Introducing e*

Abstract

The day where* appears is important in teaching and learning calculuss iBhihe great
new function—but how to present it? That decides whethercti@ce to connect with
key ideas (past and future) is taken or missed. Textboolks fftir main approaches:

1. Use the derivative of” /n! Add those terms to matecfy /dx with y.

2. Take thesth power of(1 4 x/n) as in compound interest. Letapproach infinity.
3. The slope 0b~* is C timesb*. Chooser as the value ob that makes” = 1.

4. Constructy = Iny by integration. Invert this function to find = e*.

We have a favorite and we explain why. The second crucialistepfinde* timese”.

The exponential functioly = ¢* is the great creation of calculus. Algebra is all we need
for x, x2, ..., x™. Trigonometry leads us to sinand cosc. But the last in this short list
of all-important functions cannot come so directly. Thalbézause* requires us, at one
point or another, to take lamit. The most important function of calculus depends on the
central idea of the whole subject: perfect for every teacher

Still a very big question remaingdow do we approaclk* ? That limiting step can
come in many places, sometimes openly and sometimes hiddléme end of this note we
mention several of these approaches (the reader may knawspthMy chief purpose
in this paper is to advocate the choice that seems most diretstraightforward. This
choice builds on what we know (the derivativexdf), it goes immediately to the properties
we use, and it brings out the central goal of calculus: to eohfunctions with their rates
of change.

What we know : The derivative afx” is ncx"~!
Property we use : The productef ande” is eX+X
Connection we need: Thederivativeof e* is e*

Calculus is aboupairs of functions Functionl (the distance we travel or the height
we climb) is changing. Functioh(the velocitydf/dt or the slopely/dx) tells the rate of
change. From one of those functions, we find the other.

This is the heart of calculus, and we must not let studengssaght of it. The relation
of Function1 to Function2 is learned by examples more than by definitions, and those
great functions are the right ones to remember :

y=x" y =sinx and cosy y =e* ande*



With e* as our goal, let me suggest that we go straight there. If we itécbest property,
students won't find it (and won't feel it). What makes this ¢tion special ?

The slope o&”* is e*
Functionl equals Functio2
y =e* solvesthe differential equation dy/dx = y.

Differential equations are laws of change. The whole puepdsalculus is to understand
change. Itis wonderful to see the most important diffeedmgjuation so early, and doubly
wonderful to solve it.

One more requirement will eliminate solutions like=2¢* andy = 8¢* (the2 and8
will appear on both sides afy /dx = y, so the equation still holds). At =0, ¢° will be
the “zeroth power” of the positive number All zeroth powers ard. So we wanty = e*
to equal 1 whenx =0:

. _ d
y =e”* isthe solution of d_y =y that startsfromy =1 at x =0.
X

Before that solution, draw what it means to have dy/dx. The slope at = 0 must
bedy/dx =1 (sincey =1). So the curve starts upward, along the line- 1 + x. But as
y increases, its slope increases. So the graph goes up fastethen faster). “Exponential
growth” means that the function and its slope stay propoatio

The time you give to that graph is well spent. Once formulaisearthey tend to take
over. The formulas are exactly right, and the graph is onjgraxmately right. But the
graph also shows * = 1/e*, rapidly approaching but never touchimg= 0.

This introduction ends here, befare is formally presented. But a wise reader knows
that we all pay closer attention when we are convinced thataagerson or a new function
is important. | hope you will allow me to present partly as if to a class, and partly as a
suggestion to all of us who teach calculus.

Constructing y =e*
| will solve dy/dx =y a step at a time. At the stangt,= 1 means thatly /dx = 1:

y=1+4+x
x=1

d_y y=1+x

Change dx dy/dx=1+x

y=1
Start dy/dx =1 Change y dy/d

After the first change,y =1+ x has the correct derivativey/dx =1. But then |
had to changdy/dx to keep it equal toy. And | can’t stop there:

y 1 1+x 1+x+1x? cubic
equals | /~ | l AR
dy/dx 1 1+x 1+x+1x2 cubic

The extralx? gives the correct in the slope. Thed x? also has to go intely/dx, to
keep it equal tor. Now we need a new term with this derivati%ez.



The term that gives;x? hasx? divided by 6. The derivative ofx” is nx"~!, so |
must divide byn (to cancel correctly). Then the derivative:ot/6 is 3x2/6 = 1x? as we
wanted. After that comes* divided by 24:

.x3 .x3 x2
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4x
—=————— hasslope ————=—.
4 GO @)1 6
The pattern becomes more clear. Tteterm is divided byn factorial, which isn!=
(n)(n—1)...(1). The first five factorials arel1,2,6,24,120. The derivative
of that term x"/n! is the previous term x"~!/(n—1)! (because the’s cancel). As
long as we don't stop, this sum of infinitely many terms dods@a®dy /dx = y:

y@)=e*=1+x+ix2+ix3+ +Lx"+.. (1)

Here is the function. Take the derivative of every term anglskries appears again.

If we substitutex = 10 into this series, do the infinitely many terms add to a finite
numbere'®? Yes The numbers:! grow much faster than0” (or any otherx™). So
the termsl0” /n! in this “exponential series” become extremely smalkas co. Analysis
shows that the sum of the series (whiclyis- ¢*) does achievdy/dx = y.

Notel Thegeometric serie$ +x +x2? +x3 +--- adds up td /(1 —x). This is the most
important series in mathematics, but it runs into a problem=a 1: the suml +1+1+
1+--- isinfinite. The series fo¢* is entirely different, because the powefsare divided
by the rapidly growing numbers = n factorial.

Every termx” /n! is the previous term multiplied by/». Those multipliers approach
zero and the limit step succeeds (the infinite series hagta §aim). This is a great example
to meet, long before you learn more about convergence aetgdiace.

Note 2 Here is another way to look at that series &dr. Start with x” and take its
derivativen times. First getx” ! and themi(n — 1)x” 2. Finally thenth derivative is
n(n—1)(n—2)...(1)x°, which isn factorial. When we divide by that numbethe nth
derivative of x”/n! isequal to 1. All other derivatives are zero at= 0.

Now look ate*. All its derivatives are stilb*, so they also equal 1 at=0. The series
is matching every derivative @f* at the starting pointt = 0.

Note3 Set x =1 in the exponential series. This tells us the amazing numher= e:
e=1+1+3+§+55+ g+ - =2.71828... (2)

The first three terms add ®5. The first five terms almost rea@li71. We never reach.72.
It is certain that is not a fraction. It never appears in algebra, but it is therkember for
calculus.



Multiplying by Adding Exponents

Is it true thate timese equalse? ? Up to now,e ande? come separately. We substitute
x =1 and thent =2 in the infinite series. The wonderful fact is that for everythe series
produces thexth power of the number.” When x = —1, we gete—! which is 1/e:
1 1 1 1 1
Setx=-1 el ——— 4
* ¢ T Tt 0"

If we multiply that series foi /e by the series foe, we getl.

The best way is to go straight for all multiplications ©f times any poweeX . The
rule of adding exponents says that the answe# 15X . The series must say this too. When
x=1andX = —1, this rule produceg® frome! timese~!.

Add the exponents (e*)(eX)=e*tX (3)
We only knowe* andeX from the infinite series. For this all-important rule, we can
multiply those series and recognize the answer as the geriest* . Make a start:

1 1
Multiply each term e =1+x+=-x2 +-x3 -

2 6
e* times eX X_1.x 1X2 1X3
X = - -
Hoping for * +2 +6 *
1 1
e +X @) =1+x+X +ox> +xX X2+ ()

1+x+ X is the right start foe*™*. Then comes; (x + X)?:

1 1 .

E(x +X)?= 3 (x2+2xX + X?2) matches the “second degree” terms in (4).
The step to third degree takes a little longer, but it als@eads:

1 1 3 3 1 .
g(x +X)3 = 8x3 + gx2X + ngz + 5X3 matches the next terms in (4).
For high powers ofc + X we need théinomial theoren{or a healthy trust that mathe-
matics comes out right). Wherf multipliese¥ , this produces all the products 6" /n!)
times(X™/m!). Now look for that same term inside the seriesddt X :

Xn+m nym 1 nym
inside & X" i (X times (™'Y which gives® 2. (5)
(n+m)! (n+m)! n!m! n!m!

That binomial numbe¢n 4+ m)!/n! m! counts the number of ways to choosaces out of
n+m aces. Out of 4 aces, you could choose 2 acd$/inl2! = 6 ways. There are 6 ways
to choose x’s out of xxxx. This number 6 will be the coefficient af X2 in (x + X)*.

In the fourth degree term, that 6 is divided by 4! (to produt¢). Whene* multiplies
eX, 1x% multiplies 1 X2 (which also produces/4). All terms are correct, but we are not

going there—we accee*)(eX) = e¥+¥ as now confirmed.




Second proof A different way to see this rule fofe*)(e¥) is based only/dx = y.
Start fromy = 1 atx = 0. At the pointx, you reachy = ¢*. Now go an additional distance
X to arrive ate* X

Notice that the additional part starts frarh (instead of starting from 1). That starting
value e* will multiply eX in the additional part. Se* timeseX must be the same as
e*TX _ This is a “differential equations proof” that the exponeants added. (Personally, |
am happy to multiply the series and match the terms.)

The rule immediately giveg* timese*. The answer ig* ™ = ¢2*. If we multiply
again bye*, we find (¢*)3. This is equal tee?*** = ¢3*. We are finding a rule for all

powers(e®)" = (e*)(e*) - (e¥):
Multiply exponents (e*)" =e™* (6)

This is easy to see for=1,2,3,... and therm =—1,—2,—3,...It remains true for all
numbersx andn.

That last sentence about “all numbers” is important! Caiswannot develop properly
without working with all exponents (not just whole numbersfiactions). The infinite
series (1) defines* for everyx and we are on our way. Here is the graph that shows
Function (1) = Function (2) = e* = exp(x).

e?=7388...T y =e*
D _ o«
dx
(ex)(eX) — ex+X
(ex)n = enx
Iny _
e=el=2718... & e "=y
eln2_2
V=1
e 1 =368
| L X
-2 -1 o In2, 2



The Exponentials2* and »*

We know that23 = 8 and2* = 16. But what is the meaning &f* ? One way to get close
to that number is to replace by 3.14 which is314/100. As long as we have a fraction in
the exponent, we can live without calculus:

Fractional power 2314/100 — 314th power of thel00th root21/1%0,

But this is only “close” to2”. And in calculus, we will want the exact slope of the curve
y =2%. The good way is to conne2t with ¢*, whose slope we know (it is* again). So
we need to conneetwith e.

The key number is thiogarithm of 2. This is written “In2” and it is the power ot
that produce?. It is specially marked on the graph of:

Natural logarithm of 2 enz=2

This number Ir2 is about7/10. A calculator knows it with much higher accuracy. In the
graph ofy = ¢*, the number Ir2 on thex axis produces = 2 on they axis.

This is an example where we want the output 2 and we ask for the input =In 2.
That is the opposite of knowing and asking for. “The logarithmx =In y is theinverse
of the exponentiay = ¢*.” This idea is explained in two video lectures ocw.mit.edu—
inverse functions are not always simple.

When we have the number I meeting the requiremeft= ¢ 2, we can take theth
power of both sides:

Power s of 2 from powersof e 2=¢"2 and 2*=e*n2 (7)

All powers of e are defined by the infinite series. The new functdnalso grows expo-
nentially, but not as fast as* (because is smaller thare). Probablyy =2* could have
the same graph as', if | stretched out ther axis. That stretching multiplies the slope by
the constant factor I12. Here is the algebra:

d d
Zoox— = xIn2 _ In2 xIn2 _ In 2)2*.
I 6 (In2)e (In2)
For any positive numbédr, the same approach leads to the functios b*. First, find
the natural logarithm Iih. This is the number (positive or negative) so that ¢" 2. Then

take thexth power of both sides:

Slopeof y =2*

d
Connect b to e b=e"? andb* =e*"? and - b* = (In b)b* (8)
X

When b is e (the perfect choice), lh=Ine=1. Whenb is ¢", then Inb =Ine” =n.
“The logarithm is the exponent.” Thanks to the series that define$ for every x,
that exponent can be any number at all.

Allow me to mention Euler's Great Formuld* = cosx +i sin x. The exponentx
has become aimaginary number. (You know thati? = —1.) If we faithfully use cosx +
i sinx at90° and180° (wherex = /2 andx = ), we arrive at these wonderful facts:

Imaginary exponents ™2 =i and €™ =-1. (9)

Those equations are not imaginary, they come from the geeiaissfore*.



Continuous Compounding of Interest

There is a different and important way to reachnde* (not by an infinite series). We
solve the key equatiody /dx = y in small steps. As these steps approach zero (a limit is
always involved !) the small-step solutidhbecomes the exagt= e~.

| can explain this idea in two different languages. Each staftipliesY by 1 4+ Ax:

1. Compound interestAfter each stef\ x, the interest is added fa Then the next step
begins with a larger amouit + Ax)Y.
2. Finite differencesThe continuoudy/dx is replaced by small stepsY /A x:

Y(x+Ax)—Y(x)
AXx

d
v _ y changesto

=Y (x) still with Y(0) =1. (10)
dx

Let me compute compound interest when 1 year is divided i@tanbnths. The interest
rate is 100% and you start with(0) = $1. If you only got interest once, at the end of the
year, then you hav&(1) = $2.

If interest is added every month, you now g—ﬁ;tof 100% each time (12 times). S6
is multiplied each month by&ﬁ. (The bank addql7 for every 1 you have.) Do this 12
times and the final value $2 is improved to $2.61:

1 12
After 12 months Y(1) = (1+§) =$2.61
Now add interest every day.(0) = $1 is multiplied 365 times by %%:
365
After 365 days Y(1)= (1 + %) =%$2.71 ¢lose toe)

Very few banks use minutes, and nobody divides the yearAite3 1,536,000 seconds.
It would add less than a penny to $2.71. But many banks arengitb usecontinuous
compoundingthe limit asN — co. After one year you haveds

N
Another limit gives e (1+%) —e=2.718...asN — o (11)

This is the same numberas1+1+ % + é +--- from the approach that | prefer. To
match this continuous compounding wéth, invest at the 100% rate faryears. Now each
ofthe N stepsisc/N years. Again the bank multiplies at every step byst. The 1 keeps
what you have, the /N adds the interest in that step. Aft8rsteps you are close td':

Another formulafor e* 1+ %)N —e* asN - o (12)

Comment | would allow this second approach into my classroom, sieeerything
aboute” is so important. But | wouldn't prove that it gives the saateas the equation
dy/dx =y. Of course this is quite reasonable, since the derivative1cf %)N is
1+ %)N*I. And equally reasonable to expect the difference equatidfAx =Y to
stay close taly/dx =y.



Hairer and Wanneif4] have compared the produ¢1+%)N to the partial sum
1+ ---+1/N!of the series:

N=1 2.000 2
2 2.250 2.5
3 2.370 2.67
4 2.441 2.708
5 2.488 2.7166
6 2.522 2.71805
7 2.546 2.718253
8 2.566 2.7182787
9 2.581 2.71828152
10 2.594 2.718281801
11 2.581 2.7182818261
12 2.594 2.71828182828

One column shows the slow convergence of the discAdfgAx =Y to the continuous
dy/dx =y. The errory —Y is of orderAx = 1/N. (This “Euler method” is still chosen
for difficult problems.) The other column has errors of ord¢N !, more like a modern
“spectral method.”

Euler himself had seen this contrast befo7d8, the date of his great textbodg].
Johann Bernoulli connected logarithms to exponentiaksein 1697 [1]. And by 1751,
Euler could resolve a hot debate between Bernoulli and Lei@inout the logarithm of a
negative numbep]. The key was his wonderful formuld* = cosx +i sinx.

Third approach  Authors frequently produce* by starting with2* and 3*. Those
curves have slopes proportionalxb and3*. The slope of any functioh* is proportional
to that function:

bx+h _ KX bh -1
slope= limit of = b* times (Iimit of ; ) =Cbh*. (13)

That numberC is smaller thanl for b =2, and larger thanl for b =3. Somewhere
between, there must be a number for whi€h= 1. This reasoning produces a number
e for which the slope 0&~ is e*.



Itis not right to criticize this approach on mathematicalgnds. Pedagogically, | don’t
see how a student can build on it. To me, the steps froon + x to 1 + x + %xz are going
somewhere. We are seeing central ideas of calculus, thernatige y = 1 4 x that gives
linear approximation and the tangent parabola that givesligic approximation. The
motivation is clear and the correctness can be seen termiy g using (and reinforcing)
the derivative ofc”.

An infinite series is still a big jump. Butit is good to showdgunts where we are going,
by an example that we really need and use.

TheEquation dy/dx = ay

The “use” of calculus is to understand change. The first sté@imy to dy/dx (Function
1to Function2). The next step reachd$y/dx? and its meaning and importance (this can
be Function3). There is one more absolutely crucial step, to connecttlimsctions by
equations likely /dx = y andd?y/dx* = —y. These are fundamental equations of nature
and why wouldn’t we solve them?

Yes, nonlinear problems can wait for that future course dierintial equations. But
the essential points are clearest for three linear equatidth constant coefficients:

dy dy dy N
- = —=a —— =ay+s.
dx Y dx Y dx Y

The solution to the first also solves the second, after a stalege on the axis:
. dy .
Changetheinterest ratetoa Ir =ay issolved by y(x) =e®* (24)
X

The series foe?* is 1 +ax + %(ax)z +--- and we take its derivative:

d
d—(e“x)=a+a2x+---=a(1+ax+---)=ae‘” (15)
X

The derivative o&4* brings down the extra factar. Soy = ¢4~ solvesdy/dx =ay.
This soon becomes a key example of the chain rule. And thd #guation has a
constant solutior-s/a to add to the exponentia{Se®*.

Fourth Approach by Inverse Functions

Instead of constructing = ¢*, we could construct the inverse functier=In y. Either way
will yield all pairs (x, y), and the natural logarithm needs only an ordinary integnatio

d d 1 1
Invert & _ y to @__ and thenx = J— dy. (16)
dx dy 'y y

Starting that integration at = 1 gives the correct value =In1 = 0. After inversion this
is y =® = 1. And introducing as a dummy variable leaves=Iny = [ 1 d1.



Now the “limiting step” thate® always needs is in the definition of the integral. The
key propertye*eX = e**+X pecomeslfiyY) =Iny +InY. This is proved directly from the
integral.

This fourth approach has its attractions. But look for theakl that need to be
understood first:

1. The meaning of an inverse function
2. The definition of an integral
3. The chain rule fox = £ ~!(y) that gave(dx/dy)(dy/dx) = 1.

Maybe there is a way to escape that chain rule, but not theoti&oe* would have to
come long after the derivative af'. “Early Transcendentals” will be impossible this way,
and the ideas themselves seem much more subtle.

Explicit constructions are the winners — you can say “hetbédunction.”
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