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2.2 Elimination Matrices and Inverse Matrices✛

✚

✘

✙
1 Elimination multiplies A by E21, . . . , En1 then E32, . . . , En2 as A becomes EA = U .

2 In reverse order, the inverses of the E’s multiply U to recover A=E−1U . This is A=LU .

3 A−1A = I and (LU)−1 = U−1L−1. Then Ax = b becomes x = A−1b = U−1L−1b.

All the steps of elimination can be done with matrices. Those steps can also be undone

(inverted) with matrices. For a 3 by 3 matrix we can write out each step in detail—almost
word for word. But for real applications, matrices are a much better way.

The basic elimination step subtracts a multiple ℓij of equation j from equation i.
We always speak about subtractions as elimination proceeds. If the first pivot is a11 = 3
and below it is a21 = −3, we could just add equation 1 to equation 2. That produces
zero. But we stay with subtraction : subtract ℓ21 = −1 times equation 1 from equation 2.
Same result. The inverse step is addition. Equation (10) to (11) at the end shows it all.

Here is the matrix that subtracts 2 times row 1 from row 3 : Rows 1 and 2 stay the same.

Elimination matrix Eij =E31

Row 3, column 1, multiplier 2
E31 =




1 0 0
0 1 0

−2 0 1




If no row exchanges are needed, then three elimination matrices E21 and E31

and E32 will produce three zeros below the diagonal. This changes A to the triangular U :

E = E32E31E21 EA = U is upper triangular (1)

The number ℓ32 is affected by the ℓ21 and ℓ31 that came first. We subtract ℓ32 times
row 2 of U (the final second row, not the original second row of A). This is the E32 step
that produces zero in row 3, column 2 of U . E32 gives the last step of 3 by 3 elimination.

Example 1 E21 and then E31 subtract multiples of row 1 from rows 2 and 3 of A :

E31E21A =




1 0 0
0 1 0

−2 0 1





1 0 0
1 1 0
0 0 1






3 1 0
−3 1 1
6 8 4


=



3 1 0
0 2 1
0 6 4




two new
zeros in

column 1
(2)

To produce a zero in column 2, E32 subtracts ℓ32 = 3 times the new row 2 from row 3 :

(E32) (E31E21A)=



1 0 0
0 1 0
0 −3 1





3 1 0
0 2 1
0 6 4


=



3 1 0
0 2 1
0 0 1


= U

U has zeros
below the

main diagonal
(3)

Notice again : E32 is subtracting 3 times the row 0, 2, 1 and not the original row of A.
At the end, the pivots 3, 2, 1 are on the main diagonal of U : zeros below that diagonal.

The inverse of each matrix Eij adds back ℓij(row j) to row i. This leads to
the inverse of their product E = E32E31E21. That inverse of E is special. We call it L.
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The Facts About Inverse Matrices

Suppose A is a square matrix. We look for an “inverse matrix” A−1 of the same size, so
that A−1 times A equals I . Whatever A does, A−1 undoes. Their product is the identity
matrix—which does nothing to a vector, so A−1Ax = x. But A−1 might not exist.

The n by n matrix A needs n independent columns to be invertible. Then A−1A = I .

What a matrix mostly does is to multiply a vector. Multiplying Ax = b by A−1

gives A−1Ax = A−1b. This is x = A−1b. The product A−1A is like multiplying by
a number and then dividing by that number. Numbers have inverses if they are not zero.
Matrices are more complicated and interesting. The matrix A−1 is called “A inverse”.

DEFINITION The matrix A is invertible if there exists a matrix A−1 that “inverts” A :

Two-sided inverse A−1A = I and AA−1 = I. (4)

Not all matrices have inverses. This is the first question we ask about a square matrix:
Is A invertible ? Its columns must be independent. We don’t mean that we actually
calculate A−1. In most problems we never compute it ! Here are seven “notes” about A−1.

Note 1 The inverse exists if and only if elimination produces n pivots (row exchanges
are allowed). Elimination solves Ax = b without explicitly using the matrix A−1.

Note 2 The matrix A cannot have two different inverses. Suppose BA = I and also
AC = I . Then B = C, according to this “proof by parentheses” = associative law.

B(AC) = (BA)C gives BI = IC or B = C. (5)

This shows that a left inverse B (multiplying A from the left) and a right inverse C
(multiplying A from the right to give AC = I) must be the same matrix.

Note 3 If A is invertible, the one and only solution to Ax = b is x = A−1 b :

Multiply Ax = b by A−1. Then x = A−1Ax = A−1 b.

Note 4 (Important) Suppose there is a nonzero vector x such that Ax = 0. Then

A has dependent columns. It cannot have an inverse. No matrix can bring 0 back to x.

If A is invertible, then Ax = 0 only has the zero solution x = A−10 = 0.

Note 5 A square matrix is invertible if and only if its columns are independent.

Note 6 A 2 by 2 matrix is invertible if and only if the number ad− bc is not zero :

2 by 2 Inverse

[
a b
c d

]−1

=
1

ad − bc

[
d −b

−c a

]
. (6)

This number ad−bc is the determinant of A. A matrix is invertible if its determinant is not
zero (Chapter 5). The test for n pivots is usually decided before the determinant appears.
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Note 7 A triangular matrix has an inverse provided no diagonal entries di are zero :

If A =




d1 × × ×
0 • × ×
0 0 • ×
0 0 0 dn


 then A−1 =




1/d1 × × ×
0 • × ×
0 0 • ×
0 0 0 1/dn




Example 2 The 2 by 2 matrix A =
[
1 2
1 2

]
is not invertible. It fails the test in Note 6,

because ad = bc. It also fails the test in Note 4, because Ax = 0 when x = (2,−1).
It fails to have two pivots as required by Note 1. Its columns are clearly dependent.

Elimination turns the second row of this matrix A into a zero row. No pivot.

Example 3 Three of these matrices are invertible, and three are singular. Find the inverse
when it exists. Give reasons for noninvertibility (zero determinant, too few pivots, nonzero
solution to Ax = 0) for the other three. The matrices are in the order A,B,C,D,S,T :

[
4 3
8 6

] [
4 3
8 7

] [
6 6
6 0

] [
6 6
6 6

] 


1 0 0
1 1 0
1 1 1







1 1 1
1 1 0
1 1 1




Solution The three matrices with inverses are B,C,S :

B−1 =
1

4

[
7 −3
−8 4

]
C−1 =

1

36

[
0 6
6 −6

]
S−1 =




1 0 0
−1 1 0
0 −1 1




A is not invertible because its determinant is 4 · 6 − 3 · 8 = 24 − 24 = 0. D is not
invertible because it has only one pivot; row 2 becomes zero when row 1 is subtracted.
T has two equal rows (and the second column minus the first column is zero). In
other words Tx = 0 has the nonzero solution x = (−1, 1, 0). Not invertible.

The Inverse of a Product AB

For two nonzero numbers a and b, the sum a + b might or might not be invertible. The
numbers a = 3 and b = −3 have inverses 1

3 and − 1
3 . Their sum a+ b = 0 has no inverse.

But the product ab = −9 does have an inverse, which is 1
3 times − 1

3 .
For matrices A and B, the situation is similar. Their product AB has an inverse if and

only if A and B are separately invertible (and the same size). The important point is that
A−1 and B−1 come in reverse order :

If A and B are invertible (same size) then the inverse of AB is B−1A−1.

(AB)−1 = B−1A−1 (AB)(B−1A−1) = AIA−1 = AA−1 = I (7)
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We moved parentheses to multiply BB−1 first. Similarly B−1A−1 times AB equals I .

B−1A−1 illustrates a basic rule of mathematics: Inverses come in reverse order.
It is also common sense: If you put on socks and then shoes, the first to be taken off
are the . The same reverse order applies to three or more matrices :

Reverse order (ABC)−1 = C−1B−1A−1 (8)

Example 4 Inverse of an elimination matrix. If E subtracts 5 times row 1 from row 2,
then E−1 adds 5 times row 1 to row 2 :

E subtracts
E−1 adds

E =




1 0 0
−5 1 0
0 0 1


 and E−1 =



1 0 0
5 1 0
0 0 1




Multiply EE−1 to get the identity matrix I . Also multiply E−1E to get I . We are adding
and subtracting the same 5 times row 1. If AC = I then for square matrices CA = I .

For square matrices, an inverse on one side is automatically an inverse on the other side.

Example 5 Suppose F subtracts 4 times row 2 from row 3, and F−1 adds it back :

F =



1 0 0
0 1 0
0 −4 1


 and F−1 =



1 0 0
0 1 0
0 4 1


 .

Now multiply F by the matrix E in Example 4 to find FE. Also multiply E−1 times F−1

to find (FE)−1. Notice the orders FE and E−1F−1!

FE =




1 0 0
−5 1 0
20 −4 1


 is inverted by E−1F−1 =



1 0 0
5 1 0
0 4 1


 . (9)

The result is beautiful and correct. The product FE contains “20” but its inverse doesn’t.
E subtracts 5 times row 1 from row 2. Then F subtracts 4 times the new row 2 (changed
by row 1) from row 3. In this order FE, row 3 feels an effect of size 20 from row 1.

In the order E−1F−1, that effect does not happen. First F−1 adds 4 times row 2 to
row 3. After that, E−1 adds 5 times row 1 to row 2. There is no 20, because row 3 doesn’t
change again. In this order E−1F−1, row 3 feels no effect from row 1.

This is why we choose A = LU , to go back from the triangular U to the original A.
The multipliers fall into place perfectly in the lower triangular L : Equation (11) below.

The elimination order is FE. The inverse order is L = E−1F−1.
The multipliers 5 and 4 fall into place below the diagonal of 1’s in L.
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L is the Inverse of E

E is the product of all the elimination matrices Eij , taking A into its upper triangular form
EA = U . We are assuming for now that no row exchanges are involved (P = I). The
difficulty with E is that multiplying all the separate elimination steps Eij does not produce
a good formula. But the inverse matrix E−1 becomes beautiful when we multiply the
inverse steps E−1

ij . Remember that those steps come in the opposite order.

With n = 3, the complication for E = E32E31E21 is in the bottom left corner :

E=



1
0 1
0 −ℓ32 1






1
0 1
−ℓ31 0 1






1
−ℓ21 1
0 0 1


=




1
−ℓ21 1

(ℓ32ℓ21 − ℓ31) −ℓ32 1


. (10)

Watch how that confusion disappears for E−1 = L. Reverse order is the good way :

E−1=




1
ℓ21 1
0 0 1






1
0 1
ℓ31 0 1





1
0 1
0 ℓ32 1


=




1
ℓ21 1
ℓ31 ℓ32 1


= L (11)

All the multipliers ℓij appear in their correct positions in L. The next section will show
that this remains true for all matrix sizes. Then EA = U becomes A = LU .

Equation (11) is the key to this chapter : Each ℓij is in its place for E−1 = L.

Problem Set 2.2 (more questions than needed)

0 If you exchange columns 1 and 2 of an invertible matrix A, what is the effect on
A−1 ?

Problems 1–11 are about elimination matrices.

1 Write down the 3 by 3 matrices that produce these elimination steps :

(a) E21 subtracts 5 times row 1 from row 2.

(b) E32 subtracts−7 times row 2 from row 3.

(c) P exchanges rows 1 and 2, then rows 2 and 3.

2 In Problem 1, applying E21 and then E32 to b = (1, 0, 0) gives E32E21b = .
Applying E32 before E21 gives E21E32b = . When E32 comes first,
row feels no effect from row .

3 Which three matrices E21, E31, E32 put A into triangular form U ?

A =




1 1 0
4 6 1
−2 2 0


 and E32E31E21A = EA = U.

Multiply those E’s to get one elimination matrix E. What is E−1 = L ?
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4 Include b = (1, 0, 0) as a fourth column in Problem 3 to produce [A b ]. Carry out
the elimination steps on this augmented matrix to solve Ax = b.

5 Suppose a33 = 7 and the third pivot is 5. If you change a33 to 11, the third pivot is
. If you change a33 to , there is no third pivot.

6 If every column of A is a multiple of (1, 1, 1), then Ax is always a multiple of
(1, 1, 1). Do a 3 by 3 example. How many pivots are produced by elimination?

7 Suppose E subtracts 7 times row 1 from row 3.

(a) To invert that step you should 7 times row to row .

(b) What “inverse matrix” E−1 takes that reverse step (so E−1E = I)?

(c) If the reverse step is applied first (and then E) show that EE−1 = I .

8 The determinant of M =
[
a b
c d

]
is det M = ad − bc. Subtract ℓ times row 1

from row 2 to produce a new M∗. Show that detM∗ = detM for every ℓ. When
ℓ = c/a, the product of pivots equals the determinant: (a)(d − ℓb) equals ad − bc.

9 (a) E21 subtracts row 1 from row 2 and then P23 exchanges rows 2 and 3. What
matrix M = P23E21 does both steps at once?

(b) P23 exchanges rows 2 and 3 and then E31 subtracts row 1 from row 3. What
matrix M = E31P23 does both steps at once? Explain why the M ’s are the
same but the E’s are different.

10 (a) What matrix adds row 1 to row 3 and at the same time row 3 to row 1 ?

(b) What matrix adds row 1 to row 3 and then adds row 3 to row 1 ?

11 Create a matrix that has a11 = a22 = a33 = 1 but elimination produces two negative
pivots without row exchanges. (The first pivot is 1.)

12 For these “permutation matrices” find P−1 by trial and error (with 1’s and 0’s) :

P =



0 0 1
0 1 0
1 0 0


 and P =



0 1 0
0 0 1
1 0 0


 .

13 Solve for the first column (x, y) and second column (t, z) of A−1. Check AA−1.

A =

[
10 20
20 50

] [
10 20
20 50

] [
x
y

]
=

[
1
0

]
and

[
10 20
20 50

] [
t
z

]
=

[
0
1

]
.

14 Find an upper triangular U (not diagonal) with U2 = I . Then U−1 = U .

15 (a) If A is invertible and AB = AC, prove quickly that B = C.

(b) If A =
[
1 1
1 1

]
, find two different matrices such that AB = AC.
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16 (Important) If A has row 1 + row 2 = row 3, show that A is not invertible :

(a) Explain why Ax = (0, 0, 1) cannot have a solution. Add eqn 1 + eqn 2.

(b) Which right sides (b1, b2, b3) might allow a solution to Ax = b ?

(c) In the elimination process, what happens to equation 3 ?

17 If A has column 1 + column 2 = column 3, show that A is not invertible:

(a) Find a nonzero solution x to Ax = 0. The matrix is 3 by 3.

(b) Elimination keeps columns 1 + 2 = 3. Explain why there is no third pivot.

18 Suppose A is invertible and you exchange its first two rows to reach B. Is the new
matrix B invertible? How would you find B−1 from A−1?

19 (a) Find invertible matrices A and B such that A+B is not invertible.

(b) Find singular matrices A and B such that A+B is invertible.

20 If the product C = AB is invertible (A and B are square), then A itself is invertible.
Find a formula for A−1 that involves C−1 and B.

21 If the product M = ABC of three square matrices is invertible, then B is invertible.
(So are A and C.) Find a formula for B−1 that involves M−1 and A and C.

22 If you add row 1 of A to row 2 to get B, how do you find B−1 from A−1 ?

23 Prove that a matrix with a column of zeros cannot have an inverse.

24 Multiply
[
a b
c d

]
times

[
d −b

−c a

]
. What is the inverse of each matrix if ad 6= bc ?

25 (a) What 3 by 3 matrix E has the same effect as these three steps? Subtract row 1
from row 2, subtract row 1 from row 3, then subtract row 2 from row 3.

(b) What single matrix L has the same effect as these three reverse steps? Add row
2 to row 3, add row 1 to row 3, then add row 1 to row 2.

26 If B is the inverse of A2, show that AB is the inverse of A.

27 Show that A = 4 ∗ eye (4) – ones (4, 4) is not invertible : Multiply A∗ ones (4, 1).

28 There are sixteen 2 by 2 matrices whose entries are 1’s and 0’s. How many of them
are invertible ?

29 Change I into A−1 as elimination reduces A to I (the Gauss-Jordan idea).

[
A I

]
=

[
1 3 1 0
2 7 0 1

]
and

[
A I

]
=

[
1 4 1 0
3 9 0 1

]

30 Could a 4 by 4 matrix A be invertible if every row contains the numbers 0, 1, 2, 3 in
some order? What if every row of B contains 0, 1, 2,−3 in some order ?
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31 Find A−1 and B−1 (if they exist) by elimination on [A I ] and [B I ]:

A =



2 1 1
1 2 1
1 1 2


 and B =




2 −1 −1
−1 2 −1
−1 −1 2


 .

32 Gauss-Jordan elimination acts on [U I ] to find the matrix [ I U−1 ]:

If U =



1 a b
0 1 c
0 0 1


 then U−1 =





 .

33 True or false (with a counterexample if false and a reason if true) : A is square.

(a) A 4 by 4 matrix with a row of zeros is not invertible.

(b) Every matrix with 1’s down the main diagonal is invertible.

(c) If A is invertible then A−1 and A2 are invertible.

34 (Recommended) Prove that A is invertible if a 6= 0 and a 6= b (find the pivots or
A−1). Then find three numbers c so that C is not invertible:

A =



a b b
a a b
a a a


 C =



2 c c
c c c
8 7 c


 .

35 This matrix has a remarkable inverse. Find A−1 by elimination on [A I ]. Extend
to a 5 by 5 “alternating matrix” and guess its inverse; then multiply to confirm.

Invert A =




1 −1 1 −1
0 1 −1 1
0 0 1 −1
0 0 0 1


 and solve Ax =




1
1
1
1


 .

36 Suppose the matrices P and Q have the same rows as I but in any order. They are
“permutation matrices”. Show that P −Q is singular by solving (P −Q)x = 0.

37 Find and check the inverses (assuming they exist) of these block matrices :

[
I 0
C I

] [
A 0
C D

] [
0 I
I D

]
.

38 How does elimination from A to U on a 3 by 3 matrix tell you if A is invertible ?

39 If A = I − uvT then A−1 = I + uvT(1 − vTu)−1. Show that AA−1 = I except
Au = 0 when vTu = 1.




