
Linear Programming
(Sec. 10.4 of Introduction to Linear Algebra, 5th ed.)

Note : The full section 10.4 is included here, because it
develops the example of solving 4 homework problems

(by a Ph.D. or a student or a computer) that is briefly
proposed in Section 9.4 of the 6th edition. The 5th edition
gave a more detailed treatment of the simplex method and

a brief description of the alternative approach by Interior
Point Methods.
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482 Chapter 10. Applications

10.4 Linear Programming

Linear programming is linear algebra plus two new ideas: inequalities and minimization.

The starting point is still a matrix equation Ax = b. But the only acceptable solutions

are nonnegative. We require x ≥ 0 (meaning that no component of x can be negative).

The matrix has n > m, more unknowns than equations. If there are any solutions x ≥ 0
to Ax = b, there are probably a lot. Linear programming picks the solution x∗ ≥ 0
that minimizes the cost:

The cost is c1x1 + · · · + cnxn. The winning vector x∗ is

the nonnegative solution of Ax = b that has smallest cost.

Thus a linear programming problem starts with a matrix A and two vectors b and c:

i) A has n > m: for example A = [ 1 1 2 ] (one equation, three unknowns)

ii) b has m components for m equations Ax = b: for example b = [ 4 ]

iii) The cost vector c has n components: for example c = [ 5 3 8 ].

Then the problem is to minimize c · x subject to the requirements Ax = b and x ≥ 0:

Minimize 5x1 + 3x2 + 8x3 subject to x1 + x2 + 2x3 = 4 and x1, x2, x3 ≥ 0.

We jumped right into the problem, without explaining where it comes from. Linear pro-

gramming is actually the most important application of mathematics to management. De-

velopment of the fastest algorithm and fastest code is highly competitive. You will see that

finding x∗ is harder than solving Ax = b, because of the extra requirements: x∗ ≥ 0 and

minimum cost cTx∗. We will explain the background, and the famous simplex method,

and interior point methods, after solving the example.

Look first at the “constraints”: Ax = b and x ≥ 0. The equation x1 + x2 + 2x3 = 4
gives a plane in three dimensions. The nonnegativity x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 chops the

plane down to a triangle. The solution x∗ must lie in the triangle PQR in Figure 8.6.

Inside that triangle, all components of x are positive. On the edges of PQR,

one component is zero. At the corners P and Q and R, two components are zero. The

optimal solution x∗ will be one of those corners! We will now show why.

The triangle contains all vectors x that satisfy Ax = b and x ≥ 0. Those x’s are called

feasible points, and the triangle is the feasible set. These points are the allowed candidates

in the minimization of c · x, which is the final step:

Find x∗ in the triangle PQR to minimize the cost 5x1 + 3x2 + 8x3.

The vectors that have zero cost lie on the plane 5x1 + 3x2 + 8x3 = 0. That plane does

not meet the triangle. We cannot achieve zero cost, while meeting the requirements on x.

So increase the cost C until the plane 5x1 + 3x2 + 8x3 = C does meet the triangle.

As C increases, we have parallel planes moving toward the triangle.
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10.4. Linear Programming 483

Example with four homework problems

Ax = b is the plane x1 + x2 + 2x3 = 4
Triangle has x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Q = (0, 4, 0) (4 hours by student)

P = (4, 0, 0) (4 hours by Ph.D.)

corners have 2 zero components

cost cTx = 5x1 + 3x2 + 8x3

R = (0, 0, 2)
(2 hours by computer)

Figure 10.5: The triangle contains all nonnegative solutions: Ax = b and x ≥ 0. The

lowest cost solution x∗ is a corner P , Q, or R of this feasible set.

The first plane 5x1 + 3x2 + 8x3 = C to touch the triangle has minimum cost C.

The point where it touches is the solution x∗. This touching point must be one of the

corners P or Q or R. A moving plane could not reach the inside of the triangle before it

touches a corner! So check the cost 5x1 + 3x2 + 8x3 at each corner:

P = (4, 0, 0) costs 20 Q = (0, 4, 0) costs 12 R = (0, 0, 2) costs 16.

The winner is Q. Then x∗ = (0, 4, 0) solves the linear programming problem.

If the cost vector c is changed, the parallel planes are tilted. For small changes,Q is still

the winner. For the cost c ·x = 5x1 +4x2+7x3, the optimum x∗ moves to R = (0, 0, 2).
The minimum cost is now 7 · 2 = 14.

Note 1 Some linear programs maximize profit instead of minimizing cost. The mathemat-

ics is almost the same. The parallel planes start with a large value of C, instead of a small

value. They move toward the origin (instead of away), as C gets smaller. The first touching

point is still a corner.

Note 2 The requirements Ax = b and x ≥ 0 could be impossible to satisfy. The equation

x1 + x2 + x3 = −1 cannot be solved with x ≥ 0. That feasible set is empty.

Note 3 It could also happen that the feasible set is unbounded. If the requirement is

x1 + x2 − 2x3 = 4, the large positive vector (100, 100, 98) is now a candidate. So is

the larger vector (1000, 1000, 998). The plane Ax = b is no longer chopped off to a

triangle. The two corners P and Q are still candidates for x∗, but R moved to infinity.

Note 4 With an unbounded feasible set, the minimum cost could be −∞ (minus infinity).

Suppose the cost is −x1 − x2 + x3. Then the vector (100, 100, 98) costs C = −102.

The vector (1000, 1000, 998) costs C = −1002. We are being paid to include x1 and x2,

instead of paying a cost. In realistic applications this will not happen. But it is theoretically

possible that A, b, and c can produce unexpected triangles and costs.
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484 Chapter 10. Applications

The Primal and Dual Problems

This first problem will fit A, b, c in that example. The unknowns x1, x2, x3 represent hours

of work by a Ph.D. and a student and a machine. The costs per hour are $5, $3, and $8.

(I apologize for such low pay.) The number of hours cannot be negative: x1 ≥ 0, x2 ≥
0, x3 ≥ 0. The Ph.D. and the student get through one homework problem per hour. The

machine solves two problems in one hour. In principle they can share out the homework,

which has four problems to be solved: x1 + x2 + 2x3 = 4.

The problem is to finish the four problems at minimum cost cTx.

If all three are working, the job takes one hour: x1 = x2 = x3 = 1. The cost is

5 + 3 + 8 = 16. But certainly the Ph.D. should be put out of work by the student (who

is just as fast and costs less—this problem is getting realistic). When the student works

two hours and the machine works one, the cost is 6 + 8 and all four problems get solved.

We are on the edge QR of the triangle because the Ph.D. is not working: x1 = 0.

But the best point is all work by student (at Q) or all work by machine (at R). In

this example the student solves four problems in four hours for $12—the minimum cost.

With only one equation in Ax = b, the corner (0, 4, 0) has only one nonzero

component. When Ax = b has m equations, corners have m nonzeros. We solve

Ax = b for those m variables, with n−m free variables set to zero. But unlike Chapter 3,

we don’t know which m variables to choose.

The number of possible corners is the number of ways to choose m components out

of n. This number “n choose m” is heavily involved in gambling and probability. With

n = 20 unknowns and m = 8 equations (still small numbers), the “feasible set” can have

20!/8!12! corners. That number is (20)(19) · · · (13) = 5,079,110,400.

Checking three corners for the minimum cost was fine. Checking five billion corners is

not the way to go. The simplex method described below is much faster.

The Dual Problem In linear programming, problems come in pairs. There is a minimum

problem and a maximum problem—the original and its “dual.” The original problem was

specified by a matrix A and two vectors b and c. The dual problem transposes A and

switches b and c: Maximize b · y. Here is the dual to our example:

A cheater offers to solve homework problems by selling the answers.

The charge is y dollars per problem, or 4y altogether. (Note how b = 4 has

gone into the cost.) The cheater must be as cheap as the Ph.D. or student or

machine: y ≤ 5 and y ≤ 3 and 2y ≤ 8. (Note how c = (5, 3, 8) has gone into

inequality constraints). The cheater maximizes the income 4y.

Dual Problem Maximize b · y subject to ATy ≤ c .

The maximum occurs when y = 3. The income is 4y = 12. The maximum in the dual

problem ($12) equals the minimum in the original ($12). Max = min is duality.
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10.4. Linear Programming 485

If either problem has a best vector (x∗ or y∗) then so does the other.

Minimum cost c · x∗ equals maximum income b · y∗

This book started with a row picture and a column picture. The first “duality theorem” was

about rank: The number of independent rows equals the number of independent columns.

That theorem, like this one, was easy for small matrices. Minimum cost = maximum

income is proved in our text Linear Algebra and Its Applications. One line will establish

the easy half of the theorem: The cheater’s income bTy cannot exceed the honest cost:

If Ax = b, x ≥ 0, ATy ≤ c then bTy = (Ax)Ty = xT(ATy)≤xTc. (1)

The full duality theorem says that when bTy reaches its maximum and xTc reaches its

minimum, they are equal: b · y∗ = c · x∗. Look at the last step in (1), with ≤ sign:

The dot product of x ≥ 0 and s = c−ATy ≥ 0 gave xTs ≥ 0. This is xTATy ≤ xTc.

Equality needs xTs = 0 So the optimal solution has x∗

j = 0 or s∗j = 0 for each j.

The Simplex Method

Elimination is the workhorse for linear equations. The simplex method is the workhorse for

linear inequalities. We cannot give the simplex method as much space as elimination, but

the idea can be clear. The simplex method goes from one corner to a neighboring corner of

lower cost. Eventually (and quite soon in practice) it reaches the corner of minimum cost.

A corner is a vector x ≥ 0 that satisfies the m equations Ax = b with at most m
positive components. The other n−m components are zero. (Those are the free variables.

Back substitution gives the m basic variables. All variables must be nonnegative or x is

a false corner.) For a neighboring corner, one zero component of x becomes positive and

one positive component becomes zero.

The simplex method must decide which component “enters” by becoming positive,

and which component “leaves” by becoming zero. That exchange is chosen so as to

lower the total cost. This is one step of the simplex method, moving toward x∗.

Here is the overall plan. Look at each zero component at the current corner. If it

changes from 0 to 1, the other nonzeros have to adjust to keep Ax = b. Find the new x
by back substitution and compute the change in the total cost c · x. This change is the

“reduced cost” r of the new component. The entering variable is the one that gives the

most negative r. This is the greatest cost reduction for a single unit of a new variable.

Example 1 Suppose the current corner is P = (4, 0, 0), with the Ph.D. doing all the

work (the cost is $20). If the student works one hour, the cost of x = (3, 1, 0) is down to

$18. The reduced cost is r = −2. If the machine works one hour, then x = (2, 0, 1) also
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486 Chapter 10. Applications

costs $18. The reduced cost is also r = −2. In this case the simplex method can choose

either the student or the machine as the entering variable.

Even in this small example, the first step may not go immediately to the best x∗.

The method chooses the entering variable before it knows how much of that variable

to include. We computed r when the entering variable changes from 0 to 1, but one unit

may be too much or too little. The method now chooses the leaving variable (the Ph.D.).

It moves to corner Q or R in the figure.

The more of the entering variable we include, the lower the cost. This has to stop

when one of the positive components (which are adjusting to keep Ax = b) hits zero. The

leaving variable is the first positive xi to reach zero. When that happens, a neighboring

corner has been found. Then start again (from the new corner) to find the next variables to

enter and leave.

When all reduced costs are positive, the current corner is the optimal x∗.

No zero component can become positive without increasing c · x. No new variable should

enter. The problem is solved (and we can show that y∗ is found too).

Note Generally x∗ is reached in αn steps, where α is not large. But examples have been

invented which use an exponential number of simplex steps. Eventually a different ap-

proach was developed, which is guaranteed to reach x∗ in fewer (but more difficult) steps.

The new methods travel through the interior of the feasible set.

Example 2 Minimize the cost c · x = 3x1 + x2 + 9x3 + x4. The constraints are x ≥ 0
and two equations Ax = b:

x1 + 2x3 + x4 = 4 m = 2 equations

x2 + x3 − x4 = 2 n = 4 unknowns.

A starting corner is x = (4, 2, 0, 0) which costs c · x = 14. It has m = 2 nonzeros and

n−m = 2 zeros. The zeros are x3 and x4. The question is whether x3 or x4 should enter

(become nonzero). Try one unit of each of them:

If x3 = 1 and x4 = 0, then x = (2, 1, 1, 0) costs 16.

If x4 = 1 and x3 = 0, then x = (3, 3, 0, 1) costs 13.

Compare those costs with 14. The reduced cost of x3 is r = 2, positive and useless. The

reduced cost of x4 is r = −1, negative and helpful. The entering variable is x4.

How much of x4 can enter? One unit of x4 made x1 drop from 4 to 3. Four units will

make x1 drop from 4 to zero (while x2 increases all the way to 6). The leaving variable is

x1. The new corner is x = (0, 6, 0, 4), which costs only c · x = 10. This is the optimal

x∗, but to know that we have to try another simplex step from (0, 6, 0, 4). Suppose x1 or

x3 tries to enter:

Start from the If x1 = 1 and x3 = 0, then x = (1, 5, 0, 3) costs 11.

corner (0,6,0,4) If x3 = 1 and x1 = 0, then x = (0, 3, 1, 2) costs 14.
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10.4. Linear Programming 487

Those costs are higher than 10. Both r’s are positive—it does not pay to move. The current

corner (0, 6, 0, 4) is the solution x∗.

These calculations can be streamlined. Each simplex step solves three linear systems

with the same matrix B. (This is the m by m matrix that keeps the m basic columns of A.)

When a column enters and an old column leaves, there is a quick way to update B−1. That

is how most codes organize the simplex method.

Our text on Computational Science and Engineering includes a short code with com-

ments. (The code is also on math.mit.edu/cse) The best y∗ solves m equations ATy∗ = c
in the m components that are nonzero in x∗. Then we have optimality xTs = 0 and this is

duality: Either x∗
j = 0 or the “slack” in s∗ = c −ATy∗ has s∗j = 0.

When x∗ = (0, 4, 0) was the optimal corner Q, the cheater’s price was set by y∗ = 3.

Interior Point Methods

The simplex method moves along the edges of the feasible set, eventually reaching the

optimal corner x∗. Interior point methods move inside the feasible set (where x > 0).

These methods hope to go more directly to x∗. They work well.

One way to stay inside is to put a barrier at the boundary. Add extra cost as a

logarithm that blows up when any variable xj touches zero. The best vector has x > 0.

The number θ is a small parameter that we move toward zero.

Barrier problem Minimize cTx− θ (log x1 + · · ·+ log xn) with Ax = b (2)

This cost is nonlinear (but linear programming is already nonlinear from inequalities).

The constraints xj ≥ 0 are not needed because log xj becomes infinite at xj = 0.

The barrier gives an approximate problem for each θ. The m constraints Ax = b have

Lagrange multipliers y1, . . . , ym. This is the good way to deal with constraints.

y from Lagrange L(x, y, θ) = cTx− θ (
∑

log xi)− yT(Ax− b) (3)

∂L/∂y = 0 brings back Ax = b. The derivatives ∂L/∂xj are interesting !

Optimality in

barrier pbm

∂L

∂xj
= cj −

θ

xj
− (ATy)j = 0 which is xjsj = θ . (4)

The true problem has xjsj = 0. The barrier problem has xjsj = θ. The solutions x∗(θ)
lie on the central path to x∗(0). Those n optimality equations xjsj = θ are nonlinear, and

we solve them iteratively by Newton’s method.

The current x,y, s will satisfy Ax = b,x ≥ 0 and ATy + s = c, but not xjsj = θ.

Newton’s method takes a step ∆x,∆y,∆s. By ignoring the second-order term ∆x∆s
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488 Chapter 10. Applications

in (x+∆x)(s+∆s) = θ, the corrections in x,y, s come from linear equations:

Newton step

A∆x= 0
AT∆y +∆s= 0

sj∆xj + xj∆sj = θ − xjsj

(5)

Newton iteration has quadratic convergence for each θ, and then θ approaches zero.

The duality gap xTs generally goes below 10−8 after 20 to 60 steps. The explanation

in my Computational Science and Engineering textbook takes one Newton step in detail,

for the example with four homework problems. I didn’t intend that the student should end

up doing all the work, but x∗ turned out that way.

This interior point method is used almost “as is” in commercial software, for a large

class of linear and nonlinear optimization problems.

Problem Set 10.4

1 Draw the region in the xy plane where x+2y = 6 and x ≥ 0 and y ≥ 0. Which point

in this “feasible set” minimizes the cost c = x + 3y? Which point gives maximum

cost? Those points are at corners.

2 Draw the region in the xy plane where x + 2y ≤ 6, 2x + y ≤ 6, x ≥ 0, y ≥ 0. It

has four corners. Which corner minimizes the cost c = 2x− y?

3 What are the corners of the set x1 + 2x2 − x3 = 4 with x1, x2, x3 all ≥ 0? Show

that the cost x1 +2x3 can be very negative in this feasible set. This is an example of

unbounded cost: no minimum.

4 Start at x = (0, 0, 2) where the machine solves all four problems for $16. Move

to x = (0, 1, ) to find the reduced cost r (the savings per hour) for work by the

student. Find r for the Ph.D. by moving to x = (1, 0, ) with 1 hour of Ph.D. work.

5 Start Example 1 from the Ph.D. corner (4, 0, 0) with c changed to [ 5 3 7 ]. Show

that r is better for the machine even when the total cost is lower for the student. The

simplex method takes two steps, first to the machine and then to the student for x*.

6 Choose a different cost vector c so the Ph.D. gets the job. Rewrite the dual problem

(maximum income to the cheater).

7 A six-problem homework on which the Ph.D. is fastest gives a second constraint

2x1 + x2 + x3 = 6. Then x = (2, 2, 0) shows two hours of work by Ph.D. and

student on each homework. Does this x minimize the cost cTx with c = (5, 3, 8) ?

8 These two problems are also dual. Prove weak duality, that always yTb ≤ cTx:

Primal problem Minimize cTx with Ax ≥ b and x ≥ 0.

Dual problem Maximize yTb with ATy ≤ c and y ≥ 0.
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