i~1(j) <i7l(k).

The second zero below the diagonalois L;; = 0. Rowk = 1 is a pivot row after
row j =3 is a pivot row. Rowdl, 2, 3 were selected as pivot rows in the ordei, 2
given by the inverse of the permutatibfk). Consequently—1(1) = 3 is greater than
i~1(3)=2.

For computations.This rule for zeros inl. becomes important when we compare
A= LPU with the formA = PLU that elimination codes prefer. When the permu-
tation P comes first, it is not unique. The only requirement is tRat' 4 admits an
LU decomposition (the leading principal submatrices mushiertible, because they
equalL Uy). We may choose so that all entries oL have| L, [<1. If [£|>1

in the matrix4 above, row3 would become the first pivot row instead of r@w The
multiplier that appears ir. would change tal /£. This “partial pivoting” aims to
prevent small pivots and large multipliers and loss of aacwr



The MATLAB command[B,U] =£u(A) constructs the upper triangulér=U
and a permuted lower trianguld. If every step uses the first available pivot row
(the algebraic choice), theB=LP = PL. The fullcommandL,U,invP]=1lu(A)
produces an (inverse) permutation for whiginvP)A=LU. We can see this
permutation as reordering the rowsAto prepare for a stable factorization.

Back to algebra.Considerd = PL U with no extra row exchanged (k) =i (k). Then
P andU are the same aB andU in the originalA = LP U. But the lower triangular
L is different fromL. In fact PL = LP tells us directly thatL = P~!LP. This
reordered matrixL is still lower triangular. It is this crucial property that uniquely
identifies the specifid. that is constructed by elimination. Other factdran enter
into A = LPU, but only the factor produced by elimination is “reducedrthe left”
with P~ 1L P also lower triangular.

The uniqueness of this particularis illustrated by an example with many possible
L'sinA=LPU:

A= |:(1) lei| = |:2 (1)i| |:(1) (1):| [(l) th:| prOVideda:Z_}_u‘ (8)

Row 2 must be the first pivot row. There are no rows below that pigat; the unique
“reduced from the left” matrix iS. = 7 with £ =0. (And P~17P =1 is lower trian-
gular as required.) To emphasize : All nonzero choicesark permitted ird = LPU
by choosingu =a —¢. But that nonzero entry will appearabovethe diagonal in
P~'LP. Elimination produced = 0 in the unique reduced factdr.

The difference betweeh andL in A= LPU andA = PLU can be seen in th#
by 3 example. Bothl. andL = P! LP come from elimination, they contain the same
entries, but these entries are moved around wh@&omes firstind = PLU.

Example (continued) L comes from elimination when the pivot rows4fire moved
into1,2,3orderind =(invP)A:

1 a b I 1 a b
A=\l la+2 tb4+c|— |0 2 c¢|=U.
0 0 3 0 0 3

We subtracted times rowl from row?2, andL adds it back:

1 0 0
L=|¢ 1 0
0 0 1

This agrees with (7) after the reorderi®) ! LP. The nonzero entry is still below
the diagonal, confirming that the chosen earlier is “reduced from the left.” No
elimination steps were required to achieve zeros in(fhé) and(3, 2) positions, so
L3, = L3> =0. In terms of the originaH rather than the reorderedl, Lz =0 when
i(j)<i(k).

Tosummarize A= LPU hasauniqué®, and a uniqué. reduced from the left. The
permutation ind = PLU is not unique. But if we exchange rows only when necessary



to avoid zeros in the pivot position® will agree with P andU =U. The lower
triangularL in this better known form i~ LP.

Elimination by column operation3o anticipate factorizations that are coming next, it
is valuable (and satisfying) to recognize that “column @liation” is equally valid. In
this brief digression, multiples of columns are subtraftenh later columns. The result
will be a lower triangular matrixL.. Those column operations usepertriangular
matrices multiplying from the right. The operations aredrted by an upper triangular
matrix U,.

When the pivot columns come in the natural ortle2, 3, elimination by columns
producesd = L. U,. This is identical tad = LU from row operations, except that the
pivots now appear irl... When we factor out the diagonal matrix of pivots, the
uniqueness of. andU (from rows) establishes the simple link Io. and U, from
columns:

A=L.U.=(L.DY)DU.)=LU 9)

In our3 by 3 example, the first pivot (nonzero entry in rayis in columnk (1) = 3.
Then the second pivot (nonzero in the current &vis in columnk(2) = 1. Column
operations clear out ro®in the remaining (later) pivot columin(3) =2

0 0 3 - 0 0 3
A=]1 a b <511 0 b =L.P. (10)
L fla+2 ULb+c { 2 tb+c

The permutationP, has therows of the identity matrix in the ordes, 1, 2 given by
k(i). ThenL. is lower triangular :

00 3 3 00 0 0 1
10 b |=| » 1 o0|]1 0 ol=L.P (11)
£ 2 tb+c b+c £ 2 01 0

The constantly alert reader will recognize that) is the inverse ofi(k). The
permutationP, must agree with? by uniqueness. The factorizatioh= L. P. U, is
completed wher/, undoes the column elimination by addiadimes columnl back
to column2:

0 0 1 a 0
A=|1 0 b 0 1 0|=(LcP)U.=LcP.U, (12)
) 0 0 1

We could moveP, to the rightind = L. U, P.. A permutation in this position could do
extra column exchanges for the sake of numerical stabflity.a |> 1 in our example,
columnsl and2 would be exchanged to keep all entriedip below1.)

With P. equal toP, U.P = PU, means thal/. in the middle isPU.P~!. (The
nonzero entry: moves to the, 3 position inU..) This matrix is still upper triangular
SoU, is “reduced from the right.” Under this condition the fagim A = L. P. U, are
uniquely determined byl.



In the2 by 2 example those factors would move the nonzero entry ftb(earlier)

into L. (now):
0 1 1 0|0 1]]1 O
[1 a:|:|:a 1} [1 0} [0 1}:L0P0U“' (13)

To summarize Column elimination produces different triangular fastérom row
elimination, butL still comes beford/. In production codes, the practical difference
would come fromaccessing rows versus columnsAf

4. Bruhat Decomposition and Bruhat Order

Choosing thd, 1 entry as the starting point of elimination seems naturaibBbly the
Chinese who first described the algorithm [13, 20] felt thmsaA wonderful history
[10] by Grcar describes the sources from antiquity and thewtNn’s “extermination”
algorithm. (In lecture notes that he didn’t want publishidéwton anticipated Rolle
and Gauss.) But an algebraist can prefer to stgrt.at), and a hint at the reason needs
only a few words.

A= LPU is built on two subgroups (lower triangular and upper trialag) of the
group GL, of invertible n by n real matrices. There is an underlying equivalence
relation: A ~ B if A= LBU for some triangulai. andU. Thus Gl, is partitioned
into equivalence classes. Becausevas unique in Theorem 1, each equivalence class
contains exactly one permutation (from the symmetric grgpf all permutations).
Very satisfactory but not perfect.

Suppose the two subgroups are the same (say the invertilpler upangular
matrices). NowA ~ B meansA =U;BU, for someU; and U,. Again GL, is
partioned into (new) equivalence classes, called “doubkets.” Again there is a
single permutation matrix in each double coset from = U; = U,. But now that
the original subgroups are the same (here is the obscurenbirnto be developed fur-
ther) we can multiply the double cosets and introduce annlyidg algebra. The key
point is that this “Bruhat decomposition” into double ca¥étr U succeeds for a large
and important class of algebraic groups (not just, 5L

Actually Bruhat did not prove this. Hi$954 note [3] suggested the first ideas,
which Harish-Chandra proved. Then Chevalley [5] uncovéredichness of the whole
structure. George Lusztig gave more details of this (ongpimhistory in his lecture
[14] at the Bruhat memorial conference in Paris.

One nice point, perhaps unsuspected by Bruhat, was thasitmartial order of
the permutations . Eachr is shared by all the matricég = U, in its double coset. We
might expect the identity matrix = I to come first in the “Bruhat order” but instead
it comes last. For a genericby n matrix, the permutation il = U; zU, will be the
reverse identity matrixc = J corresponding tdn,...,1). Let me connect all these
ideas toupward eliminatiorstarting with thez, 1 entry of A.

The first steps subtract multiples of romfrom the rows above, to produce zeros
in the first column (above the pivat,;). Assume that no zeros appear in the pivot
positions along the reverse diagonal framl to 1, ». Then upward elimination ends



with zeros above the reverse diagonal :

® 1 ® o= #
®» x| = 1 ® = |=JU,. (14)
® = * 1 ®

The upward elimination steps are taken by upper triangulatrioes. Those are
inverted by an upper trianguléf, (containing all the multipliers)This generic case
has produced = U; J U,. (Stewart suggested to denote the reversal mdtiiy / .)

At stagek of Bruhat elimination, the pivot row is thewestrow that begins with
exactlyk —1 zeros. Then that stage produces zeros in colirfor all other rows that
began withk — 1 zeros. These upward elimination steps end with a matfi%, where
the permutationr is decided by the order of the pivot rows. The steps are iaddry
U,, so the produclt/; U, recovers the originall and gives its Bruhat decomposition.

In the Bruhat partial order, the reverse identitgomes first and comes last. The
permutationsP in A= LPU, from elimination that starts with;;, fall naturally in
the opposite order. These orders can be defined in many éeptiveays, and this is
not the place for a full discussion. But one combinatoridirdéon fits perfectly with
our “rank description” of the pivot positions in equatior) (2

In the Bruhat order fol. P U decomposition (elimination starting dt ),
two permutations have < P’ when all their upper left by r submatrices
have rank p,;) > rank(p},).

I/n 1 1 0 . . 0 1
Example: A4, = L 0 has P, = 0 1 but in the limit A, = L o =P,.

HereP, < P.

The rank of the upper left by 1 submatrix of4, drops to zero in the limitd ..
Our (small) point is that this semicontinuity is always truanks can drop but not rise.
The rank of a limit matrix never exceeds the limit (or lim imf) the ranks. The con-
nection between rank and Bruhat order leads quickly to a knmanclusion about the
mapP(A) fromAinGL,t0 P inS;:

Theorem 2. Supposed, = L, P,U, approached ., = L., P,,U,, and the permuta-
tions P, approach a limitP. ThenP < P, in the Bruhat order fol.PU (reverse of
the usual Bruhat order for the's in U, 7w Us).

Roughly speakingd., may need extra row exchanges because ranks can drop.

5. Singly Infinite Banded Matrices

Our first step toward new ideas is to allow infinite matricese &dd the requirement
thatthe bandwidthw is finite: 4;; =0 if |i —j |>w. ThusA is a “local” operator.
Each row has at motw + 1 nonzeros. Each component in the proddst needs at
most2w + 1 multiplications.

To start, assume that no finite combination of rows or of calsproduces the zero
vector (except the trivial combination). Elimination cagegin at thel, 1 position and



proceed forever. The output is a factorization idte= LPU. Those three factors are
banded, buf. andU are not necessarily bounded

An example will show how far we are from establishing theandU are bounded.
A is block diagonabnd each bloclB;, of 4 factors intoL; Uy with P, =1 :

o [ - I . s
S I T I P T | O A

If e approaches zero in a sequence of blockst pthe pivotse;, and e,;l approach
zero and infinity. The block diagonal matricésandU (with blocksL; andUy) are
unbounded. At the same timkeis bounded with bounded inverse :

0 1
The blocks in4 ! areB, ' = .
1 —&fk

To regain controlassume in the rest of this section thétis Toeplitz or block
Toeplitz. This time invariance or shift invariance is expresseddpy=A;_;. The
scalars or square blocks, are repeated down theh diagonal. It would be hard to
overstate the importance of Toeplitz matrices. They canriiie for infinite—in many
ways doubly infinite is the simplest of all.

Examples will bring out the intimate link between the mattiand its symbodi (z),
the polynomial inz andz~! with coefficientsA;. Suppose is tridiagonal(w = 1) :

5 =2
-2 5 =2
A= 2 5 correspondsta(z) = —2z7' +5-2z.

With z =¢?, the “symbol”’a(e!?) becomess —4cosf. This is positive for alld, so
A is positive definite. The symbol factors intdz) = (2—z)(2—z~ 1) = u(z2){(z).
The matrix factors in the same way intb= UL (and notice the order):

2 —1 2

2 1 12
A= - IR =UL. (16)

° —1 e

This was aspectral factorizationof a(z), and aWiener-Hopf factorization A = UL.
When elimination produced = LU by starting in thel, 1 position, the result is
much less satisfyingL andU are not Toeplitz. (They are asymptotically Toeplitz and
their rows eventually approach the good factbis.)
One key point is thatl = UL does not come from straightforward elimination—
because an infinite matrix has no corner ey, to start upward elimination. We
factoreda(z) instead.



Another key point concerns the location of the zerosi@f) =2 —z and{(z) =
2—z71. Those zeros =2 andz = 1/2 satisfy| z |> 1 and| z | < 1 respectively. Then
L andU have bounded inverses, and those Toeplitz inverses comrddp1/£(z) and
Vu(z)=1/Q-z)=3+3z+ 522 +---.

If we had chosen the factors badiyfz) = 1 —2z and€(z) = 1 — 2z~ still produce
a=uf andA=UL:

1 -2 1

A= =UL. (17)

The formal inverses o/ andL havel,2,4,8,... on their diagonals, because the zeros
of u(z) and{(z) are inside and outside the unit circle—the wrong places.
NeverthelesdU is a useful example. It has=(1,1,1,...) in its nullspace:
Ux =0 becauseu (1) =0. This is aFredholm matrix because the nullspaces
of U andUT are finite-dimensional. Notice th&t" = L has nullspace= {0}. The

Fredhalm index is the difference in the two dimensions:
index(U) = dim (nullspace ot/) —dim (nullspace o )
=1-0.

The index of L is —1; the two nullspaces are reversed. The index of the product
A=UL is1—1=0. InfactA is invertible, as the good factorizatich= UL shows:

Ax=bissolvedbyx =A"'b=L "YU 'b). (18)

The key to invertibility isa(z) = u(z)£(z), with the correct location of zeros to make
U andL and thusd = UL invertible. The neat way to count zeros is to use the winding
number ofa(z).

Theorem 3. If a(z) = = Ay zF starts withA_,, z—™ and ends withd ps z™ , we need
M zeros with|z |>1 andm zeros with|z |< 1 (and no zeros withz |=1). Then
a(z) =u(z)€(z) andA = UL and those factors are invertible.

The matrix case is harder is nowblock Toeplitz The A; that go down diagonal
k are square matrices, sayby b. It is still true (and all-important) that complete
information about the operatdris contained in the matrix polynomialz) = X Az z*.
The factorization of:(z) remains the crucial problem, leading as beforedte: UL.
Again this achieves “upward elimination without a startpaint A,,,,.”

The appropriate form for a matrix factorization is a produyet :

a(z) =u(z) p(z)t(z) with p(z) = diag(z*¥®W,... k®),

The polynomial facton(z) gives the banded upper triangular block Toeplitz matrix
U. The third factorf(z) is a polynomial inz=! and it produced.. The diagonal
p(2) yields a block Toeplitz matrix’. (It will be a permutation matrix in the doubly
infinite case, and we reach= UPL.) The diagonal entrg*") produces d in the
jth diagonal entry of the block, of P.

10



Example. Suppose thap/{ factorization ofa(z) hasl(z) =1 :

Cztoo] oozt oot oo 1
a(z)_lz_210201' (19)

For doublyinfinite block Toeplitz matrices, this give$ = UPL with L =1. Then

A is invertible. But forsingly infinite matrices, the first row oUPL is zero. You
see success in rowss4, 5-6, ... which are not affected by the truncation to this singly
infinite UPL with L =1 :

r1 0 0 O 970 0 0 0 7]
01 10 0 0 0 1
1 0 00 1 000 0O
01 10 00 0 0 0 1
1 0 00 1 000 0O
L 0 1 1 0L 0 00 0 0 1]
0 0 0 O 7]
1 0 0 1
_ 100000 rows3-4 of 4
001 0 01
100000 rows5-6 of A
L 0 01 0 0 1]

The missing nonzero in row comes from the entry~! in p(z). Invertibility of 4 in
the singly infinite case requires all the exponentg(in) to bek(j) = 0. Those “partial
indices” give the dimensions of the nullspaces #fand AT (here 1 and 1).
Invertibility in the doubly infinite case only requirésk(;j) =0. In both cases this
sum is the Fredholm index of (here0), equal to the winding number of detz).

The matrix factorizatior(z) =u(z) p(z) £(z) has a long and very distinguished
history. The first success was by Plemelj [17]1i908. Hilbert and G.D. Birkhoff
contributed proofs. Wiener and Hopf found wide applicagiolm convolution
equations on a half-line, by factoringinto UL when P = I. The algebraic side was
developed by Grothendieck, and the analytic side by thegsematrix theorist of the
20th century : Israel Gohberg. My favorite reference, for ity and its elementary
constructive proof, is by Gohberg, Kaashoek, and Spitkp{8k

In the bandedioubly infinitecase, a bounded (and block Toeplitz) inverse only
requires thatu(z) is invertible on the unit circle: det(z) #0 for |z|=1. Then
a =upf and the reverse factorizatian=4£pu give A=UPL and A= LPU with
invertible block Toeplitz matrices? and P are permutations of the integers.

All these are examples of triangular factorizatierieen elimination has no starting
point We presented them as the most important examples of thadkivhen the
periodicity of A reduced the problem to factorization of the matrix polynalm(z).

11



6. Elimination on Banded Doubly Infinite Matrices

We have reached the question that you knew was comiitayv can elimination get
started on a doubly infinite matrix To produce zeros in colunk) —oo < k < o0, we
must identify the numbei(k) of the pivot row. When that row is ready for use, its
entries before columi are all zero. Multipled ;; of this row are subtracted from
lower rows; > i, to produce zeros below the pivot in colurhrof PU. The pivot row
has become row(k) of PU, and it will be rowk of U.

Clearlyi(k) <k + w, since all lower rows of a matrix with bandwidth are zero
up to and including columh. So the submatrix’ (k) of A, containing all entriest;;
with i <k +w andj <k, controls elimination through stdp Rows belowk + w and
columns beyond will not enter this key stepthe choice of pivot rowi(k).

We want to establish these facts in Leminand Lemma :

1. C(k)is a Fredholm matrix The nullspace® (C) andN (CT) are finite-dimens-
ional: Infinite matrices with this Fredholm property behave in ortant ways
like finite matrices.

2. The index—d of C(k), which is dimN (C)—dim N (CT), is independent o.

3. In the step fromC(k —1) to C(k), the newkth column is independent of
previous columns by the invertibility ofl. (All nonzeros in columnk of A
are included in rowsk —w to k+w of C(k).) Since index(C(k)) = index
(C(k —1)), the submatri>C (k) must contain exactly one roixk) that is newly
independent of the rows above it. Every integés eventually chosen agk)
for somek.

4. Let B(k) be the submatrix o (k) formed from all rowsi(j), j <k. Each
elimination step can be described non-recursively, in seohf the original
matrix. We have removed the lowest possibleows of C(k) to form this
invertible submatrixB(k). Thosed nonpivot rows are combinations of the
rows of B(k). Elimination subtracts those same combinations of the rofvs
A to complete stef. (The example below shows how these combinations lead
to L—1, where recursive elimination using only the pivot row (amd all of B)
leads directly tal.)

The figure shows the submatii(k). Remainingd dependent rows leaves
the invertible submatrixB (k).

12



columnk

independent rows

w w of A
Zeros - - rowk —w

d of these rows

Zeros -------- row k (notin B) depend
on earlier rows
(staying inB)
Zeros -------------- b row k —w

The3 light diagonal lines are at5° angles, with equal space between them.

5. When elimination is described recursively, the current ig#) has all zeros
before columrk. Itis rowi (k) of PU. The multiplierst;; will go into column
i of alower triangular matrix, with L;; =1. Thend = LPU with P ;) =1
in the doubly infinite permutation matriR. The pivot row becomes row of
the upper triangulal/ .

We may regard as the execution of elimination, aidd?2, 3, 4 as the key steps in
selecting the pivot rows. Our whole argument will rest ongtability of the index, not
changing withk.

Lemma l. C(k)is a Fredholm matrix and its index is independent of

Proof. The invertible operatod is Fredholm with index diniV(A4) —dim N(A") =
0—0. We are assuming that is invertible on the infinite sequence spdgéZ). Key
point : Perturbation by a finite rank matrix like, or by any compact operator, leaves
index= 0. By construction ofC (k),

Ck) D(k Ck 0
. (k) D(k) and A’ — (k)
0 E(k) 0 E(k)
are Fredholm with equal index For bandedd, the submatrixD (k) contains only
finitely many nonzeros (thug — A’ has finite rank). Clearly we can seperétdrom

A,_C(k)o 0] [r o [cw o
o 1llo Ek)| |0 Ek)]|| o 1|

These two commuting factors are Fredholm sintéeis Fredholm [8]. The indices
of the two factors are equal to the indices@fk) and E(k). Those indices add to
index(A’) = index(4) =0.

SinceC(k — 1) comes fromC (k) by deleting one row and column, the index is the
same! Now changg! Strictly speaking, the last row and column@ftk) are replaced
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by (...,0,0,1). Thisis a finite rank perturbation @f(k): no change in the index. And
the index of this matrix diagC (k — 1), 1) equals the index of (k — 1).

Marko Lindner showed me this neat proof of Lemma 1, which hesus define
the “plus-index” and “minus-index” of the outgoing and imaimg singly infinite sub-
matricesA andA_ of A. These indices are independent of the cutoff position (row
and columnk) betweend _ andA .. The rapidly growing theory of infinite matrices is
described irf4,13,19].

Lemma 2. There is a unique row numbeégk), with | i —k |< w, such that

rowi (k) of C(k —1) is a combination of previous rows 6f(k — 1)

rowi(k) of C(k)  isnotacombination of previous rows @f(k).

Proof. By Lemma 1, the submatriceS(k) all share the same indexd. Each
submatrix has nullspace {0}, sinceC (k) contains all nonzeros of all columrsk of
the invertible matrix4. With index—d, the nullspace of ever¢ (k)" has dimension
d. This means thaf rows of C (k) are linear combinations of previous rows. Thadse
rows of C (k) must be among rows—w +1,...,k + w (since the earlier rows &f (k)
contain all nonzeros of the corresponding rows of the iflvlertatrix A).

C (k) has one new row and column comparedi@ — 1). Sinced is the same for
both, there must be one roigk) that changes from dependent to independent when
columnk is included. InC(k — 1), that row was a combination of earlier pivot rows.
In A, we can subtract that same combination of earlier rows fiman (k). This leaves
a row whose first nonzero is in colunin This is thekth pivot row

Notice this pivot row was not constructed recursively (tlsediway). This row
never changes again, it will be rowk) of the matrixP U when elimination ends, and
it will be row k& of U. Once we have it, we can use it's multipleg for elimination
below—and those numbetg; will appear inL. (The example below shows how the
d dependencies lead fo'.)

Let A(k —1) denote the doubly infinite matrix after elimination is coetel on
columns< k of A. Rowi (k) of A(k — 1) is thatkth pivot row. By subtracting multiples
£ ;; of this row from later non-pivot rows, we complete ste@nd reachd (k). This
matrix has zero in columns k of all d rows that are combinations of earlier pivot
rows. The multipliers aré ;; =0 for all rows j >k +w, since those rows (not in
C(k)) are and remain zero in all columesk.

Each row is eventually chosen as a pivot row, becausekrew of C(k) has all
the nonzeros of rok —w of A. That row cannot be a combination of previous rows
when we reach step; it already was or now is a pivot row. The bandwidthof the
permutationP (associated with the orderingk) of the integers) is confirmed.

This completes the proof df 2, 3, 4andA = LPU.

14



columnk

Pivot rowi (j), j <k, has it’s first nonzero in colump
Non-pivot rows are now zero in all columrsk

rowk +w
All zeros TBeIow rowk +w, E(k) is untouched

A(k) : current matrix at the end of stép

Toeplitz example with diagonals —2, 5, —2 (now doubly infinitg The correct choice
of pivot rows isi (k) = k for all k. The invertible upper left submatri&(k — 1) has5
along its diagonal. The matri€(k — 1) includes the dependent rawbelow W = 1
andd =1). To see the dependency, multiply rows-1, k—2,k—3, ... by 3, %, 3,

... and add to rovk:

5 -2 5 2
2 5 2 — | 2 5 2
2 5| =2 k—1 2 5 2 (20)
0 0 -2 5 2] & 0 0 0 4 -2

Row k of A has become row of PU (also rowk of U, sinceP =1I). The matrix
L~ that multipliesA to produceP U has those coefficients 3, 1, ... leftward along
each row. Then its inverse, whichis hasl, —%, 0,0, ... down each column.

This was non-recursive elimination. It produced the pimtr.., 0,4, —2,0, ...
by solving one infinite system. We can see normal recursingirgtion by using this
pivot row to remove the-2 that still lies below the pivot. The multiplier is—%. This
is the correct entry oL, found in the previous section by factoring the polynomial
symbola(z) = —2z71 +5-2z.

Suppose we make thiecorrect pivot choicé (k) =k — 1 for all k. That givesP =
doubly infinite shift. It leads to a. P U factorization of4 that we don’t want, with
L = (A)(inverse shift and P = (shift) andU = I. This lower triangulai. has—2, 5,
—2 down each column. (To maintain the convention = 1, divide thisL by —2 and
compensate witly = —21.)

Recursively, this looks innocent. We are using th2's above the diagonal to
eliminate eactd and —2 below them. But when the singly infinite submatrix in (20)
loses its last row.., —2, 5 (and becomes lower triangular with2 on its diagonal
instead of5), it is no longer invertible The vector... ,%, % 1) isin its nullspace. The
correct choice had bidiagonalandU as in (16).

In the language of Sectiaf this lower triangular matrix has roots ziand % It
cannot have a bounded inverse. The misplaced root prochatassictor in the nullspace.
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Theorem 4. The nonzero entries d?, L, U lie in bands of widtR2w :

P=0 if |i—k|>w
Lix=0 if i—k>2w (andifi <k)
Ur=0 if k—i>2w (andifk <i)

Proof. For finite matrices, the rank conditio®) assure thaP;; = 1 cannot happen
outside the diagonal band— k |< w containing all nonzeros of. Then

A=LPU gives L=AU"'P'=4U"'PT.

The factorU ~! PT cannot have nonzeros below subdiaganakinceU ~! is upper
triangular. Then. cannot have nonzeros below subdiagéhel

Similarly the matricesP” L=! and 4 are zero above superdiagonal So their
productU = PT L= A is zero above superdiagorial.

For infinite matrices, the choice of roifk) as pivot row in Lemma satisfies
|i —k |[<w. ThusP again has bandwidtly. The entried ;; multiply this pivot row
when it is subracted from lower rows 6f(k). Since rowk + w is the last row olC(k),
its distance from the pivot row cannot excekal.

Pivot rows cannot have more thamw nonzeros beyond the pivot. So when they
move intoU with the pivot on the diagonal/ cannot have nonzeros above superdiag-
onal2w.

The extreme cases are matrices with all nonzeros on subdibaiod superdiagonal
w. These show that the bands allowed by Theotezan be attained.

7. Applications of A = LPU

In this informal final section, we comment on the doubly intBmM = LPU and a few
of its applications.

7.1 If Ais a block Toeplitz matrix, so thal(i, j) = A(i +b, j +b) for all i and
j, thenL, P, andU will have the same block Toeplitz property. The multi-
plication A = LPU of doubly infinite matrices translates into a multiplicatio
a(z) =4(z) p(z)u(z) of b by b matrix polynomials. Our result can be regarded
as a new proof of that classical factorization.

This new proof is non-constructive because the steps fraginat rows
(of A) to pivot rows (of PU) require the solution of singly-infinite systems
with matricesB(k). The constructive solution of those systems would require
the Wiener-Hopf idea that is itself based @fx) = u(z) p(z)£u(z) : a vicious
circle.

7.2 Infinite Gram-Schmidt. From the columngy, ..., a, of an invertible matrix
A we can produce the orthonormal columns. . ., g, of Q. Normally eachy
is a combination ofi; and the preceding; (or equivalently the preceding;,
j <k). ThenA is factored intoQ times an upper triangular. The question is
how to start the process whehis doubly infinite.
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Notice thatQTQ = I leads toAT 4 = (QOR)T(QR) = RTR. This is a special
LU factorization (Cholesky factorization) of the symmetrasfiive definite ma-
trix ATA. The factorsR™ and R will have the same main diagonal, containing
the square roots of the pivots df 4 (which are all positive).

If 4 is doubly infinite and banded, so i$T4. Then the factorization in
Section6 producesR™R. The submatrices3(k) in the proof share the main
diagonal ofAT 4, and|| B(k) "' | < || (ATA)"!|. No permutationP is needed
and we reach the banded matix

Finally 0 = AR~! has orthonormal columng, as required. Eachy is a
combination of the originat;, j < k. Q is banded below it's main diagonal
but not above—apart from the exceptional cases wRénbanded with banded
inverse.

7.3 Theorem 1 came from the observation that the upper left strimesofA4, L, P,
U satisfya = £ pu. With doubly infinite matrices and singly infinite submagsg
this remains true. The ranks of diagonal bloeks and A _ are now infinite, so
we change to nullities. But as the block diagonal exampledatiSn5 made
clear,L andU and their inverses may not be bounded operators. At thig poin
the uniqueness oP comes from its construction (during elimination) and not
from Theorem 1.

7.4 In recent papers we studied the group of banded matwitbsbanded inverses
[21-23]. These very special matrices are produgts F; ... Fy of block diag-
onal invertible matrices. Our main result was tHat F; F, if we allow blocks
of size2w, and thenV < C w? when the blocks have size2. The key point is
that the numbeWN of block diagonal factors is controlled hy and not by the
size of A. The proof uses elimination amtlcan be singly infinite.

We have no proof yet whes is doubly infinite. Itis remarked if23] that4 =
LPU reduces the problem to banded triangular matricesxd U with banded
inverses. We mention Panova’s neat factorizaficd} of P (whose inverse is
PT). With bandwidthw, a singly infinite P is the product ofV < 2w parallel
exchanges of neighbors (block diagonal permutations wWitbkdsize< 2).

A doubly infinite P will require a power of the infinite shift matri¥, in
addition toF; ... Fy. This powers(P) is the “shifting index” of P and| s |< w.
The main diagonal is not defined for doubly infinite matricesjl the shifting
index s(A) =s(P) tells us where it ought to be. This agrees with the main
diagonal located by de Boor [ ] for a particular family of infaamatrices.

7.5 For singly infinite Fredholm matrices the main diagonal idlwlefined. It is
located by the Fredholm index af. When the index is zero, the main diagonal
is in the right place. (Stild may or may not be invertible. For a block Toeplitz
matrix invertibility requires all partial indiceis(j ) to be zero, not just their sum.)

The proof of Lemma 1 showed why the Fredholm indices of thermag
A_ and outgoingd ; are independent of the cutoff position (row and column
k). WhenA is invertible, that “minus-index” and “plus-index” add tem. The
connection to the shifting index was included in [23].
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Theorem 5. The shifting index of a banded invertible matrik (and of its
permutationP) equals the Fredholm index df; (the plus-index).

Check whem is the doubly infinite shift matri with nonzero entrie§; ;11 =
1. ThenP coincides withS and has shifting index (oneS in its factorization
into bandwidthl matrices). The outgoing submatti; is a singly infinite shift
with (1,0,0, ...) in its nullspace. TherAILx =0 only forx =0, so the Fredholm
index of A is alsol.

A deep result from the theory of infinite matrices [18,19] cems the
Fredholm indices of themit operatorsof A.

7.6 | would like to end with a frightening example. It shows tha associative law
A(Bx) = (AB)x can easily fail for infinite matrices. | always regarded this
the most fundamental and essential law! It defidds (by composition), and it
is the key to so many short and important proofs that | pushimgat algebra
classes to recognize and even anticipate a “proof by mohiegarentheses.”

The example haBx =0butAB =1. And0= A(Bx) = (AB)x = x is false.

1

[y

1 o 1 =1 0 e 1

01 1 e 0 1 e 1
A= B= x= (21)
00 1 e 0 1 e 1
000 e 0 0 .

This is like the integral of the derivative of a constand. is an unbounded
operator, the source of unbounded difficulty. A direct proithe lawA(Bx) =
(AB)x would involve rearranging series. Riemann showed us th#iowt
absolute convergence, which is absent here, all sums aséjpos a,, — 0.

This example has led me to realize that grievous errors atecpossible with
infinite matrices. | hope this paper is free of error. But wiedimination has
no starting point (and operator theory is not developed taifeit is wise to be
prepared for the worst.
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Let me add a (non-infinite!) example witlil) = 2. The matrixC(1) contains the first

colu
into

mn ofA. Its 1 by 1 submatrixB(1) = [1] is invertible. The multiplie€s, = 4 goes
L, in the first and only elimination step:

01 2 1 0 0]fo 1 2
A=|1 2 3 |=|0 1 o||1 2 3|=L(PU)
4 8 13 04 1|0 0 1
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