
LU AND CR ELIMINATION1

GILBERT STRANG AND CLEVE MOLER2

Abstract. The reduced row echelon form rref(A) has traditionally been used for classroom3
examples : small matrices A with integer entries and low rank r. This paper creates a column-row4
rank-revealing factorization A = CR, with the first r independent columns of A in C and the r5
nonzero rows of rref(A) in R. We want to reimagine the start of a linear algebra course, by helping6
students to see the independent columns of A and the rank and the column space.7

If B contains the first r independent rows of A, then those rows of A = CR produce B = WR.8
The r by r matrix W has full rank r, where B meets C. Then the triple factorization A = CW−1B9
treats columns and rows of A (C and B) in the same way.10
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1. Introduction. Matrix factorizations like A = LU and A = UΣV T have be-13

come the organizing principles of linear algebra. This expository paper develops a14

column-row factorization A = CR = (m × r) (r × n) for any matrix of rank r. The15

matrix C contains the first r independent columns of A : a basis for the column16

space. The matrix R contains the nonzero rows of the reduced row echelon form17

rref (A). We will put R in the form R =
[

I F
]

P , with an r by r identity ma-18

trix that multiplies the r columns of C. Then A = CR =
[

C CF
]

P expresses19

the n − r remaining (dependent) columns of A as combinations CF of the r inde-20

pendent columns in C. When those independent columns don’t all come first in A,21

P permutes those columns of I and F into their correct positions.22

The example in Section 3 shows how invertible row operations find the first r23

independent columns of A. For a large matrix this row reduction is expensive and24

numerically perilous. But Section 6 will explain the value of an approximate CR or25

CW−1B factorization of A. This is achievable by randomized linear algebra.26

The key point is : A = CR is an “interpolative decomposition” that includes r27

actual columns of A in C. A more symmetric two-sided factorization A = C W−1B28

also includes r actual rows of A in B. The r by r matrix W lies at the “intersection”29

inside A of the columns of C with the rows of B. The mixing matrix W−1 removes30

that repetition to produceW−1B = R. If P = I then we are seeing block elimination31

with W as the block pivot :32

A =

[

W H
J K

]

=

[

W

J

]

W−1
[

W H
]

= C W
−1

B33

That matrix W is invertible, where a row basis B meets the column basis C. For34

large matrices, a low rank version A ≈ CUB can give a high quality approximation.35

1
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2 GILBERT STRANG AND CLEVE MOLER

2. LU Elimination. This is familiar to all numerical analysts. It applies best36

to an invertible n by n matrix A. A typical step subtracts a multiple ℓij of row j from37

row i, to produce a zero in the ij position for each i > j. A column at a time, going38

left to right, all entries below the main diagonal become zero. LU elimination arrives39

at an upper triangular matrix U , with the n nonzero pivots on its main diagonal.40

We could express that result as a matrix multiplication EA = U . The lower41

triangular matrix E is the product of all the single-step elimination matrices Eij . A42

more successful idea—which reverses the order of the steps as it inverts them—is to43

consider the matrix L = E−1 that brings U back to A. Then EA = U becomes44

A = LU .45

In this order, the lower triangular L contains all the multipliers ℓij exactly in their46

proper positions. The pattern is only upset if any row exchanges become necessary47

to avoid a zero pivot or to obtain a larger pivot (and smaller multipliers). If all48

row exchanges are combined into a permutation matrix, elimination factors that row-49

permuted version of A into LU .50

3. CR Elimination. Start now with anm by n matrix A of rank r. Elimination51

will again proceed left to right, a column at a time. The new goal is to produce an r52

by r identity matrix I. So each pivot row in turn is divided by its first nonzero entry,53

to produce the desired 1 in I. Then multiples of that pivot row are subtracted from54

the rows above and below, to achieve the zeros in that column of I.55

If at any point a row is entirely zero, it moves to the bottom of the matrix. If a56

column is entirely zero except in the rows already occupied by earlier pivots, then no57

pivot is available in that column—and we move to the next column. The final result58

of this elimination is the m by n reduced row echelon form of A. We denote that59

form by R0 :60

(3.1) R0 = rref(A) =

[

I F

0 0

]

P
r rows

m− r rows
61

r n− r columns62

The n by n permutation matrix P puts the columns of Ir×r into their correct positions,63

matching the positions of the first r independent columns of the original matrix A.64

65

(3.2) A =





1 2 3 4
1 2 3 5
2 4 6 9



 →





1 2 3 4
0 0 0 1
0 0 0 0



 →





1 2 3 0
0 0 0 1
0 0 0 0



 = R0.66

C contains columns 1 and 4 of A and R contains rows 1 and 2 of R0. Then CR con-67

tains the four columns of A : column 1, 2(column 1), 3(column 1), column 4. PT puts I68

first :69

70 (3.3)

R0P
T =





1 2 3 0
0 0 0 1
0 0 0 0













1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0









=





1 0 2 3
0 1 0 0
0 0 0 0



 =

[

I F

0 0

]

.71

All permutations have PTP = I. So multiplying equation (3.3) by P and removing72

row 3 produces R =
[

I F
]

P .73
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LU AND CR ELIMINATION 3

Usually the description of elimination stops at R0. There is no connection to a74

matrix factorization A = CR. And the matrix F in the columns without pivots is75

given no interpretation. This misses an opportunity to understand more fully the76

rref algorithm and the structure of a general matrix A. We believe that A = CR is77

a valuable idea in teaching linear algebra [11] : a good way to start.78

4. The Factorization A=CR : m by r times r by n. The matrix C is79

easy to describe. It contains the first r independent columns of A. The positions80

of those independent columns are revealed by the identity matrix I in rref(A) and81

by P (the permutation). All other columns of A (with rank r) are combinations82

of these r columns. Those combinations come from the submatrix F . The matrix83

R is the reduced row echelon form R0 = rref(A) without its zero rows :84

(4.1) R =
[

I F
]

P and A = CR =
[

C CF
]

P85

Again, the matrix F tells how to construct the n−r dependent columns of A from86

the r independent columns in C. This interpretation is often missing from explana-87

tions of rref—it comes naturally when the process is expressed as a factorization. C88

gives the independent columns of A and CF gives the dependent columns. P orders89

those n columns correctly in A.90

Example 2 A is a 3 by 3 matrix of rank 2. Column 3 is − column 1+2(column 2),91

so F contains −1 and 2. This example has P = I, and the zero row of R0 is gone :92

A =





1 2 3
4 5 6
7 8 9



 =





1 2
4 5
7 8





[

1 0 −1
0 1 2

]

= CR = C
[

I F
]

93

The first two columns of A are a basis for its column space. Those columns are in C.94

The two rows of R are a basis for the row space of A. Those rows are95

independent (they contain I). They span the row space because A = CR expresses96

every row of A as a combination of the rows of R.97

Piziak and Odell [9] include A = CR as the first of their “full rank factoriza-98

tions” : independent columns times independent rows. Then Gram-Schmidt (A =99

QR) achieves orthogonal columns, and the SVD also achieves orthogonal rows. Those100

great factorizations offer a numerical stability that elimination can never match.101

102

Here are the steps to establish A = CR. We know that an invertible elimination103

matrix E (a product of simple steps) gives EA = R0 = rref(A). Then A =E−1R0 =104

(m×m)(m×n). Drop them−r zero rows ofR0 and the lastm−r columns ofE−1. This105

leaves A =106

C
[

I F
]

P , where the identity matrix in R allows us to identify C in the columns of107

E−1.108

109
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4 GILBERT STRANG AND CLEVE MOLER

The factorization A = CR reveals the first great theorem of linear algebra.110

The column rank r equals the row rank.111

Proof The r rows ofR are independent (from its submatrix I). And all rows of A are112

combinations of the rows of R (because A = CR). Note that the rows of R belong to113

the114

row space of A because R = (CTC)−1CTA. So the row rank is r.115

116

The A = CR factorization reveals all these essential facts and more. The equation117

Ax = 0 becomes easy to solve. Each dependent column of A is a combination of the r118

independent columns in C. That gives n−r “special solutions” to Ax = 0 : a basis for119

the nullspace of A.120

Put those solutions into the nullspace matrix N . Recalling that PPT = I, here121

is AN= zero matrix (m by n− r) :122

(4.2) A =
[

C CF
]

P times N = PT

[

−F

In−r

]

equals −CF + CF = 0123

In Example 2 with P = I, N has one column x =
[

−F 1
]T

=
[

1 −2 1
]T

.124

125 The columns of N are “special” because of the submatrix In−r : One dependent126

column of A is a combination (given by F ) of the independent columns in C.127

This analysis of the A = CR factorization was new to us. In a linear algebra128

course,129

it allows early examples of the column space and the crucial ideas of linear indepen-130

dence131

and basis. Those ideas appear first in examples like the matrix A above (before132

the student has a system for computing C). That system comes later—it is the elimi-133

nation that produces R0 = rref(A) and then R, with their submatrix I that identifies134

the columns that go into C.135

The goal is to start a linear algebra class with simple examples of independence136

and rank and matrix multiplication. Integer matrices A reveal the idea of indepen-137

dence before the definition. And the matrix rref(A) now has a meaning ! The identity138

matrix locates the first r independent columns (a basis for the column space of A).139

And F (r by n− r) gives the combinations of those r columns in C that produce the140

n− r dependent columns CF of A.141

5. The Magic Factorization A = CW−1B. The factorization A = CR has142

useful properties, but symmetric treatment of columns and rows is not one of them.143

The rows of R were constructed by elimination. They identify the independent col-144

umns in C. There is a closely related factorization that takes r independent rows (as145

well as r independent columns) directly from A. Now an r by r submatrix W appears146

both in the column matrix C and the row matrix B : W is the “intersection” of r147

rows with r columns. So a factor W−1 must go in between C and B :148

A = CR = CW−1B as in A =





1 2 3
4 5 6
7 8 9



=





1 2
4 5
7 8





[

1 2
4 5

]

−1[

1 2 3
4 5 6

]

149
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LU AND CR ELIMINATION 5

The first r independent columns and independent rows of A meet in W . A key150

point is that W is invertible. By interposing W−1 between C and B, the factorization151

A=CW−1B succeeds with R replaced by W−1B.152

(5.1) Notice that WR =

[

1 2
4 5

] [

1 0 −1
0 1 2

]

=

[

1 2 3
4 5 6

]

= B.153

154

Theorem 5.1. Suppose C contains the first r independent columns of A, with155

r = rank(A). Suppose R contains the r nonzero rows of rref(A). Then A = CR.156

Now suppose the matrix B contains the first r independent rows of A. Then W157

is the r by r matrix where C meets B. If we look only at those r rows of A = CR, we158

see B = WR. Since B and R both have rank r, the square matrix W must have rank159

r and it is invertible.160

161

In case A itself is square and invertible, we have A = C = B = W . Then the162

factorization A = CW−1B reduces to A = WW−1W . For a rectangular matrix with163

independent columns and rows coming first in W , we see columns times W−1 times164

rows :165

(5.2) A =

[

W H
J K

]

=

[

W
J

]

W−1
[

W H
]

= CW−1B166

All this is the work of a “coordinated” person. If we ask an algebraist (as we did),167

the factors B and W−1 and C become coordinate-free linear maps that reproduce A :168

(5.3) A : Rn
→ Rn/kernel(A) → image(A) → Rm

169

The map in the middle is an isomorphism between r-dimensional spaces. But the170

natural bases are different for those two spaces. The columns of C give the right basis171

for image(A) = “column space”. The rows of B are natural for the dual space (row172

space) Rn/kernel(A). So there is an invertible r by r matrix—a change of basis—173

when we introduce coordinates. That step is represented by W−1. The invertibility174

of W follows from the algebra.175

When we verify equation (5.3) in matrix language (with coordinates), the in-176

vertibility of the column-row intersection W will be explicitly proved. Here is that177

additional proof.178

179

A = any matrix of rank r m× n

C = r independent columns of A m× r

B = r independent rows of A r × n

W = intersection of C and B r × r

180

Let A =

[

W H

J K

]

r
m− r

181

r n− r182

C =

[

W

J

]

B =
[

W H
]

183

184

Theorem 5.2. The r by r matrix W also has rank r. Then A = CW−1B.185

1. Combinations V of the rows of B must produce the dependent rows in186
[

J K
]

187

188
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6 GILBERT STRANG AND CLEVE MOLER

Then
[

J K
]

= V B =
[

V W V H
]

for some matrix V and C =189
[

I

V

]

W190

191

2. Combinations T of the columns of C must produce the dependent columns192

in

[

H

K

]

193

194

Then

[

H

K

]

= C T =

[

WT

JT

]

for some matrix T and B = W
[

I T
]

195

196

3. A =

[

W H
VW VH

]

=

[

W WT
VW VWT

]

=

[

I

V

][

W
][

I T
]

= CW−1B197

198

Each step 1,2,3 proves again that W is invertible. If its rank were less than r, then199

W could not be a factor of C or B or A. In case C and B are not in the first r200

columns and rows of A, permutations PR and PC will give PR APC =

[

W H
J K

]

201

and the proof goes through.202

203

Uniqueness The columns of C are a basis for the column space of A. Then the204

columns of R contain the unique coefficients that express each column of A in that205

basis : A = CR. ButW and B are not unique. They can come from any r independent206

rows of A.207

This is consistent with (and proves !) the uniqueness of the reduced row echelon208

form R0, and the non-uniqueness of the steps from A to R0.209

210

A = CR and A = CW−1B both lead to explicit expressions for the pseudoinverse211

A+. Those factors have full rank, so we know that A+ = R+C+ and A+ = B+WC+.212

These factors are one-sided inverses as in R+=RT(RRT)−1 and C+=(CTC)−1CT.213

We don’t know the full history of this column-row factorization of A into214

CW−1B. But an excellent paper by Hamm and Huang [3] extends the theory to215

the general case when W−1 becomes a pseudoinverse. They analyze CUR approxi-216

mations for large matrices (see below), and they have also provided a valuable set of217

references—including the 1956 paper [8] by Roger Penrose. That paper followed his218

1955 introduction of the Moore-Penrose pseudoinverse.219

6. Applications to Large Matrices. Our starting point for A = CR has220

been its connection to the reduced row echelon form R0 = rref(A). That is tradi-221

tionally a classroom construction, and classrooms are usually limited to small matri-222

ces. But the idea of using actual columns and rows of the matrix A can be highly223

attractive. Those vectors have meaning. They are often sparse and/or nonnega-224

tive. They reflect useful properties that we wish to preserve in approximating A.225

226
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LU AND CR ELIMINATION 7

A persuasive and widely read essay by Lee and Seung [5] made this point strongly.227

And there has been good progress on the key decision : Which k columns and k rows228

to choose ? It is understood that for large matrices, k may be much less than the rank229

r of A.230

An early start was the analysis of “pseudoskeleton approximations” to an exact231

skeleton A = CW−1B. This can be accurate (provided there exists a rank k matrix232

close to A). The optimal choice of columns and rows for C and B is connected in [2]233

to finding a subdeterminant of maximum volume.234

Interpolative decomposition has become part of randomized numerical linear alge-235

bra.236

Exact factors C,W,B would be submatrices of A and require no new storage.237

But if A itself is very large, its size will have to be reduced. The computation often238

samples the columns of A by Y = AG, for an n by k Gaussian random matrix G.239

Then a crucial step is to produce an orthonormal basis Q for that k-dimensional ap-240

proximate column space (at reasonable cost). This is Gram-Schmidt with column241

pivoting, aiming to put the most important columns first : AP = QR.242

The whole randomized algorithm is beautifully presented by Martinsson in [6]243

and in the extended survey [7] by Martinsson and Tropp. When the singular val-244

ues of A decay rapidly, these algorithms succeed with a moderate choice of k—the245

computational rank that replaces the actual rank of A.246

7. Implementation. An rref function has always been part of MATLAB. It247

was intended for academic use in computer experiments supplementing a traditional248

linear algebra course, and has been largely ignored by most users for many years. We249

were pleasantly surprised when the function proved to be exactly what was needed to250

compute the A = CR and ultimately the A = C W
−1

B factorizations.251

7.1. rref. This description of rref was probably written in the 1980’s. It is252

still valid today.253

R = rref(A) produces the reduced row echelon form of A.254

[R,jb] = rref(A) also returns a vector, jb, so that:255

r = length(jb) is this algorithm’s idea of the rank of A,256

x(jb) are the bound variables in a linear system, Ax = b,257

A(:,jb) is a basis for the range of A,258

R(1:r,jb) is the r-by-r identity matrix.259

An important output is the indices jb of the leading r independent columns of A. The260

statement261

[~,jb] = rref(A)262

ignores the echelon form and just retains the column indices.263

7.2. cr and cab. We have developed two new functions, cr and cab. The264

function cr produces two matrices. The first is C, a basis for the column space. The265

second output is R, the rref of A with any zero rows removed.266

[C,R] = cr(A)267

rref is used once by cr to find both C and R. Here is the code for cr.268

[R,jb] = rref(A);269

r = length(jb); % r = rank.270

R = R(1:r,:); % R(:,jb) == eye(r).271
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8 GILBERT STRANG AND CLEVE MOLER

C = A(:,jb)272

The function cab produces three matrices, C, W and B, with273

[C,W,B] = cab(A) or [C,W,B,cols,rows] = cab(A)274

C = A(:,cols) is a subset of the columns and forms a basis for the column space.275

The same C is produced by cr. B = A(rows,:) is a subset of the rows and forms a276

basis for the row space. And W = A(rows,cols) is the set intersection of C and B.277

The original A can be reconstructed with278

A = C*inv(W)*B279

Moreover the rank of A is r = rank(A) = length(cols) = length(rows).280

Consequently W is square and its size is r -by- r281

rref is used twice by cab. The first use finds a basis for the column space. The second282

use is with the transpose of A and finds a basis for the row space. The echelon forms283

themselves are discarded; only the pivot indices are retained. Here is the code for cab.284

285
[~,cols] = rref(A); % Column space286

C = A(:,cols);287

[~,rows] = rref(A’); % Row space288

B = A(rows,:);289

W = A(rows,cols); % Intersection290

The theorem that the column space and the row space have the same dimension implies291

that cols and rows have the same length and ultimately that W is square and nonsingu-292

lar.293

Its size is the rank.294
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LU AND CR ELIMINATION 9

7.3. Gauss-Jordan. The algorithm used by rref is known in numerical analysis295

as Gauss-Jordan elimination. When Gauss-Jordan is applied to an augmented matrix296

[A b], it solves the linear system A*x = b. The Gaussian elimination algorithm is297

less work. It does not zero elements above the pivot. It stops with an upper triangular298

factor U and then solves the modifed augmented system by back substitution.299

Most modern computers have a fused multiply-add instruction, FMA, that multiplies300

two floating point values and then adds a third value to the result in one operation.301

For an n-by-n system, Gauss-Jordan requires about (1/2)*n^3 FMAs, while Gaussian302

elimination requires less, only (1/3)*n^3 FMAs. This is one of the reasons why the303

numerical linear algebra community has been less interested in rref.304

7.4. Examples. Magic squares provide good examples of our factorizations. An305

n-by-n magic square is a matrix whose elements are the integers from 1 to n2 and306

whose row sums, column sums, and sums along both principal diagonals are all the307

same magic sum. Many magic squares are rank deficient.308

A 4-by-4 magic square is one of the mathematical objects in Melencolia I, a 1514309

engraving by the German Renaissance artist Albrecht Dürer.310

A =311

16 3 2 13312

5 10 11 8313

9 6 7 12314

4 15 14 1315

316

This matrix is rank deficient, but the linear dependencies are not obvious. The rank317

is revealed to be three by the cr function.318

[C,R] = cr(A)319

320

C =321

322

16 3 2323

5 10 11324

9 6 7325

4 15 14326

327

R =328

329

1 0 0 1330

0 1 0 -3331

0 0 1 3332

The matrix R is the rref of A with a zero row removed.333

Equal treatment of rows and columns is provided by the cab function.334

[C,W,B] = cab(A) = C*inv(W)*B.335

C =336

16 3 2337

5 10 11338

9 6 7339

4 15 14340
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10 GILBERT STRANG AND CLEVE MOLER

341

W =342

16 3 2343

5 10 11344

9 6 7345

346

B =347

16 3 2 13348

5 10 11 8349

9 6 7 12350

The Franklin semimagic square is attributed to Benjamin Franklin in c.1752 [1].351

Its rows and columns all have the required magic sum, but the diagonals do not, so it352

isn’t fully magic. However, many other interesting submatrices are magic, including353

bent diagonals and any eight elements arranged symmetrically about the center.354

A =355

52 61 4 13 20 29 36 45356

14 3 62 51 46 35 30 19357

53 60 5 12 21 28 37 44358

11 6 59 54 43 38 27 22359

55 58 7 10 23 26 39 42360

9 8 57 56 41 40 25 24361

50 63 2 15 18 31 34 47362

16 1 64 49 48 33 32 17363

It is hard to think of Franklin’s square as a linear transformation, but cab can still364

compute its rank.365

[C,W,B] = cab(A)366

C =367

52 61 4368

14 3 62369

53 60 5370

11 6 59371

55 58 7372

9 8 57373

50 63 2374

16 1 64375

W =376

52 61 4377

14 3 62378

53 60 5379

B =380

52 61 4 13 20 29 36 45381

14 3 62 51 46 35 30 19382

53 60 5 12 21 28 37 44383

So the rank is three. And, C*inv(W)*B is within roundoff error of A.384

test = C*inv(W)*B385
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LU AND CR ELIMINATION 11

test =386

52.00 61.00 4.00 13.00 20.00 29.00 36.00 45.00387

14.00 3.00 62.00 51.00 46.00 35.00 30.00 19.00388

53.00 60.00 5.00 12.00 21.00 28.00 37.00 44.00389

11.00 6.00 59.00 54.00 43.00 38.00 27.00 22.00390

55.00 58.00 7.00 10.00 23.00 26.00 39.00 42.00391

9.00 8.00 57.00 56.00 41.00 40.00 25.00 24.00392

50.00 63.00 2.00 15.00 18.00 31.00 34.00 47.00393

16.00 1.00 64.00 49.00 48.00 33.00 32.00 17.00394

Rounding test to the nearest integers reproduces Franklin’s magic square exactly.395
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