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3.5 Dimensions of the Four Subspaces✤

✣

✜

✢
1 The column space C(A) and the row space C(AT) both have dimension r (the rank of A).

2 The nullspace N(A) has dimension n− r. The left nullspace N(AT) has dimension m− r.

3 Elimination from A to R0 changes C(A) and N(AT) (but their dimensions don’t change).

The main theorem in this chapter connects rank and dimension. The rank of a matrix
counts independent columns. The dimension of a subspace is the number of vectors in
a basis. We can count pivots or basis vectors. The rank of A reveals the dimensions of

all four fundamental subspaces. Here are the subspaces, including the new one.
Two subspaces come directly from A, and the other two come from AT.

Four Fundamental Subspaces Dimensions

1. The row space is C(AT), a subspace of Rn. r

2. The column space is C(A), a subspace of Rm. r

3. The nullspace is N(A), a subspace of Rn. n − r

4. The left nullspace is N(AT), a subspace of Rm. m − r

We know C(A) and N(A) pretty well. Now C(AT) and N(AT) come forward. The row
space contains all combinations of the rows. This row space is the column space of AT.

For the left nullspace we solve ATy = 0—that system is n by m. In Example 2 this
produces one of the great equations of applied mathematics—Kirchhoff’s Current Law.
The currents flow around a network, and they can’t pile up at the nodes. The matrix A
is the incidence matrix of a graph. Its four subspaces come from nodes and edges and
loops and trees. Those subspaces are connected in an absolutely beautiful way.

Part 1 of the Fundamental Theorem finds the dimensions of the four subspaces. One fact
stands out: The row space and column space have the same dimension r. This number r
is the rank of A (Chapter 1). The other important fact involves the two nullspaces :

N(A) and N(AT) have dimensions n − r and m − r, to make up the full n and m.

Part 2 of the Fundamental Theorem will describe how the four subspaces fit together :
Nullspace perpendicular to row space, and N(AT) perpendicular to C(A). That completes
the “right way” to understand Ax = b. Stay with it—you are doing real mathematics.
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The Four Subspaces for R0

Suppose A is reduced to its row echelon form R0. For that special form, the four subspaces
are easy to identify. We will find a basis for each subspace and check its dimension. Then
we watch how the subspaces change (two of them don’t change!) as we look back at A.
The main point is that the four dimensions are the same for A and R0.

For A and R, one of the four subspaces can have different dimensions—because zero
rows are removed in R, which changes m.

As a specific 3 by 5 example, look at the four subspaces for this echelon matrix R0 :

m = 3
n = 5
r = 2

R0 =



1 3 5 0 7
0 0 0 1 2
0 0 0 0 0




pivot rows 1 and 2

pivot columns 1 and 4

The rank of this matrix is r = 2 (two pivots). Take the four subspaces in order.

1. The row space has dimension 2, matching the rank.

Reason : The first two rows are a basis. The row space contains combinations of all three
rows, but the third row (the zero row) adds nothing to the row space.

The pivot rows 1 and 2 are independent. That is obvious for this example, and it is
always true. If we look only at the pivot columns, we see the r by r identity matrix.
There is no way to combine its rows to give the zero row (except by the combination with
all coefficients zero). So the r pivot rows (the rows of R) are a basis for the row space.

The dimension of the row space is the rank r. The nonzero rows of R0 form a basis.

2. The column space of R0 also has dimension r = 2.

Reason : The pivot columns 1 and 4 form a basis. They are independent because they
contain the r by r identity matrix. No combination of those pivot columns can give the
zero column (except the combination with all coefficients zero). And they also span the
column space. Every other (free) column is a combination of the pivot columns. Actually
the combinations we need are the three special solutions !

Column 2 is 3 (column 1). The special solution is (−3, 1, 0, 0, 0).
Column 3 is 5 (column 1). The special solution is (−5, 0, 1, 0, 0, ).
Column 5 is 7 (column 1) + 2 (column 4). That solution is (−7, 0, 0,−2, 1).

The pivot columns are independent, and they span C(R0), so they are a basis for C(R0).

The dimension of the column space is the rank r. The pivot columns form a basis.
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3. The nullspace of R0 has dimension n − r = 5 − 2. The 3 free variables give

3 special solutions to R0x = 0. Set the free variables to 1 and 0 and 0.

s2 =




−3
1
0
0
0




s3 =




−5
0
1
0
0




s5 =




−7
0
0

−2
1




R0x = 0 has the
complete solution
x = x2s2 + x3s3 + x5s5
The nullspace has dimension 3.

.

Reason : There is a special solution for each free variable. With n variables and r pivots,
that leaves n−r free variables and special solutions. The special solutions are independent,
because you can see the identity matrix in rows 2, 3, 5.

The nullspace N(A) has dimension n − r. The special solutions form a basis.

4. The nullspace of RT
0 (left nullspace of R0) has dimension m − r = 3 − 2.

Reason : R0 has r independent rows and m − r zero rows. Then RT
0 has r independent

columns and m − r zero columns. So y in the nullspace of RT
0 can have nonzeros in its

last m − r entries. The example has m − r = 1 zero column in RT
0 and 1 nonzero in y.

RT
0 y =




1 0 0
3 0 0
5 0 0
0 1 0
7 2 0







y1
y2
y3


 =




0
0
0
0
0




is solved by y =




0
0
y3


 . (1)

Because of zero rows in R0 and zero columns in RT
0 , it is easy to see the dimension

(and even a basis) for this fourth fundamental subspace :

If R0 has m − r zero rows, its left nullspace has dimension m − r.

Why is this a “left nullspace”? Because we can transpose RT
0 y = 0 to yTR0 = 0T.

Now yT is a row vector to the left of R. This subspace came fourth, and some linear algebra
books omit it—but that misses the beauty of the whole subject.

In Rn the row space and nullspace have dimensions r and n − r (adding to n).

In Rm the column space and left nullspace have dimensions r and m − r (total m).

We have a job still to do. The four subspace dimensions for A are the same as for R0.

The job is to explain why. A is now any matrix that reduces to R0 = rref(A).

This A reduces to R0 A=




1 3 5 0 7
0 0 0 1 2
1 3 5 1 9




Same row space as R0

Different column space
But same dimension !
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C(AT) C(A)

Rn Rm

N(A)
dimension n − r

N(AT)
dimension m − r

row space
all ATy

dimension r

column space
all Ax

dimension r

nullspace
Ax = 0

left nullspace
ATy = 0

The big picture

Figure 3.3: The dimensions of the Four Fundamental Subspaces (for R0 and for A).

The Four Subspaces for A

1 A has the same row space as R0 and R . Same dimension r and same basis.

Reason: Every row of A is a combination of the rows of R0. Also every row of R0 is a
combination of the rows of A. Elimination changes rows, but not row spaces.

Since A has the same row space as R0, the first r rows of R0 are still a basis. Or we
could choose r suitable rows of the original A. They might not always be the first r rows
of A, because those could be dependent. The good r rows of A are the ones that end up as
pivot rows in R0 and R.

2 The column space of A has dimension r. The column rank equals the row rank.

The number of independent columns = the number of independent rows.

Wrong reason : “A andR0 have the same column space.” This is false. The columns of R0

often end in zeros. The columns of A don’t often end in zeros. Then C(A) is not C(R0).

Right reason : The same combinations of the columns are zero (or not) for A and R0.
Dependent in A⇔ dependent in R0. Say that another way: Ax=0 exactly when R0x = 0.
The column spaces are different, but their dimensions are the same—equal to the rank r.

Conclusion The r pivot columns of A are a basis for its column space C(A).
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3 A has the same nullspace as R0. Same dimension n − r and same basis.

Reason: Elimination doesn’t change the solutions to Ax = 0. The special solutions are a
basis for this nullspace (as we always knew). There are n−r free variables, so the nullspace
dimension is n− r. This is the Counting Theorem : r + (n − r) equals n.

(dimension of column space)+++(dimension of nullspace)= dimension of Rn.

4 The left nullspace of A (the nullspace of AT) has dimension m − r.

Reason: AT is just as good a matrix as A. When we know the dimensions for every A,
we also know them for AT. Its column space was proved to have dimension r. Since
AT is n by m, the “whole space” is now Rm. The counting rule for A was r+(n−r) = n.
The counting rule for AT is r + (m − r) = m. We have all details of a big theorem :

Fundamental Theorem of Linear Algebra, Part 1

The column space and row space both have dimension r.

The nullspaces have dimensions n − r and m− r.

By concentrating on spaces of vectors, not on individual numbers or vectors, we get these
clean rules. You will soon take them for granted—eventually they begin to look obvious.
But if you write down an 11 by 17 matrix with 187 nonzero entries, I don’t think most
people would see why these facts are true:

Two key facts
dimension of C(A) = dimension of C(AT) = rank of A
dimension of C(A) + dimension of N(A) = 17.

Every vector Ax = b in the column space comes from exactly one x in the row space !
(If we also have Ay = b then A(x − y) = b − b = 0. So x − y is in the nullspace as
well as the row space, which forces x = y.) From its row space to its column space,
A is like an r by r invertible matrix.

It is the nullspaces that force us to define a “pseudoinverse of A” in Section 4.5.

Example 1 A =

[
1 2 3
2 4 6

]
has m = 2 with n = 3. The rank is r = 1.

The row space is the line through (1, 2, 3). The nullspace is the plane x1 +2x2 +3x3 = 0.
The line and plane dimensions still add to 1 + 2 = 3. The column space and left nullspace
are perpendicular lines in R2. Dimensions 1 + 1 = 2.

Column space = line through

[
1
2

]
Left nullspace = line through

[
2
−1

]
.

Final point : The y’s in the left nullspace combine the rows of A to give the zero row.
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Example 2 You have nearly finished three chapters with made-up equations, and this
can’t continue forever. Here is a better example of five equations (one equation for
every edge in Figure 3.4). The five equations have four unknowns (one for every node).
The important matrix in Ax = b is an incidence matrix. It has 1 and −1 on every row.

Differences Ax = b
across edges 1, 2, 3, 4, 5
between nodes 1, 2, 3, 4

m = 5 and n = 4

−x1 +x2 = b1
−x1 +x3 = b2

−x2 +x3 = b3
−x2 +x4 = b4

−x3 +x4 = b5

(2)

If you understand the four fundamental subspaces for this matrix (the column spaces and

the nullspaces for A and AT) you have captured a central idea of linear algebra.

x2

x1

x3

x4

b1 b2

b3

b4 b5

nodes x1 x2 x3 x4 edges

A =




−1 1
−1 1

−1 1
−1 1

−1 1




1
2
3
4
5

Figure 3.4: A “graph” with 5 edges and 4 nodes. A is its 5 by 4 incidence matrix.

The nullspace N(A) To find the nullspace we set b = 0. Then the first equation says
x1 = x2. The second equation is x3 = x1. Equation 4 is x2 = x4. All four unknowns

x1, x2, x3, x4 have the same value c. The vectors x = (c, c, c, c) fill the nullspace of A.

That nullspace is a line in R4. The special solution x = (1, 1, 1, 1) is a basis for
N(A). The dimension of N(A) is 1 (one vector in the basis). The rank of A must be 3,
since n− r = 4− 3 = 1. We now know the dimensions of all four subspaces.

The column space C(A) There must be r = 3 independent columns. The fast way
is to look at the first 3 columns of A. The systematic way is to find R0 = rref(A).

Columns
1, 2, 3
of A

−1 1 0
−1 0 1
0 −1 1
0 −1 0
0 0 −1

R0 =
reduced row
echelon form

of A
=




1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0
0 0 0 0




From R0 we see again the special solution x = (1, 1, 1, 1). The first 3 columns are basic,
the fourth column is free. To produce a basis for C(A) and not C(R0), we must go back to
columns 1, 2, 3 of A. The column space has dimension r = 3.
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The row space C(AT) The dimension must again be r = 3. But the first 3 rows of
A are not independent: row 3 = row 2 − row 1. So row 3 became zero in elimination,
and row 3 was exchanged with row 4. The first three independent rows are rows 1, 2, 4.
Those three rows are a basis (one possible basis) for the row space.

Edges 1, 2, 3 form a loop in the graph : Dependent rows 1, 2, 3.

Edges 1, 2, 4 form a tree. Trees have no loops! Independent rows 1, 2, 4.

The left nullspace N(AT) Now we solve ATy = 0. Combinations of the rows
give zero. We already noticed that row 3 = row 2 − row 1, so one solution is y =
(1,−1, 1, 0, 0). I would say : That y comes from following the upper loop in the graph.
Another y comes from going around the lower loop and it is y = (0, 0,−1,1,−1) :
row 3 = row 4 − row 5. Those two y’s are independent, they solve ATy = 0, and the
dimension of N(AT) is m− r = 5− 3 = 2. So we have a basis for the left nullspace.

You may ask how “loops” and “trees” got into this problem. That didn’t have to happen.
We could have used elimination to solve ATy = 0. The 4 by 5 matrix AT would have three
pivot columns 1, 2, 4 and two free columns 3, 5. There are two special solutions and the
nullspace of AT has dimension two: m − r = 5 − 3 = 2. But loops and trees identify
dependent rows and independent rows in a beautiful way for every incidence matrix.

The equations Ax = b give “voltages” x1, x2, x3, x4 at the four nodes. The equations
ATy = 0 give “currents” y1, y2, y3, y4, y5 on the five edges. These two equations are
Kirchhoff’s Voltage Law and Kirchhoff’s Current Law. Those laws apply to an
electrical network. But the ideas behind the words apply all over engineering and science
and economics and business. Linear algebra connects the laws to the four subspaces.

Graphs are the most important model in discrete applied mathematics. You see graphs
everywhere: roads, pipelines, blood flow, the brain, the Web, the economy of a country or
the world. We can understand their matrices A and AT. Here is a summary.

The incidence matrix A comes from a connected graph with n nodes and m edges.
The row space and column space have dimensions r = n − 1. The nullspaces of A
and AT have dimensions 1 and m− n+ 1 :

N(A) The constant vectors (c, c, . . . , c) make up the nullspace of A : dim = 1.

C(AT) The edges of any tree give r independent rows of A : r = n− 1.

C(A) Voltage Law: The components of Ax add to zero around all loops: dim = n− 1.

N(AT) Current Law: ATy = (flow in)−(flow out) = 0 is solved by loop currents.

There are m − r = m − n + 1 independent small loops in the graph.

For every graph in a plane, linear algebra yields Euler’s formula : Theorem 1 in topology !

(nodes) − (edges) + (small loops) =(n) − (m) + (m − n + 1) = 1
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Rank Two Matrices = Rank One plus Rank One

Rank one matrices have the form uvT. Here is a matrix A of rank r = 2. We can’t see r
immediately from A. So we reduce the matrix by row operations to R0. R0 has the same
row space as A. Throw away its zero row to find R—also with the same row space.

Rank
two

A =




1 0 3
1 1 7
4 2 20


 =




1 0
1 1
4 2



[

1 0 3
0 1 4

]
= CR (3)

Now look at columns. The pivot columns of R are clearly (1, 0) and (0, 1).
Then the pivot columns of A are also in columns 1 and 2: u1 = (1, 1, 4) and u2 = (0, 1, 2).
Notice that C has those same first two columns! That was guaranteed since multiplying
by two columns of the identity matrix (in R) won’t change the pivot columns u1 and u2.

When you put in letters for the columns and rows, you see rank 2 = rank 1 + rank 1.

Matrix A
Rank two

A =


 u1 u2 u3







vT
1

vT
2

zero row


 = u1v

T
1 + u2v

T
2

Columns of C times rows of R. Every rank r matrix is a sum of r rank one matrices

WORKED EXAMPLES

3.5 A Put four 1’s into a 5 by 6 matrix of zeros, keeping the dimension of its row space

as small as possible. Describe all the ways to make the dimension of its column space

as small as possible. Then describe all the ways to make the dimension of its nullspace

as small as possible. How to make the sum of the dimensions of all four subspaces small?

Solution The rank is 1 if the four 1’s go into the same row, or into the same column.
They can also go into two rows and two columns (so aii = aij = aji = ajj = 1).
Since the column space and row space always have the same dimensions, this answers the
first two questions: Dimension 1.

The nullspace has its smallest possible dimension 6 − 4 = 2 when the rank is r = 4.
To achieve rank 4, the 1’s must go into four different rows and four different columns.

You can’t do anything about the sum r+(n− r)+ r+(m− r) = n + m. It will be
6 + 5 = 11 no matter how the 1’s are placed. The sum is 11 even if there aren’t any 1’s...

If all the other entries of A are 2’s instead of 0’s, how do these answers change ?
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3.5 B All the rows of AB are combinations of the rows of B. So the row space of AB
is contained in (possibly equal to) the row space of B. Rank (AB) ≤ rank (B).

All columns of AB are combinations of the columns of A. So the column space of
AB is contained in (possibly equal to) the column space of A. Rank (AB) ≤ rank (A).

If we multiply A by an invertible matrix B, the rank will not change. The rank
can’t drop, because when we multiply by the inverse matrix the rank can’t jump back up.

Appendix 1 collects the key facts about the ranks of matrices.

Problem Set 3.5

1 (a) If a 7 by 9 matrix has rank 5, what are the dimensions of the four subspaces?
What is the sum of all four dimensions?

(b) If a 3 by 4 matrix has rank 3, what are its column space and left nullspace?

2 Find bases and dimensions for the four subspaces associated with A and B :

A =

[
1 2 4
2 4 8

]
and B =

[
1 2 4
2 5 8

]
.

3 Find a basis for each of the four subspaces associated with A:

A =



0 1 2 3 4
0 1 2 4 6
0 0 0 1 2


 =



1 0 0
1 1 0
0 1 1





0 1 2 3 4
0 0 0 1 2
0 0 0 0 0


 .

4 Construct a matrix with the required property or explain why this is impossible:

(a) Column space contains
[
1
1
0

]
,
[
0
0
1

]
, row space contains

[
1
2

]
,
[
2
5

]
.

(b) Column space has basis
[
1
1
3

]
, nullspace has basis

[
3
1
1

]
.

(c) Dimension of nullspace = 1 + dimension of left nullspace.

(d) Nullspace contains
[
1
3

]
, column space contains

[
3
1

]
.

(e) Row space = column space, nullspace 6= left nullspace.

5 If V is the subspace spanned by (1, 1, 1) and (2, 1, 0), find a matrix A that has
V as its row space. Find a matrix B that has V as its nullspace. Multiply AB.

6 Without using elimination, find dimensions and bases for the four subspaces for

A =



0 3 3 3
0 0 0 0
0 1 0 1


 and B =



1
4
5


 .

7 Suppose the 3 by 3 matrix A is invertible. Write down bases for the four subspaces
for A, and also for the 3 by 6 matrix B = [A A ]. (The basis for Z is empty.)
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8 What are the dimensions of the four subspaces for A,B, and C, if I is the 3 by 3
identity matrix and 0 is the 3 by 2 zero matrix ?

A =
[
I 0

]
and B =

[
I I
0T 0T

]
and C =

[
0
]
.

9 Which subspaces are the same for these matrices of different sizes?

(a) [A ] and

[
A
A

]
(b)

[
A
A

]
and

[
A A
A A

]
.

Prove that all three of those matrices have the same rank r.

10 If the entries of a 3 by 3 matrix are chosen randomly between 0 and 1, what are the
most likely dimensions of the four subspaces? What if the random matrix is 3 by 5?

11 (Important) A is an m by n matrix of rank r. Suppose there are right sides b for
which Ax = b has no solution.

(a) What are all inequalities (< or ≤) that must be true between m,n, and r?

(b) How do you know that ATy = 0 has solutions other than y = 0?

12 Construct a matrix with (1, 0, 1) and (1, 2, 0) as a basis for its row space and its
column space. Why can’t this be a basis for the row space and nullspace ?

13 True or false (with a reason or a counterexample) :

(a) If m = n then the row space of A equals the column space.

(b) The matrices A and −A share the same four subspaces.

(c) If A and B share the same four subspaces then A is a multiple of B.

14 Without computing A, find bases for its four fundamental subspaces :

A =



1 0 0
6 1 0
9 8 1





1 2 3 4
0 1 2 3
0 0 1 2


 .

15 If you exchange the first two rows of A, which of the four subspaces stay the same?
If v = (1, 2, 3, 4) is in the left nullspace ofA, write down a vector in the left nullspace
of the new matrix after the row exchange.

16 Explain why v = (1, 0,−1) cannot be a row of A and also in the nullspace of A.

17 Describe the four subspaces of R3 associated with

A =



0 1 0
0 0 1
0 0 0


 and I +A =



1 1 0
0 1 1
0 0 1


 .

18 Can tic-tac-toe be completed (5 ones and 4 zeros in A) so that rank (A) = 2 but
neither side passed up a winning move ?
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19 (Left nullspace) Add the extra column b and reduce A to echelon form:

[
A b

]
=



1 2 3 b1
4 5 6 b2
7 8 9 b3


 →



1 2 3 b1
0 −3 −6 b2 − 4b1
0 0 0 b3 − 2b2 + b1


 .

A combination of the rows of A has produced the zero row. What combination is it?
(Look at b3 − 2b2 + b1 on the right side.) Which vectors are in the nullspace of AT

and which vectors are in the nullspace of A?

20 (Patience needed) Describe the row operations that reduce a matrix A to its
echelon form R0.

21 Suppose A is the sum of two matrices of rank one: A = uvT +wzT.

(a) Which vectors span the column space of A ?

(b) Which vectors span the row space of A?

(c) The rank is less than 2 if or if .

(d) Compute A and its rank if u = z = (1, 0, 0) and v = w = (0, 0, 1).

22 Construct A = uvT + wzT whose column space has basis (1, 2, 4), (2, 2, 1) and
whose row space has basis (1, 0), (1, 1). Write A as (3 by 2) times (2 by 2).

23 Without multiplying matrices, find bases for the row and column spaces of A:

A =



1 2
4 5
2 7



[
3 0 3
1 1 2

]
.

How do you know from these shapes that A cannot be invertible?

24 (Important) ATy = d is solvable when d is in which of the four subspaces? The
solution y is unique when the contains only the zero vector.

25 True or false (with a reason or a counterexample) :

(a) A and AT have the same number of pivots.

(b) A and AT have the same left nullspace.

(c) If the row space equals the column space then AT = A.

(d) If AT = −A then the row space of A equals the column space.

26 If a, b, c are given with a 6= 0, how would you choose d so that
[
a b
c d

]
has rank 1?

Find a basis for the row space and nullspace. Show they are perpendicular!
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Challenge Problems
27 Find the ranks of the 8 by 8 checkerboard matrix B and the chess matrix C :

B =




1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
· · · · · · · ·
0 1 0 1 0 1 0 1




and C =




r n b q k b n r
p p p p p p p p

four zero rows
p p p p p p p p
r n b q k b n r




The numbers r, n, b, q, k, p are all different. Find bases for the row space and left
nullspace of B and C. Find a basis for the nullspace of C.

28 If A = uvT is a 2 by 2 matrix of rank 1, redraw Figure 3.5 to show clearly the
Four Fundamental Subspaces. If B produces those same four subspaces, what is the
exact relation of B to A ?

29 M is the space of 3 by 3 matrices. Multiply every matrix X in M by A :

A =




1 0 −1
−1 1 0
0 −1 1


 . Notice: A



1
1
1


 =



0
0
0


 .

(a) Which matrices X lead to AX = zero matrix ?

(b) Which matrices have the form AX for some matrix X ?

(a) finds the “nullspace” of that operation AX and (b) finds the “column space”.
What are the dimensions of those two subspaces of M ? Why do they add to 9 ?

30 Suppose the m by n matrices A and B have the same four subspaces. If they are
both in row reduced echelon form, is it true that F must equal G ?

A =

[
I F
0 0

]
B =

[
I G
0 0

]
.

31 Find the incidence matrix and its rank
and one vector in each subspace for this
complete graph—all six edges included. x2

x1

x3

x4

b1 b2

b3

b4 b5

b6

32 (Review) (a) Is N(AB) or N(BA) contained in N(A) ?

(b) Is C(AB) or C(BA) contained in C(A) ?

33 Suppose A is m by n and B is M by n and T =

[
A
B

]
.

(a) What are the relations between the nullspaces of A and B and T ?

(b) What are the relations between the row spaces of A and B and T ?

34 Suppose A is m by n. What can you say about each of the four fundamental sub-
spaces for the matrices A and W =

[
A A

]
?

35 If A and B are n by n, is it always true that rank

[
A
B

]
= rank

[
A B

]
?
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Thoughts on Chapter 3 : The Big Picture of Elimination

This page explains elimination at the vector level and subspace level, when A is reduced
to R. You know the steps and I won’t repeat them. Elimination starts with the first pivot.
It moves a column at a time (left to right) and a row at a time (top to bottom) for U .
Continuing elimination upward produces R0 and R. Elimination answers two questions :

Question 1 Is this column a combination of previous columns?

If the column contains a pivot, the answer is no. Pivot columns are “independent” of
previous columns. If column 4 has no pivot, it is a combination of columns 1, 2, 3.

Question 2 Is this row a combination of previous rows?

If the row contains a pivot, the answer is no. Pivot rows are independent of previous
rows, and their first nonzero is 1 from I . Rows that are all zero in R0 were not and are
not independent. Those zero rows disappear in R. That matrix is r by n.

It is amazing to me that one pass through the matrix answers both questions 1 and 2.
Elimination acts on the rows but the result tells us about the columns ! The identity matrix
in R locates the first r independent columns in A. Then the free columns F in R tell us
the combinations of those independent columns that produce the dependent columns in A.
This is easy to miss without seeing the factorization A = CR.

R tells us the special solutions to Ax = 0. We could reach R from A by different
row exchanges and elimination steps, but it will always be the same R. (This is because
the special solutions are fully decided by A. The formula comes before Problem Set 3.2.)
In the language coming soon, R reveals a “basis” for three of the fundamental subspaces :

The column space of A—choose the r columns of A that produce pivots in R.

The row space of A—choose the r rows of R as a basis.

The nullspace of A—choose the n − r special solutions to Rx = 0 (and Ax = 0).

For the left nullspace N(AT), we look at the elimination step EA = R0. The last m − r
rows of R0 are zero. The last m − r rows of E are a basis for the left nullspace ! In
reducing the extended matrix [A I] to [R0 E], the matrix E keeps a record of elimination
that is otherwise lost.

Suppose we fix C and B (m by r and r by n, both rank r). Choose any invertible
r by r mixing matrix M . All the matrices CMB (and only those) have the same four
fundamental subspaces.

Note This is the first textbook to express the result of elimination in its matrix form
A=CR =C

[
I F

]
P . Elimination reveals C and F and P and A =

[
C CF

]
P .

A = [[[ Independent columns in C Dependent columns in CF ]]] Permute columns



142 Chapter 3. The Four Fundamental Subspaces

Row Operations on an m by n Matrix A : Review

(i) Subtract a multiple of one row from another row

(ii) Exchange two rows

(iii) Multiply a row by any nonzero constant

The important point is : Those row operations are reversible (invertible).

(i) Add back the multiple of one row to the other row

(ii) Exchange the rows again

(iii) Divide the row by that nonzero constant

Total effect of those row operations : An m by m invertible matrix E multiplies A.

The nullspace is not changed by E : Ax = 0⇒ EAx = 0⇒ Ax = 0.

A and EA have different rows but the same row space and nullspace.

Reduced Row Echelon Form : E can produce EA = R0 =

[
I F
0 0

]
P = rref(A)

The identity I is r by r, F is r by n− r, P puts the n columns in correct order.

Factorization : A = CR = [First r independent columns]
[
I F

]
P

A =
[
C CF

]
P =

[
Independent cols Dependent cols

]
Reorder columns

Nullspace ofA : Each column ofF leads to one of the n−r “special solutions” to Ax = 0 :

Special solution
page 88, Example I

sk = PT

[
− column k of F (r by n− r)
+ column k of I(n− r by n− r)

]

That permutation PT puts the n components of the solution sk in the right order.

Example Special solution s1 to Ax = 0 and Rx = 0 with P = I and rank r = 3

R =




1 0 0 3
0 1 0 4
0 0 1 5


 s1 =




−3
−4
−5
1


 Rs1 = 0 As1 = CRs1 = 0




