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Abstract. If A is a banded matrix with a banded inverse, then A = BC =
F1 . . . FN is a product of block-diagonal matrices. We review this factor-
ization, in which the Fi are tridiagonal and N is independent of the matrix
size. For a permutation with bandwidth w, each Fi exchanges disjoint pairs
of neighbors and N < 2w.

This paper begins the extension to infinite matrices. For doubly infinite
permutations, the factors F now include the left and right shift. For banded
infinite matrices, we discuss the triangular factorization A = LPU (completed
in a later paper on The Algebra of Elimination). Four directions for elimina-
tion give four factorizations LPU and UPL and U1πU2 (Bruhat) and L1πL2

with different L, U , P and π.

1. Introduction

This paper is about two factorizations of invertible matrices. One is the familiar
A = LU , is the lower times upper triangular, which is a compact description of the
elimination algorithm. A permutation matrix P may be needed to exchange rows.
The question is whether P comes before L or after ! Numerical analysts put P first,
to order the rows so that all upper left principal submatrices become nonsingular
(which allows LU). Algebraists write A = LPU , and in this form P is unique.

Most mathematicians think only of one or the other, and a small purpose of this
paper is to present both. We also connect elimination starting at the (n, 1) entry
to the Bruhat factorization A = U1πU2. In this form the most likely permutation
π (between two upper triangular factors) is the reverse identity. In fact the four
natural starting points (1, 1), (n, 1), (n, n), (1, n) lead to four factorizations with
different L, U , P , π :

A = LPU , A = UπU , A = UPL , A = LπL.

The P ’s and π’s are unique when A is invertible, and in each case elimination can
choose row or column operations to produce these factorizations.

Our larger purpose is to discuss banded matrices that have banded inverses :
Aij = 0 and also (A−1)ij = 0 for |i − j| > w. (The unique permutation P will
share the same bandwidth w.) The purpose of our factorization A = F1 . . . FN

is to make this bandedness evident : The matrices Fi are block diagonal. Then
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their inverses singly are also block diagonal, and the products A = F1 . . . FN and
A−1 = F−1

N . . . F−1
1 are both banded.

We established this factorization in The Algebra of Elimination [16] using As-
plund’s test for a banded inverse : All submatrices of A above subdiagonal w or
below superdiagonal w have rank ≤ w. The key point of the theorem is that the
number N ≤ Cw2 of factors Fi is controlled by w and not by the matrix size n.
This opens the possibility of infinite matrices (singly or doubly infinite).

We will not achieve here the complete factorizations of infinite matrices, but we
do describe progress (as well as difficulties) for A = LPU . In one important case—
banded permutations of Z, represented by doubly infinite matrices—we introduce
an idea that may be fruitful. The factors F1, . . . , FN for these matrices include
disjoint transpositions T of neighbors and also bi-infinite shifts S and ST. All have
w = 1 :

T =













•
[

0 1
1 0

]

[

0 1
1 0

]













and S =











• •
0 0 1

0 0 1

• •











Greta Panova used a neat variation [11] of the “wiring diagram” for P , to show
that the number of factors is N ≤ 2w − 1. This conjecture from [16] was for finite
matrices. The extension to banded permutations of Z allows also s shift factors.
We call s(P ) the shifting index of P (negative for ST = S−1). (Important and
recently discovered references are [9, 14, 15], please see below.) This shifting index
has the property that

(1.1) s(P1P2) = s(P1) + s(P2).

It should also have a useful meaning for A, when A = LPU . For the periodic block
Toeplitz case with block size B, s(P ) is the sum of ki in the classical factorization
of a matrix polynomial into a(z) = ℓ(z)p(z)u(z) with p(z) = diag (zk1 , . . . , zkB ).

The original paper [16] outlined algorithms to produce the block diagonal fac-
tors Fi in particular cases with banded inverses :

1. Wavelet matrices are block Toeplitz (periodic) and doubly infinite (i, j in Z).
A typical pair of rows contains 2 by 2 blocks M0 to MN−1. The action of this
A is governed by the matrix polynomial M(z) =

∑

Mjz
j . The inverse is banded

exactly when detM(z) has only one term czN−1. In the nondegenerate case, the
number N counts the factors Fi and also equals the bandwidth w (after centering) :

A =









· · ·
M0 . . . MN−1

M0 . . . MN−1

· · ·









has factors Fi =









•
Bi

Bi

•









.

Important point: The 2 by 2 blocks Bi+1 in Fi+1 are shifted by one row and column
relative to Bi in Fi. Otherwise the product of F ’s would only be block diagonal.

2. CMV matrices. The matrices studied in [3, 10] have two blocks on each pair
of rows of A. Those 2 by 2 blocks are singular, created by multiplying a typical
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F1F2 = A (notice again the shift in position of the blocks) :

(1.2)















1

2 3

4 5
6 7

8 9



























a b

c d
e f

g h
i













=















a b

2c 2d 3e 3f

4c 4d 5e 5f

6g 6h 7i

8g 8h 9i















A has bandwidth w = 2. Also A−1 = F−1
2 F−1

1 has w = 2. Note how column 2 of
F1 times row 2 of F2 produces the singular block with 2c, 2d, 4c, 4d (and two other
blocks are also singular). Necessarily A passes Asplund’s test: Those three singular
blocks assure that every admissible submatrix has rank ≤ 2. One submatrix is
indicated, above the second subdiagonal of A.

In applications to orthogonal polynomials on the circle |z| = 1, CMV matrices
are no longer block Toeplitz. The 2 by 2 blocks are all different as shown. We
may think of them as “time-varying” wavelet matrices. Extending this analogy, we
allow them to have N > 2 blocks centered along each pair of rows (then w = N).
The factorization of A is recursive. Always Fi+1 has its diagonal blocks shifted with
respect to Fi, as in the multiplication above.

3. Orthogonal matrices. The original CMV matrices and the Daubechies wavelet
matrices were banded and also orthogonal : ATA = I. It is natural to look for or-
thogonal factors Fi with w = 1. This can be achieved for all banded orthogonal
matrices. Our example [10] is a CMV matrix and Daubechies matrix of particular
interest : F1 and F2 are Toeplitz (periodic) and their blocks are rotations :









•
1 +

√
3 −1 +

√
3

1 −
√

3 1 +
√

3
•

















√
3 −1

1
√

3 √
3 −1

1
√

3









=









• •
1 +

√
3 3 +

√
3 3 −

√
3 1 −

√
3

1 −
√

3 −3 +
√

3 3 +
√

3 −1 −
√

3
• •









(1.3)

To normalize those columns to unit length, divide by 2
√

2, 2, and 4
√

2. The rotation
angles are π/12 and π/6, adding to π/4.

4. Permutation matrices. The ordering (3, 4, 1, 2) is associated with a 4 by 4
permutation matrix. The bandwidths of P and PT = P−1 are w = 2. This is the
greatest distance w = max | i − p(i)| that any entry must move :

(3, 4, 1, 2) corresponds to P =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









.

Three “greedy steps” [1] will exchange disjoint neighbors to reach the order (1, 2, 3, 4) :

(3, 4, 1, 2) → (3,1,4, 2) → (1,3,2,4) → (1,2,3, 4).
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The product of the corresponding block diagonal matrices F1F2F3 is P :

(1.4) P =









1
0 1
1 0

1

















0 1
1 0

0 1
1 0

















1
0 1
1 0

1









.

In this example N reaches its maximum value 2w − 1 = 3 for permutations of
bandwidth w.

2. The Factorization A = F1 . . . FN

A and A−1 are banded n by n matrices. We will display the steps of their
factorization into block diagonal matrices. The factors are reached in two steps :

(1) Factor A into BC with diagonal blocks of sizes w, 2w, 2w, . . . for B and
2w, 2w, . . . for C. As in equations (2), (3), (4), this shift between the two
sets of blocks means that A = BC need not be block diagonal.

(2) Break B and C separately into factors F with blocks of size 2 (or 1) along
the diagonal. This is achieved in [17] by ordinary elimination, and is not
repeated here. In principle we may need O(w2) steps, moving upward in
successive columns 1, . . . , 2w of each block in B and C.

We do want to explain the key idea behind Step 1, to reach A = BC.
Suppose A has bandwidth w = 2. If A−1 also has w = 2, Asplund’s theorem

[2, 18] imposes a rank condition on certain submatrices of A, above subdiagonal w
or below superdiagonal w. All these submatrices must have rank ≤ w.

To apply this condition we take the rows and the columns of A in groups of
size 2w = 4. The main diagonal is indicated by capital letters X, and Asplund’s
condition rank ≤ 2 applies to all Hi and Ki. All those ranks are exactly 2 because
each set of four rows has rank 4.

H1

X x x

K1
x X x x

x x X x x

x x X x x

H2

x x X x x

K2
x x X x x

x x X x x

x x X x x

Our plan is to diagonalize these submatrices H1, K1, H2, K2, . . . by row operations
on the H ’s and column operations on the K’s. The row steps can be done in parallel
on H1, H2, . . . to give the blocks in B. The column steps give the blocks in C, and
we fold into C the diagonal matrix reached at the end of the elimination.

Elimination on H1: With rank 2, row operations will replace every x by
zero. Rows 3 and 4 of the new K1 must now be independent (since they
have only zeros in H1).

Elimination on K1: With rank 2, upward row operations and then column
operations will replace every x by zero. Columns 5 and 6 in the new H2

must now be independent (since those columns start with zeros in the
current K1).
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Elimination on H2: Leftward column operations and then row operations
will replace every x by zero. Eventually the whole A is reduced to a
diagonal matrix.

3. Four Triangular Factorizations

The basic factorization is A = LU . The first factor has 1’s on the diagonal,
the second factor has nonzeros d1, . . . , dn. Multiplying the k by k upper left sub-
matrices gives Ak = LkUk, so a necessary condition for A = LU is that every Ak

is nonsingular. Executing the steps of elimination shows that this condition is also
sufficient. After k − 1 columns are zero below the main diagonal, the (k, k) entry
will be detAk/ detAk−1. Below this nonzero pivot dk, row operations will achieve
zeros in column k. Then continue to k + 1. Inverting all those row operations by L
leaves A = LU .

Note that column operations will give exactly the same result. At step k,
subtract multiples of column k from later columns to clear out row k above the
diagonal. After n steps we have a lower triangular Lc with the same pivots dk

on its diagonal. Recover A by inverting those column operations (add instead
of subtract). This uses upper triangular matrices multiplying on the right, so
A = LcUc. Moving the pivot matrix D = diag (d1, . . . , dn) from Lc to Uc must
reproduce A = LcD

−1DUc = LU as found by row operations, because those factors
are unique.

If any submatrices Ak are singular, A = LU is impossible. A permutation
matrix P is needed. In numerical linear algebra (where additional row exchanges
bring larger entries into the pivot positions) it is usual to imagine all exchanges done
first. Then the reordered matrix PA factors into LU . In algebra (where the size of
the pivot is not important) we keep the rows in place. Elimination is still executed
by a lower triangular matrix. But the outcome may not be upper triangular, until
we reorder the rows by factoring out P :





0 2 5
1 0 4
0 0 3



 =





0 1 0
1 0 0
0 0 1









1 0 5
0 2 4
0 0 3



 = PU.

The elimination steps (which produced those zeros below the entries 1 and 2) are
inverted by L. Then the original A is LPU .

To see that P is unique, consider any upper left submatrix a of A:

(3.1)

[

a ∗
∗ ∗

]

=

[

ℓ 0
∗ ∗

] [

p ∗
∗ ∗

] [

u ∗
0 ∗

]

gives a = ℓpu.

If a has s rows and t columns, then ℓ is s by s and u is t by t—both with nonzero
diagonals and both invertible! Therefore the s by t submatrix p has the same rank
as a. Since the ranks of all upper left submatrices p are determined by A, the whole
permutation P is uniquely determined in A = LPU [5, 6, 8]. This simple step is
all-important.

The 1’s in P indicate pivots in A. This occurs in the i, j position when the rank
of the i by j upper left submatrix aij jumps above the rank of ai−1, j and ai, j−1.
(By convention ai0 and a0j have rank zero.) Again this criterion treats rows and
columns equally. Elimination by row or by column operations leads to the same P .
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A 2 by 2 example shows that the triangular L and U are no longer unique :
[

0 1
1 a

]

=

[

1 0
b 1

] [

0 1
1 0

] [

1 c
0 1

]

provided a = b + c.

If elimination is by row operations, we will choose b = a to clear out column 2 and
reach c = 0. If elimination is by column operations, we will choose c = a to clear
out row 2 and reach b = 0. These particular choices of L and U are “reduced on
the right” and “reduced on the left.” The matrices PUP−1 and P−1LP are upper
and lower triangular respectively (both are identity matrices in this example).

For each of these reduced factorizations—the normal choices when constructed
by elimination—all three factors L,P ,U are unique up to the diagonal pivot matrix
D. If we include D as a fourth factor in A = LPDU , with diagonal 1’s in L and
U , then all reduced factors are unique.

Those paragraphs summarized the known algebra of elimination “with P in the
middle.” We want to add one trivial observation. It is prompted by the Bruhat
factorization A = U1πU2 with two upper triangular factors. The permutation π will
now be the reverse identity matrix J for a generic matrix A. Notice that U1π is not
lower triangular, and Bruhat in this generic case is not the same as A = LU . Our
observation is that four inequivalent factorizations of A come from four different
starting points for elimination.

Those starting points are the four corner entries of A. We indicate the shapes
of the triangular factors in the four generic cases, when the eliminations proceed
without meeting zeros in the natural pivot positions (if a zero does appear, the
permutation will change from I or J):

an1 ann

a1na11

(up and right) A = U1JU2

(down and right) A = LU

A = UL (up and left)

A = L1JL2 (down and left)

Thus Bruhat comes from eliminating starting at an1. When column 1 is reduced to
zero above this pivot, the next pivot position is (n− 1, 2). With no row exchanges,
upward elimination will reach a “southeast” matrix. This becomes upper triangular
when its rows are reordered by J :

A −→









∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗









=









1
1

1
1

















∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗









= JU2.

The steps of upward elimination are inverted by an upper triangular matrix U1 that
brings back A = U1JU2.

If a pivot entry is zero, the reverse identity J changes to a different permutation
π. These permutations come in a natural partial order (the Bruhat order) based
on the number of transpositions of neighbors. J = (n, . . . , 1) comes first with the
maximum number of transpositions.
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4. Infinite Matrices

A is singly infinite if the indices i, j are natural numbers (i, j in N), and doubly
infinite if all integers are allowed (i, j in Z). We mention three difficulties with the
factorization of infinite matrices.

I. For singly infinite matrices, elimination starts with a11. Even if there are no row
exchanges, the factors L and U can be unbounded. The pivots can approach 0 and
∞. Consider a block diagonal matrix A with 2 by 2 blocks Bn :

Bn =

[

εn 1
1 0

]

B−1
n =

[

0 1
1 −εn

]

εn → 0.

Bn and B−1
n stay bounded but the blocks in L and U will grow as n → ∞ :

Bn = LnUn =

[

1 0
ε−1

n 1

] [

εn 1
0 −ε−1

n

]

.

Thus L and U are unbounded.

II. For doubly infinite matrices, elimination has no natural starting point. Instead
of a recursive algorithm, we need to describe the decisions at step k in terms of the
original matrix A. Here is a reasonable formulation of that step:

For each k in Z, remove all columns of A after column k to create a submatrix
A(k) ending at column k.

Define I(k) as the set of all numbers i in Z such that row i of A(k) is not a
linear combination of previous rows of A(k). The set I(k) has these properties :

(1) I(k) contains no numbers greater than k + w. By the bandedness of A,
the rows beyond row k + w are zero in A(k).

(2) I(k) contains every number i ≤ k − w. All the nonzeros in row i of A
are also in row i of A(k), by bandedness. Since A is invertible, that row i
cannot be a combination of previous rows.

(3) I(k) contains I(k − 1). If i is in I(k − 1), then row i of A(k − 1) is not
a combination of previous rows of A(k − 1) ; so row i of A(k) is not a
combination of previous rows of A(k).

(4) If multiples of previous rows of A(k) are subtracted from later rows to
form a matrix B(k), the sets I(k) are the same for A(k) and B(k).

Lemma 4.1. I(k) contains exactly one row number that is not in I(k−1). Call
that new number i(k). Every i in Z is i(k) for one column number k.

Reasoning : For each i that is not in I(k−1), row i of A(k−1) is a combination
of previous rows of A(k − 1). Subtract from each of those rows i of A(k) that
combination of previous rows of A(k). Then these rows i of the new matrix B(k)
(formed from A(k)) are all zero except possibly in its last column k.

We must show that exactly one of these rows of B(k) ends in
a nonzero. Then its row number i (not in I(k − 1)) is in I(k).
The permutation matrix P will have a one in that row i(k),
column k.
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Suppose I(k) contains two row numbers i1 < i2 that are not in I(k − 1). Then
rows i1 and i2 of B(k) have only zero entries before column k. Therefore row i2 is
a multiple of row i1. Thus i2 cannot belong to I(k).

Suppose I(k) contains no new row numbers, and equals I(k − 1). If i is not in
I(k−1), elimination can produce zeros in row i up to and including column k. Then
the idea is to use column operations to produce zeros in all the remaining entries
of column k. That is now a column of zeros, which contradicts the invertibility of
the original matrix A.

Those column (and row) operations will produce zeros by using the pivots
already located in positions (i(j), j) for j < k. Yinghui Wang and I have discussed
this sequence of steps. For finite matrices no additional hypothesis will be needed.
But infinite matrices follow their own rules, and it is too early to give sufficient
conditions for A = LPU to be achieved.

III. The reader might enjoy a striking example of this third difficulty with infinite
matrices. These matrices have AB = I but Bx = 0. Thus (AB)x is different from
A(Bx) :

(4.1) A =













1 1 1 1 •
0 1 1 1 •
0 0 1 1 •
0 0 0 1 •
• • • • •













B =













1 −1 0 0 •
0 1 −1 0 •
0 0 1 −1 •
0 0 0 1 •
• • • • •













x =













1
1
1
1
•













The associative law (AB)x = A(Bx) has failed! The sums and differences in A and
B correspond to integrals and derivatives (and also BA = I). Rien Kaashoek and
Richard Dudley showed us similar examples, and Alan Edelman pointed out the
disturbing analogy with the fundamental theorem of calculus.

The usual proof of the associative law is a rearrangement of a double sum. For
infinite series, that rearrangement is permitted when there is absolute convergence.
(Changing every −1 in B to +1 will produce divergence in ABx.) More generally,
(AB)x = A(Bx) for bounded operators on a Banach space. Our problem is to stay
within this framework when L and U can be unbounded.

Notice the relevance of associativity in our attempted proof above. Row oper-
ations reduced A(k) to B(k), and then row and column operations reduced column
k to zero. Does this safely contradict the invertibility of A? (Sections of infinite
matrices are analyzed by Lindner in [9 ]—a beautiful theory is developing.)

5. Banded Permutations and the Shifting Number

Factoring banded permutations is a combinatorial problem and Greta Panova
showed how a “hooked wiring diagram” yields P = F1 . . . FN with N < 2w factors.
In the finite case [11], each factor F executes disjoint exchanges of neighbors. The
intersections of wires indicate which neighbors to exchange. A second proof of
N < 2w is given in [1].

The diagram has wires from 1, 2, 3, 4 to 3, 4, 1, 2. This P has w = 2, each F has
w = 1, and N = 3 factors are required. They were displayed in equation (4). The
distance from left to right is 2w, and all hooked lines have slope −1/ + 1.



BANDED MATRICES WITH BANDED INVERSES AND A = LPU 9

i = 1

2

3

4

y

1 = p(3)

2

3

4

F2 F1F3

1 3

2 4

2 3 1 4

In this example F3 yields 1, 3, 2, 4 by one transposition. The two exchanges in
F2 yield 3, 1, 4, 2. Then F1 produces 3, 4, 1, 2. Three lines cannot meet at the same
point, because two would be going in the same direction.

We must prove that intersections of hooked lines occur on at most 2w − 1
verticals. Suppose that i < j but p(i) > p(j). The line through the left point
x = 0, y = i is y = i + x (slope +1 because y increases downward). The line
through the right point x = 2w, y = p(j) is y = p(j) − x + 2w. Those lines meet
(between their hooks) at x = w + 1

2
(p(j)− i). We need to show that there are only

2w−1 possible values for the integer p(j)−i. Then there will be only 2w−1 possible
values for x, and those 2w − 1 vertical lines will include all the intersections.

Bandedness gives p(j) − j ≥ −w. Adding j − i > 0 (which becomes j − i ≥ 1
for integers) leaves p(j) − i ≥ 1 − w. This is the desired bound on one side.

In the opposite direction i−p(i) ≥ −w. Adding p(i)−p(j) ≥ 1 leaves i−p(j) ≥
1−w. So the only possibilities for i−p(j) are the 2w−1 numbers 1−w, . . . , w−1.

The intersecting lines reveal the order for the transpositions Fi of neighbors,
whose product is P . See [1, 13] for a greedy sequence of transpositions Fi. This
factorization with N < 2w extends to banded singly infinite permutations.

Turn now to doubly infinite permutations (of Z). A new possibility appears,
because the left shift matrix S is also a permutation with bandwidth w = 1 (so S
and the right shift ST = S−1 become admissible factors Fi of P ) :

S(. . . , x0, x1, . . .) = (. . . , x1, x2, . . .) has Sij = 1 on the superdiagonal j = i + 1.

Theorem 5.1. A banded permutation P of Z factors into P = SsF1 . . . FN

with N < 2w and |s| ≤ w. The shifting index s(P ) (positive or negative) has the
property that

(5.1) s(P1 P2) = s(P1) + s(P2).

Proof. The pure shifts P = Sw and P = S−w are extreme cases. For the
factorization in general, we first untangle the hooked wires by a sequence of trans-
positions as before. After untangling, the diagram will show a shift by s. Our
example is a permutation P that has period B = 4 and bandwidth w = 2 :

p(4n + 1) = 4n + 3, p(4n + 2) = 4n, p(4n + 3) = 4n + 1, p(4n + 4) = 4n + 2
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We draw one period of the wiring diagram for P : �

4

3

2

i = 1

3

2

1

0 = p(2)

Three consecutive transpositions will untangle the wires. But our example still
has a shift : (1, 2, 3, 4) → (0, 1, 2, 3) after the untangling. Therefore P = S F1 F2 F3.
Four rows of the matrix for P will show one period with bandwidth w = 2 :

(5.2) P includes













0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0













=
[

M0 M1

]

.

This permutation has shifting index s = 1. Every permutation factors in the same
way into P = SsF1 . . . FN , untangling followed by possible shifts left or right. All
factors are permutations of Z with bandwidth w = 1.

The rule for s(P1 P2) comes from this factorization. Each product FSs is the
same as Ssf , where f is constructed by moving all the 2 by 2 (and 1 by 1) blocks
s places along the diagonal of F . Shifts in P2 can then combine with shifts in P1 :

(5.3) P1 P2 = (Ss1F1 . . . FN )(Ss2FN+1 . . . FM ) = Ss1+s2f1 · · · fN FN+1 . . . FM .

Thus the index for P1 P2 is s1 + s2 = s(P1) + s(P2).
The shifting index for a doubly infinite invertible matrix imitates the Fredholm

index for a singly infinite matrix. That index is defined when the kernels of A and
A∗ are finite-dimensional :

(5.4) index (A) = dim (kernel of A) − dim (kernel of A∗)

The index of A1A2 is the sum of the separate indices. Thus index (A) = index (P ) if
A = LPU with invertible L and U . Similarly s(A) = s(P ) in the invertible doubly
infinite case.

There is a nice connection between the Fredholm index and the shifting index.
If we stay with permutations, we can sketch a simple proof of this connection:

Theorem 5.2. The shifting index of a banded doubly infinite permutation equals
the Fredholm index of every singly infinite submatrix Pn (containing all entries Pij

with i ≥ n and j ≥ n).
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Proof. For permutations, the Fredholm index of Pn is just the number of zero
columns minus the number of zero rows (both finite for banded P ). Now remove
a row and column (vectors r and c) to form Pn+1. If r = c = (0, 0, . . .) or if
r = c = (1, 0, 0, . . .) this index is unchanged. Suppose r = (0, 0, . . .) but c contains
a 1 from some row i > n of Pn. Then the zero row r was removed but a new zero
row i has been created in Pn+1. The index is again unchanged (and similarly if c
is zero and r is nonzero). When both c and r have 1’s, their removal creates a zero
row and a zero column. So the index of Pn is independent of n.

For the doubly infinite shift Ss, all singly infinite sections (Ss)n have Fredholm
index s. For s > 0, all sections start with s zero columns and have no zero rows.
For s < 0, they start with −s zero rows and have no zero columns. To complete
the proof for any banded permutations, we express its factorization in the form
P = f1 . . . fN Ss and show that the Fredholm index of every Pn stays at s (the
shifting index of P ).

The proof can use induction. When fk exchanges rows n and n + 1 of the
permutation Q = fk+1 . . . fN Ss, it will also exchange those rows of the singly
infinite section Qn. The Fredholm index of Qn is unchanged. From the first step in
this proof we conclude that all exchanges of neighbors, from each factor fk, leave
the index of every section unchanged. So all those indices stay at s = s(P ).

After formulating this theorem on the two indices, we learned from Marko
Lindner that it holds for a much wider class of doubly infinite matrices [see 9, 14, 15].
The original proof [14] is very much deeper, using K-theory. Our shifting index s
is the “plus-index” in that literature, recent and growing and impressive. �

Note To compute s(P ) from our definition requires the factorization P = SsF1 . . . FN .
A more intrinsic definition (if true) comes from the average shift from i to p(i) :

(5.5) Shifting index s(P ) = lim
T→∞

(

1

2T + 1

T
∑

−T

(i − p(i))

)

.

This paper ends with a summary of the periodic (block Toeplitz) case, for which
all information about A is contained in the matrix polynomial M(z). The triangular
factorization of M(z) is a long-studied and beautiful problem. The discussion of
this periodic case could extend to matrices that are not banded, but we don’t go
there.

6. Periodic Matrices (Block Toeplitz)

A singly or doubly infinite matrix has period B if

A(i + B, j + B) = A(i, j) for i, j in N or i, j in Z.

Rows 1 to B contain a sequence . . . , M−1, M0, M1, . . . of B by B blocks. In the
doubly infinite case, those matrices are repeated up and down the “block diagonals”
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of A :

A =



















• • • •
• M0 M1 M2 . . .

• M−1 M0 M1 M2 . . .

• M−2 M−1 M0 M1 M2 . . .

. . .



















.

A singly infinite periodic matrix starts with M0 in the first block as shown. The
blocks above and to the left are not present.

Periodic matrices are “Toeplitz” or “stationary” or “linear time-invariant” by
blocks. The natural approach to their analysis is through the B by B matrix
function

M(z) =
∑

Mj zj (the symbol or the frequency response of A).

The matrix multiplication y = Ax becomes a block multiplication Y (z) = M(z)X(z)
when we separate the components of x and y into blocks xi and yk of length B :

(6.1) Y (z) =
∑

yk zk =
(

∑

Mj zj
)(

∑

xi zi
)

= M(z)X(z).

This convolution rule is the essential piece of algebra at the foundation of digital
signal processing. The map x → X(z) is the Discrete Time Fourier Transform (in
blocks). In this doubly infinite case, we may multiply y = Ax and transform to get
Y (z), or we may transform first and multiply M(z)X(z). Thus FA = MF . The
singly infinite case has i ≥ 0 in

∑

xi zi, and we project y = Ax to have k ≥ 0 in
∑

yk zk.
The two cases are different, but the symbol M(z) governs both:

Doubly infinite

(1) A is banded if M(z) has finitely many terms (a polynomial in z and z−1).

(2) A is also invertible if M(z) is invertible for every |z| = 1.

(3) A−1 is represented by (M(z))−1 which involves a division by det M . So
A−1 is also banded if det M(z) is a monomial c zm, c 6= 0.

(4) A is a permutation P if M(z) = D(z)p is a diagonal matrix diag(zk1 , . . . , zkB )
times a B by B permutation matrix p. Then pij = 1 corresponds to
PiJ = 1 when J = j + kiB (equal indices mod B).

(5) A = LPU if M(z) = L(z)P (z)U(z).

(6) The shifting index of P (and A) is the sum of partial indices s =
∑

ki.

A key point for us is that the factorization into L(z)P (z)U(z) has been achieved.
This theorem has a long and distinguished history beginning with Plemelj [12].
(G.D. Birkhoff’s factorization corresponds to PLU .) A short direct proof, and
much more, is in the valuable overview [7]. Notice that an independent proof of
A = LPU by elimination on infinite matrices would provide a new approach to the
classical problem of factoring M(z) into L(z)P (z)U(z).

There are important changes in 1– 6 for singly infinite matrices A, L, P, U .
Those are still periodic (block Toeplitz). But LU is not periodic; its 1, 1 block is
L0U0 but the 2, 2 block includes L−1U1. The correct order for these block triangular
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matrices is UL. This is the Wiener-Hopf factorization that solves singly infinite
periodic systems. A = UL is not achieved by elimination (which would have to start
at a nonexistent lower right corner of A), but it follows from M(z) = U(z)L(z).

We indicate the changes in (1)–(6) for the singly infinite case. Notice especially
that the shifting index s becomes the Fredholm index in (6). But index zero is not
the same as invertibility. So those properties are considered separately.

(1) U is banded when U(z) is a matrix polynomial in z.

(2) U is invertible if U(z) is invertible for |z| ≤ 1. If U is bidiagonal, with the
numbers u0 and u1 on diagonals 0 and 1, we need |u0| > |u1|.

(3) U−1 is represented by (U(z))−1. U−1 is banded if det U(z) is a nonzero
constant.

(4) A singly infinite periodic permutation (invertible!) is block diagonal.

(5) A = UL if M(z) = U(z)L(z). This is Wiener-Hopf with P (z) included in
L(z).

(6) If P (z) = D(z)p with D(z) = diag(zk1 , . . . , zkB) times a permutation p,
then the Fredholm index of the matrix P (and of A = LPU) is

∑

ki.

The example in section 5 (with period B = 4) illustrates the Fredholm index
in the singly infinite case (6) :

P =







M0 M1 0 •
0 M0 M1 •
0 0 • •






M0 =













0 0 1 0

0 0 0 1

0 0 0 0

0 1 0 0













M1 =













0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0













In this case det(M0 + M1z) = z. The Fredholm index of P is 1. The kernel of P
is spanned by (1, 0, 0, . . .). The diagonal matrix D(z) is diag(1, 1, z, 1). The mul-
tiplicative property of det(P1(z)P2(z)) confirms that index(P1 P2) = index(P1) +
index(P2). Those indices are the exponents of z in the determinants of P1(z) and
P2(z).
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