2.2 Elimination Matrices and Inverse Matrices

Elimination multiplies A by E₂₁,..., E_{n1} then E₃₂,..., E_{n2} as A becomes EA = U.
 In reverse order, the inverses of the E's multiply U to recover A = E⁻¹U. This is A = LU.
 A⁻¹A = I and (LU)⁻¹ = U⁻¹L⁻¹. Then Ax = b becomes x = A⁻¹b = U⁻¹L^{-1b}.

All the steps of elimination can be done with matrices. Those steps can also be *undone* (inverted) with matrices. For a 3 by 3 matrix we can write out each step in detail—almost word for word. But for real applications, matrices are a much better way.

The basic elimination step subtracts a multiple ℓ_{ij} of equation j from equation i. We always speak about *subtractions* as elimination proceeds. If the first pivot is $a_{11} = 3$ and below it is $a_{21} = -3$, we could just add equation 1 to equation 2. That produces zero. But we stay with subtraction: *subtract* $\ell_{21} = -1$ *times equation* 1 *from equation* 2. Same result. The inverse step is addition. Equation (10) to (11) at the end shows it all.

Here is the matrix that subtracts 2 times row 1 from row 3: Rows 1 and 2 stay the same.

Elimination matrix $E_{ij} = E_{31}$		L	0	0	
	$E_{31} =$	0	1	0	
Row 3, column 1, multiplier 2		-2	0	1	

If no row exchanges are needed, then three elimination matrices E_{21} and E_{31} and E_{32} will produce three zeros below the diagonal. This changes A to the triangular U:

$$E = E_{32}E_{31}E_{21} \qquad EA = U \text{ is upper triangular}$$
(1)

The number ℓ_{32} is affected by the ℓ_{21} and ℓ_{31} that came first. We subtract ℓ_{32} times row 2 of U (the final second row, not the original second row of A). This is the E_{32} step that produces zero in row 3, column 2 of U. E_{32} gives the last step of 3 by 3 elimination.

Example 1 E_{21} and then E_{31} subtract multiples of row 1 from rows 2 and 3 of A:

$$E_{31}E_{21}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ \mathbf{1} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{3} & 1 & 0 \\ -\mathbf{3} & 1 & 1 \\ \mathbf{6} & 8 & 4 \end{bmatrix} = \begin{bmatrix} \mathbf{3} & 1 & 0 \\ \mathbf{0} & 2 & 1 \\ \mathbf{0} & \mathbf{6} & 4 \end{bmatrix}$$
two new zeros in (2) column 1

To produce a zero in column 2, E_{32} subtracts $\ell_{32} = 3$ times the **new row 2** from row 3:

$$(E_{32})(E_{31}E_{21}A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 6 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} U & \text{below the} \\ \text{main diagonal} \end{bmatrix}$$

Notice again: E_{32} is subtracting 3 times the row 0, 2, 1 and not the original row of A. At the end, the pivots 3, 2, 1 are on the main diagonal of U: zeros below that diagonal.

The inverse of each matrix E_{ij} adds back $\ell_{ij}(\text{row } j)$ to row *i*. This leads to the inverse of their product $E = E_{32}E_{31}E_{21}$. That inverse of *E* is special. We call it *L*.

The Facts About Inverse Matrices

Suppose A is a square matrix. We look for an "*inverse matrix*" A^{-1} of the same size, so that A^{-1} times A equals I. Whatever A does, A^{-1} undoes. Their product is the identity matrix—which does nothing to a vector, so $A^{-1}Ax = x$. But A^{-1} might not exist.

The *n* by *n* matrix *A* needs *n* independent columns to be invertible. Then $A^{-1}A = I$. What a matrix mostly does is to multiply a vector. Multiplying Ax = b by A^{-1} gives $A^{-1}Ax = A^{-1}b$. This is $x = A^{-1}b$. The product $A^{-1}A$ is like multiplying by a number and then dividing by that number. Numbers have inverses if they are not zero. Matrices are more complicated and interesting. The matrix A^{-1} is called "*A* inverse".

DEFINITION	The matrix A is <i>invertible</i> if there exists a matrix A^{-1} that "inverts" A :				
	Two-sided inverse	$A^{-1}A=I$	and	$AA^{-1} = I.$	(4)

Not all matrices have inverses. This is the first question we ask about a square matrix: Is A invertible? Its columns must be independent. We don't mean that we actually calculate A^{-1} . In most problems we never compute it ! Here are seven "notes" about A^{-1} .

Note 1 The inverse exists if and only if elimination produces n pivots (row exchanges are allowed). Elimination solves Ax = b without explicitly using the matrix A^{-1} .

Note 2 The matrix A cannot have two different inverses. Suppose BA = I and also AC = I. Then B = C, according to this "proof by parentheses" = associative law.

$$B(AC) = (BA)C$$
 gives $BI = IC$ or $B = C$. (5)

This shows that a *left inverse* B (multiplying A from the left) and a *right inverse* C (multiplying A from the right to give AC = I) must be the *same matrix*.

Note 3 If A is invertible, the one and only solution to Ax = b is $x = A^{-1}b$:

Multiply Ax = b by A^{-1} . Then $x = A^{-1}Ax = A^{-1}b$.

Note 4 (Important) Suppose there is a nonzero vector x such that Ax = 0. Then A has dependent columns. It cannot have an inverse. No matrix can bring 0 back to x.

If A is invertible, then Ax = 0 only has the zero solution $x = A^{-1}0 = 0$.

Note 5 A square matrix is invertible if and only if its columns are independent.

Note 6 A 2 by 2 matrix is invertible if and only if the number ad - bc is not zero:

2 by 2 Inverse
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
. (6)

This number ad-bc is the **determinant** of A. A matrix is invertible if its determinant is not zero (Chapter 5). The test for n pivots is usually decided before the determinant appears.

Note 7 A triangular matrix has an inverse provided no diagonal entries d_i are zero :

$$\text{If} \quad A = \begin{bmatrix} \mathbf{d_1} & \times & \times & \times \\ 0 & \bullet & \times & \times \\ 0 & 0 & \bullet & \times \\ 0 & 0 & 0 & \mathbf{d_n} \end{bmatrix} \quad \text{then} \quad A^{-1} = \begin{bmatrix} \mathbf{1}/\mathbf{d_1} & \times & \times & \times \\ 0 & \bullet & \times & \times \\ 0 & 0 & \bullet & \times \\ 0 & 0 & 0 & \mathbf{1}/\mathbf{d_n} \end{bmatrix}$$

Example 2 The 2 by 2 matrix $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$ is not invertible. It fails the test in Note 6, because ad = bc. It also fails the test in Note 4, because Ax = 0 when x = (2, -1). It fails to have two pivots as required by Note 1. Its columns are clearly dependent.

Elimination turns the second row of this matrix A into a zero row. No pivot.

Example 3 Three of these matrices are invertible, and three are singular. Find the inverse when it exists. Give reasons for noninvertibility (zero determinant, too few pivots, nonzero solution to Ax = 0) for the other three. The matrices are in the order A, B, C, D, S, T:

1 0 0	$1 \ 1 \ 1$	
$1 \ 1 \ 0$	$1 \ 1 \ 0$	
1 1 1	$1 \ 1 \ 1$	

Solution The three matrices with inverses are B, C, S:

$$\boldsymbol{B}^{-1} = \frac{1}{4} \begin{bmatrix} 7 & -3 \\ -8 & 4 \end{bmatrix} \quad \boldsymbol{C}^{-1} = \frac{1}{36} \begin{bmatrix} 0 & 6 \\ 6 & -6 \end{bmatrix} \quad \boldsymbol{S}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

A is not invertible because its determinant is $4 \cdot 6 - 3 \cdot 8 = 24 - 24 = 0$. D is not invertible because it has only one pivot; row 2 becomes zero when row 1 is subtracted. T has two equal rows (and the second column minus the first column is zero). In other words $T\mathbf{x} = \mathbf{0}$ has the nonzero solution $\mathbf{x} = (-1, 1, 0)$. Not invertible.

The Inverse of a Product AB

For two nonzero numbers a and b, the sum a + b might or might not be invertible. The numbers a = 3 and b = -3 have inverses $\frac{1}{3}$ and $-\frac{1}{3}$. Their sum a + b = 0 has no inverse. But the product ab = -9 does have an inverse, which is $\frac{1}{3}$ times $-\frac{1}{3}$.

For matrices A and B, the situation is similar. Their *product* AB has an inverse if and only if A and B are separately invertible (and the same size). The important point is that A^{-1} and B^{-1} come in reverse order :

If A and B are invertible (same size) then the inverse of AB is
$$B^{-1}A^{-1}$$
.
 $(AB)^{-1} = B^{-1}A^{-1}$ $(AB)(B^{-1}A^{-1}) = AIA^{-1} = AA^{-1} = I$ (7)

We moved parentheses to multiply BB^{-1} first. Similarly $B^{-1}A^{-1}$ times AB equals I.

 $B^{-1}A^{-1}$ illustrates a basic rule of mathematics: Inverses come in reverse order. It is also common sense: If you put on socks and then shoes, the first to be taken off are the _____. The same reverse order applies to three or more matrices:

Reverse order
$$(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$$
 (8)

Example 4 Inverse of an elimination matrix. If E subtracts 5 times row 1 from row 2, then E^{-1} adds 5 times row 1 to row 2:

$$\begin{array}{ccc} E \text{ subtracts} \\ E^{-1} \text{ adds} \end{array} \qquad E = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad E^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Multiply EE^{-1} to get the identity matrix *I*. Also multiply $E^{-1}E$ to get *I*. We are adding and subtracting the same 5 times row 1. If AC = I then for square matrices CA = I.

For square matrices, an inverse on one side is automatically an inverse on the other side.

Example 5 Suppose F subtracts 4 times row 2 from row 3, and F^{-1} adds it back :

	[1	0	0			[1	0	0	
F =	0	1	0	and	$F^{-1} =$	0	1	0	
	0	-4	1			0	4	1	

Now multiply F by the matrix E in Example 4 to find FE. Also multiply E^{-1} times F^{-1} to find $(FE)^{-1}$. Notice the orders FE and $E^{-1}F^{-1}$!

$$FE = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 20 & -4 & 1 \end{bmatrix}$$
 is inverted by $E^{-1}F^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix}.$ (9)

The result is beautiful and correct. The product FE contains "20" but its inverse doesn't. *E* subtracts 5 times row 1 from row 2. Then *F* subtracts 4 times the *new row* 2 (changed by row 1) from row 3. *In this order FE*, *row* 3 *feels an effect of size* 20 *from row* 1.

In the order $E^{-1}F^{-1}$, that effect does not happen. First F^{-1} adds 4 times row 2 to row 3. After that, E^{-1} adds 5 times row 1 to row 2. There is no 20, because row 3 doesn't change again. In this order $E^{-1}F^{-1}$, row 3 feels no effect from row 1.

This is why we choose A = LU, to go back from the triangular U to the original A. The multipliers fall into place perfectly in the lower triangular L: Equation (11) below.

The elimination order is FE. The inverse order is $L = E^{-1}F^{-1}$. The multipliers 5 and 4 fall into place below the diagonal of 1's in L. _

L is the Inverse of E

E is the product of all the elimination matrices E_{ij} , taking *A* into its upper triangular form EA = U. We are assuming for now that no row exchanges are involved (P = I). The difficulty with *E* is that multiplying all the separate elimination steps E_{ij} does not produce a good formula. But the inverse matrix E^{-1} becomes beautiful when we multiply the inverse steps E_{ij}^{-1} . Remember that those steps come in the *opposite order*.

With n = 3, the complication for $E = E_{32}E_{31}E_{21}$ is in the bottom left corner:

$$\boldsymbol{E} = \begin{bmatrix} 1 & & \\ 0 & 1 & \\ 0 & -\ell_{32} & 1 \end{bmatrix} \begin{bmatrix} 1 & & \\ 0 & 1 & \\ -\ell_{31} & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & & \\ -\ell_{21} & 1 & \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & & \\ -\ell_{21} & 1 & \\ (\boldsymbol{\ell_{32}\ell_{21} - \ell_{31}}) & -\ell_{32} & 1 \end{bmatrix}.$$
(10)

Watch how that confusion disappears for $E^{-1} = L$. Reverse order is the good way:

$$\boldsymbol{E}^{-1} = \begin{bmatrix} 1 & & \\ \ell_{21} & 1 & \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & & \\ 0 & 1 & \\ \ell_{31} & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & & \\ 0 & 1 & \\ 0 & \ell_{32} & 1 \end{bmatrix} = \begin{bmatrix} 1 & & \\ \ell_{21} & 1 & \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix} = \boldsymbol{L} \quad (11)$$

All the multipliers ℓ_{ij} appear in their correct positions in L. The next section will show that this remains true for all matrix sizes. Then EA = U becomes A = LU.

Equation (11) is the key to this chapter : Each ℓ_{ij} is in its place for $E^{-1} = L$.

Problem Set 2.2 (more questions than needed)

0 If you exchange columns 1 and 2 of an invertible matrix A, what is the effect on A^{-1} ?

Problems 1–11 are about elimination matrices.

- 1 Write down the 3 by 3 matrices that produce these elimination steps :
 - (a) E_{21} subtracts 5 times row 1 from row 2.
 - (b) E_{32} subtracts -7 times row 2 from row 3.
 - (c) P exchanges rows 1 and 2, then rows 2 and 3.
- 2 In Problem 1, applying E_{21} and then E_{32} to $\boldsymbol{b} = (1, 0, 0)$ gives $E_{32}E_{21}\boldsymbol{b} = _$. Applying E_{32} before E_{21} gives $E_{21}E_{32}\boldsymbol{b} = _$. When E_{32} comes first, row _____ feels no effect from row _____.
- **3** Which three matrices E_{21}, E_{31}, E_{32} put A into triangular form U?

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 4 & 6 & 1 \\ -2 & 2 & 0 \end{bmatrix} \quad \text{and} \quad E_{32}E_{31}E_{21}A = EA = U.$$

Multiply those E's to get one elimination matrix E. What is $E^{-1} = L$?

- 4 Include b = (1, 0, 0) as a fourth column in Problem 3 to produce $[A \ b]$. Carry out the elimination steps on this augmented matrix to solve Ax = b.
- 5 Suppose $a_{33} = 7$ and the third pivot is 5. If you change a_{33} to 11, the third pivot is _____. If you change a_{33} to _____, there is no third pivot.
- 6 If every column of A is a multiple of (1, 1, 1), then Ax is always a multiple of (1, 1, 1). Do a 3 by 3 example. How many pivots are produced by elimination?
- 7 Suppose *E* subtracts 7 times row 1 from row 3.
 - (a) To *invert* that step you should _____ 7 times row _____ to row _____.
 - (b) What "inverse matrix" E^{-1} takes that reverse step (so $E^{-1}E = I$)?
 - (c) If the reverse step is applied first (and then E) show that $EE^{-1} = I$.
- 8 The *determinant* of $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is det M = ad bc. Subtract ℓ times row 1 from row 2 to produce a new M^* . Show that det $M^* = \det M$ for every ℓ . When $\ell = c/a$, the product of pivots equals the determinant: $(a)(d \ell b)$ equals ad bc.
- 9 (a) E_{21} subtracts row 1 from row 2 and then P_{23} exchanges rows 2 and 3. What matrix $M = P_{23}E_{21}$ does both steps at once?
 - (b) P_{23} exchanges rows 2 and 3 and then E_{31} subtracts row 1 from row 3. What matrix $M = E_{31}P_{23}$ does both steps at once? Explain why the *M*'s are the same but the *E*'s are different.
- (a) What matrix adds row 1 to row 3 and *at the same time* row 3 to row 1?
 - (b) What matrix adds row 1 to row 3 and *then* adds row 3 to row 1?
- 11 Create a matrix that has $a_{11} = a_{22} = a_{33} = 1$ but elimination produces two negative pivots without row exchanges. (The first pivot is 1.)
- **12** For these "permutation matrices" find P^{-1} by trial and error (with 1's and 0's):

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

13 Solve for the first column (x, y) and second column (t, z) of A^{-1} . Check AA^{-1} .

$$A = \begin{bmatrix} 10 & 20\\ 20 & 50 \end{bmatrix} \qquad \begin{bmatrix} 10 & 20\\ 20 & 50 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 1\\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 10 & 20\\ 20 & 50 \end{bmatrix} \begin{bmatrix} t\\ z \end{bmatrix} = \begin{bmatrix} 0\\ 1 \end{bmatrix}.$$

14 Find an upper triangular U (not diagonal) with $U^2 = I$. Then $U^{-1} = U$.

(a) If A is invertible and AB = AC, prove quickly that B = C.

(b) If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, find two different matrices such that AB = AC.

- 2.2. Elimination Matrices and Inverse Matrices
- **16** (Important) If A has row 1 + row 2 = row 3, show that A is not invertible :
 - (a) Explain why Ax = (0, 0, 1) cannot have a solution. Add eqn 1 + eqn 2.
 - (b) Which right sides (b_1, b_2, b_3) might allow a solution to Ax = b?
 - (c) In the elimination process, what happens to equation 3?
- 17 If A has column 1 + column 2 = column 3, show that A is not invertible:
 - (a) Find a nonzero solution x to Ax = 0. The matrix is 3 by 3.
 - (b) Elimination keeps columns 1 + 2 = 3. Explain why there is no third pivot.
- **18** Suppose A is invertible and you exchange its first two rows to reach B. Is the new matrix B invertible? How would you find B^{-1} from A^{-1} ?
- (a) Find invertible matrices A and B such that A + B is not invertible.
 - (b) Find singular matrices A and B such that A + B is invertible.
- 20 If the product C = AB is invertible (A and B are square), then A itself is invertible. Find a formula for A^{-1} that involves C^{-1} and B.
- 21 If the product M = ABC of three square matrices is invertible, then B is invertible. (So are A and C.) Find a formula for B^{-1} that involves M^{-1} and A and C.
- **22** If you add row 1 of A to row 2 to get B, how do you find B^{-1} from A^{-1} ?
- 23 Prove that a matrix with a column of zeros cannot have an inverse.
- 24 Multiply $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ times $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$. What is the inverse of each matrix if $ad \neq bc$?
- (a) What 3 by 3 matrix E has the same effect as these three steps? Subtract row 1 from row 2, subtract row 1 from row 3, then subtract row 2 from row 3.
 - (b) What single matrix L has the same effect as these three reverse steps? Add row 2 to row 3, add row 1 to row 3, then add row 1 to row 2.
- **26** If B is the inverse of A^2 , show that AB is the inverse of A.
- 27 Show that A = 4 * eye(4) ones(4, 4) is *not* invertible: Multiply A * ones(4, 1).
- **28** There are sixteen 2 by 2 matrices whose entries are 1's and 0's. How many of them are invertible?
- **29** Change I into A^{-1} as elimination reduces A to I (the Gauss-Jordan idea).

 $\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 0 \\ 2 & 7 & 0 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 1 & 4 & 1 & 0 \\ 3 & 9 & 0 & 1 \end{bmatrix}$

30 Could a 4 by 4 matrix A be invertible if every row contains the numbers 0, 1, 2, 3 in some order? What if every row of B contains 0, 1, 2, -3 in some order?

31 Find A^{-1} and B^{-1} (*if they exist*) by elimination on $\begin{bmatrix} A & I \end{bmatrix}$ and $\begin{bmatrix} B & I \end{bmatrix}$:

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}.$$

32 Gauss-Jordan elimination acts on $\begin{bmatrix} U & I \end{bmatrix}$ to find the matrix $\begin{bmatrix} I & U^{-1} \end{bmatrix}$:

If
$$U = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$$
 then $U^{-1} = \begin{bmatrix} & & \\ & & \\ \end{bmatrix}$.

- **33** True or false (with a counterexample if false and a reason if true): *A* is square.
 - (a) A 4 by 4 matrix with a row of zeros is not invertible.
 - (b) Every matrix with 1's down the main diagonal is invertible.
 - (c) If A is invertible then A^{-1} and A^2 are invertible.
- **34** (Recommended) Prove that A is invertible if $a \neq 0$ and $a \neq b$ (find the pivots or A^{-1}). Then find three numbers c so that C is not invertible:

$$A = \begin{bmatrix} a & b & b \\ a & a & b \\ a & a & a \end{bmatrix} \qquad \qquad C = \begin{bmatrix} 2 & c & c \\ c & c & c \\ 8 & 7 & c \end{bmatrix}.$$

35 This matrix has a remarkable inverse. Find A^{-1} by elimination on $\begin{bmatrix} A & I \end{bmatrix}$. Extend to a 5 by 5 "alternating matrix" and guess its inverse; then multiply to confirm.

Invert
$$A = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 and solve $A\boldsymbol{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$.

- **36** Suppose the matrices P and Q have the same rows as I but in any order. They are "permutation matrices". Show that P Q is singular by solving $(P Q) \mathbf{x} = \mathbf{0}$.
- 37 Find and check the inverses (assuming they exist) of these block matrices :

$$\begin{bmatrix} I & 0 \\ C & I \end{bmatrix} \begin{bmatrix} A & 0 \\ C & D \end{bmatrix} \begin{bmatrix} 0 & I \\ I & D \end{bmatrix}.$$

- **38** How does elimination from A to U on a 3 by 3 matrix tell you if A is invertible?
- **39** If $A = I uv^{\mathrm{T}}$ then $A^{-1} = I + uv^{\mathrm{T}}(1 v^{\mathrm{T}}u)^{-1}$. Show that $AA^{-1} = I$ except Au = 0 when $v^{\mathrm{T}}u = 1$.

56