CLASSICAL/QUANTUM CORRESPONDENCE CHART, SNAP 2019

SEMYON DYATLOV

Disclaimer: this is a quick reference guide omitting many necessary assumptions. See the book of Zworski for precise statements.

Classical	Quantum
Symbol/classical observable $a(x,\xi),(x,\xi)\in\mathbb{R}^{2n}$	Pseudodifferential operator/quantum observable $\operatorname{Op}_h(a) = a(x, \frac{h}{i}\partial_x)$
$a = 1 a = x_j a = \xi_j$	$\operatorname{Op}_h(a) = I$ $\operatorname{Op}_h(a) = x_j$ $\operatorname{Op}_h(a) = \frac{h}{i} \partial_{x_j}$
Polynomial symbol $a(x,\xi) = \sum_{\alpha} a_{\alpha}(x)\xi^{\alpha}$	Differential operator $Op_h(a) = \sum_{\alpha} a_{\alpha}(x) (hD_x)^{\alpha}$
Symbol $a \in C^{\infty}(T^*M)$ on the cotangent bundle of a manifold M	Operator $Op_h(a)$ on functions on M
Length-square of covectors w.r.t. Riemannian metric, $p(x,\xi) = \xi _{g(x)^{-1}}^2$	Laplace–Beltrami operator $-h^2\Delta_g = \operatorname{Op}_h(p) + \mathcal{O}(h)$
Product of symbols	Composition of operators
Product Rule: $\operatorname{Op}_h(a)\operatorname{Op}_h(b) = \operatorname{Op}_h(ab) + \mathcal{O}(h)$	
Poisson bracket of symbols: $\{a,b\} = \sum_{j} (\partial_{\xi_{j}} a \cdot \partial_{x_{j}} b - \partial_{x_{j}} a \cdot \partial_{\xi_{j}} b)$	Commutator of operators: $[A, B] = AB - BA$
Commutator Rule: $[\operatorname{Op}_h(a), \operatorname{Op}_h(b)] = -ih \operatorname{Op}_h(\{a, b\}) + \mathcal{O}(h^2)$	
Complex conjugate of a symbol	Adjoint of an operator
Adjoint Rule: $\operatorname{Op}_h(a)^* = \operatorname{Op}_h(\overline{a}) + \mathcal{O}(h)$	
Bounded symbol: $\sup a \le \gamma$	Bounded operator on $L^2(\mathbb{R}^n)$: $\ \operatorname{Op}_h(a)\ \leq \gamma + \mathcal{O}(h)$
Symbol converging to 0: $\lim_{(x,\xi)\to\infty} a(x,\xi) = 0$	Compact operator $\operatorname{Op}_h(a)$ on $L^2(\mathbb{R}^n)$
Nonnegative bounded symbol: $\sup a \le C, a \ge 0$	Sharp Gårding inequality: $\text{Re}\langle \text{Op}_h(a)u,u\rangle_{L^2}\geq -C'h\ u\ _{L^2}^2$
Classical evolution: $e^{tH_p}: \mathbb{R}^{2n} \to \mathbb{R}^{2n}, H_p a = \{p, a\}, p \text{ real-valued}$	Quantum evolution: $U(t) = \exp(-itP/h), P = \operatorname{Op}_h(p) + \mathcal{O}(h), P^* = P$
Egorov's Theorem: $U(-t)\operatorname{Op}_h(a)U(t) = \operatorname{Op}_h(a \circ e^{tH_p}) + \mathcal{O}(h)$	
Essential support: $(x_0, \xi_0) \notin \text{ess-supp}(a) \Leftrightarrow \exists U(x_0, \xi_0) : a _U = \mathcal{O}(h^{\infty})$	Wavefront set of a pseudodifferential operator, $WF_h(Op_h(a))$
Value of an observable at a point, $a(x_0, \xi_0)$	Average value of an observable on a wave function, $\langle \operatorname{Op}_h(a)u,u\rangle_{L^2}$

Integral of a classical observable	Trace of a quantum observable
Trace formula: $\operatorname{tr} \operatorname{Op}_h(a) = (2\pi h)^{-n} \int_{\mathbb{R}^{2n}} a(x,\xi) dx d\xi + \mathcal{O}(h^{1-n})$	
Composition with a smooth function: $f(p)$, p real-valued	Functional calculus: $f(P)$, $P = \operatorname{Op}_h(p) + \mathcal{O}(h)$, $P^* = P$
Semiclassical functional calculus: $f(P) = Op_h(f(p)) + \mathcal{O}(h)$	
Volume of preimages $p^{-1}([\alpha, \beta])$, p real-valued	Asymptotics of spectrum $\operatorname{Spec}(P)$, $P = \operatorname{Op}_h(p) + \mathcal{O}(h)$, $P^* = P$
Weyl Law: $\#(\operatorname{Spec}(P) \cap [\alpha, \beta]) = (2\pi h)^{-n} \operatorname{vol}(p^{-1}([\alpha, \beta])) + o(h^{-n})$	