The Arithmetic structure of The spectrum of a metric graph

Peter Satnak

MIT MAY 2024
"microlocal to global analysis" Mel rose 75

Joint WORK With panel kurasov.

Graph Laplacian:
G a finite connected Graph. $V(G)$ ITS VERTICES; $E(G)$ ITS EDGES

$$
|V(G)|=M,|E(G)|=N .
$$

the laplacian \triangle on $l^{2}(V(G))$ is given by

$$
\Delta f(v)=d(v) f(v)-\sum_{w^{N} v} f(w)
$$

$d(v)=$ DEGREE OF v.

$$
\operatorname{SPEC}_{\Delta}(G)=\left\{0<\lambda_{1} \leqslant \lambda_{2} \ldots \leqslant \lambda_{M-1}\right\} .
$$

- The $\lambda_{j}>0$ are totally positive algebraic INTEGERS WITH THUR GALOIS CONJUGATES ALSO IN TILE SET.
- this is exploited to prove theorems in ALGEBRAIC GRAPIH THEORY.

FOR EXAMPLE IN PRESCRIbing GAPS IN THE SPECTRA WHERE FEKETE'S THEOREM IMPOSES RESTRLCTIONS (ALICIAKOLLAR-S 2021).

METRIC GRAPHS
these have been studied since the 1930's BY CHEMISTS, ENGINEERS PHYSICISTS AND MATHEMATICIANS. kurasov thanks of them as vibrating spiders.

G is the underlying graph
For each edge of G we assign a length l, l_{1}, \ldots, l_{N} THE LENGTH SET

THE METRE GRAPH $\Gamma=\Gamma_{l}$ ON G is this singular (at the vertices) one dimensional Riemarinian manifold.

- G carries the topology of
$\Pi_{1}(G)$ IS A FREE GROUP ON

$$
\beta_{1}(G):=N-M+1 \quad \text { GENERATORS }
$$

$H_{1}(G)$ is a fire e abelian group on $\beta_{1}(G)$ generators.
scattering matrix of G
ORIENT THE EDGES OF G TO GET $2 N$ ORIENTED EDGES. DEFINE THE $2 N \times 2 N$ 'SCATTERING' MATRIX WHERE THE ROWS. AND COLUMNS ARE LABELLED BY THE ORIENTED EDGES

$$
S=\left(S_{f g}\right) \text { WHERE } S_{f g}=\left\{\begin{array}{l}
-\delta_{f g}+\frac{2}{\operatorname{deg}(\sigma)} \\
\text { IF } g \text { FOLLOWS } f \\
\text { THOUGH THE VERTEX } 0 \\
0 \quad \text { OTHERWISE }
\end{array}\right.
$$

Note

- A vertex u of degree 2 is a removable singularity for Γ, so we assume $d(v) \neq 2$ FOR All v.
- Sis Unitary!
S is a central player in studying tie lailacian on M.

LAPLACIAN ON $\Gamma: " \triangle "$ IT is $-\frac{d^{2}}{d x^{2}}$ ON THE EDGES OF $\Gamma_{\text {; }}$ at the vertices we impose neumann boundary CONDITIONS: IF $\phi: \Gamma \rightarrow \phi$

- ϕ is continuous ar Γ and at match. EACH v^{-}.

$$
\begin{aligned}
& \quad \sum_{e} \partial_{e} \phi(v)=0, \\
& -\quad-\frac{d^{2}}{d x^{2}} \phi(x)=k^{2} \phi(x)
\end{aligned}
$$

Where the Sum is OVER ALL DRECTES EDGES ENDING AT U, ∂_{e} is derivative Along THE ERE.
\triangle IS SELF ADJONT ON $L^{2}(\Gamma)$ AND HAS DISCRETE SPECTRUM $\theta<\lambda_{1} \leqslant \lambda_{2} \cdots, \quad \lambda_{j} \rightarrow \infty$.

SET

$$
\operatorname{SPEC}_{\Delta}(\Gamma):=\left\{\begin{array}{l}
\left.0,0, \ldots, 0, \pm \sqrt{\lambda_{j}}, j \geqslant 1\right\} \\
\begin{array}{l}
\beta+1 \\
\pi \text { MES }
\end{array}
\end{array}\right.
$$

- The adjustment of zero having multiplicity equal to prig (G) makes the trace formula EXACT.

151
WEyL's Law: For T large

$$
\operatorname{sPEC}(\Gamma) \cap[-T, T]=\frac{2\left(l_{1}+l_{2}+\cdots l_{N}\right)}{\pi} T+O(1)
$$

SO THE MULTIPLICITES ARE UNIFORMLY BOUNDED And the spectrum is a bounded pertiation of An ARITHMETIC PROGRESSION.

EXAMPLE:

SMOOTH CIRCLE OF LENGTH l.

$$
\phi_{m}(x)=e^{2 \pi i m x / h} \quad, m \in \mathbb{Z} \underset{E \mid G E N F U N C T I O N}{\text { IS }}
$$

$\operatorname{SPEC}\left(S_{\ell}\right)=$ THE ARITHMETIC PROGRESSION $\frac{2 \pi m}{l}, m \in \mathbb{Z}$ EACH With multiplicity 2
IF $\mu:=\sum_{k \in S P E C\left(S_{l}\right)} \delta_{k} ; \quad \delta_{3} \begin{aligned} & \text { BEING A POINT MASS } \\ & A T\end{aligned}$ THEN $\widehat{\mu}$ is up to scale itself.
THE POISSON SUMmATION FORMULA ASSERTS THAT

$$
\sum_{k \in \mathbb{Z}} \delta_{k}=\sum_{m \in \mathbb{Z}} \delta_{m}
$$

TRACE FORMULA (ROTH, KOTTOS-SMILANSKY,KURASOV, ..) Γ A METRIC GRAPH

$$
\begin{aligned}
& \mu=\sum_{k \in \operatorname{SPEC}(\Gamma)} \delta_{k} ; \mu \text { is a Positive TEMPERED } \\
& \hat{\mu}=\frac{2\left(l_{1}+l_{2}+E_{N}\right)}{\pi} \delta_{0}+\frac{1}{\pi} \sum_{p \in P} l(p r i m p)\left[S(p)\left(\delta_{l(p)}+\delta_{l(p)}\right)\right]
\end{aligned}
$$

WHERE:

- P is tile set of oriented periodic paths in G up to cyclic equivalence (back. TrACKING is allowed)
- $\ell(p)$ is the length of the path
- prim (p) is the primitive part of p (gong around one)
- $s(p)$ is the product of the scattering COEFFICIENTS ENCOUNTERED WHEN TRAVERSING P.
$\hat{\mu}$ IS A SUM OF POINT MASSES SUPPORTED at the l(p)'s Wilich form a discrete subJ砬 of \mathbb{R} as they are contained in

$$
\left\{m_{1} l_{1}+m_{2} l_{2}+\cdots+m_{N} l_{N}: m_{j} \geqslant 0 \text { iN } \mathbb{Z}\right\}
$$

- ONE CAN SHOW THAT $|\hat{\mu}|$ is Ti TEMPERED measure: the par $\mu, \hat{\mu}$ is a positive FOURIER QUASICRYSTAL (MEYER, LEV-OLEVSKII)

$$
\begin{equation*}
\mu=\sum_{k \in \Lambda} a_{k} \delta_{k}, \hat{\mu}=\sum_{\nu \in L} b_{\nu} \delta_{v}, \tag{*}
\end{equation*}
$$

$a_{k} \geqslant 0$ AND \triangle AND $L \operatorname{DISCRETE~IN~} \mathbb{R}$.
(*) Gives a generalized poisson summation formula.

WE WILL SHOW THAT THESE COMING FROM THE SPECTRA OF METRIC GRAPHS ARE EXOTIC BEING FAR FROM ARITHMETIC PROGRESSIONS (DIRAC COMBS) AND RESOLVE VARIOUS QUESTIONS IN THE THEORY (MEYER, LEV-OLIVSKI, 性GARIAS, ..)

LOOPS
GIVEN A LOOP IN G OF LENGTH l

SET $\phi_{j}(x)=\left\{\begin{array}{l}\sin \left(\frac{2 \pi j x}{t}\right) \text { ON THE LOP } \\ 0 \quad \text { ELSEWHERE }\end{array}\right.$
THEN $\triangle \phi_{j}=\frac{4 \pi_{j}^{2} j^{2}}{l^{2}} \phi_{j}$ AND WE GET the ARITHMETIC PROGRESSION?
$\frac{2 \pi j}{l} ; j \in \mathbb{Z} \quad \operatorname{IN} \quad \operatorname{SPEC}(\Gamma)$.
THAT 15 EACH LOP OF LENGTH l_{j} FOR $j=1, \ldots, \nu$ if there are ν loops produces such a progression Li. WE have a decomposition According to loops

$$
\operatorname{SPEC}(\Gamma)=L_{1} L L_{2} \ldots L L_{\nu} L I(\Gamma)
$$

Where the union is with multiplicities
and The left over spectrum il (T) is IRREGULAR AS WE WILL SAOW.

WE AVOID THE GRAPHS
AND

FIGURE EIGHT

WHOSE I (T)＇S ARE ARITHMETIC PROGRESSIONS

NOTATION：
To study M linear relations of the spectra WE VIEW \mathbb{R} AS A VECTOR SPACE OVER \mathbb{Q} ．
－FOR $B \subset R$ ，DIM B is THE MAXIMAL SIZE of $A \mathbb{Q}$－L手NEARLY iNdEPENDENT SUbSET of B ．
－the transcedence degree over q of A SUBSET ${ }_{\wedge}^{B}$ OF \mathbb{R} ，is THE SIZE MAximal Q－algebraically indEpEndEnt subset of B．
－If $\operatorname{Dim}_{\mathbb{R}}\left\{l_{i}, \ldots, l_{N}\right\}=1$ that is $\left(l_{1}, \ldots, l_{N}\right)$ is proportional to a rational vector， THEN SPEC（T）IS A UNION OF ARITHMETIC PROGR位SIONS．
－We assume henceforth is is cutomiry that l_{1}, \ldots, l_{N} ARE LINEAR INDEPENDENT OVER $Q l$ 。

THEOREM 1：（KURASOV－S）Q－LINEAR RELATIONS WSICC THERE IS $C=C(N)$（EFFECTIVE AND ITERATED Exponential in N）sUch that for any metric GRAPH Γ_{l} AND $k_{1}, \ldots, k_{T} \quad$ t－distint positive ELEMENTS IN $I(\Gamma)$

$$
\operatorname{DiM}_{Q}\left(k_{1}, \ldots, k_{T}\right) \geqslant \frac{\log \tau}{C(N)}
$$

COROLLARY 1：
（a）$\quad \operatorname{DMM}_{\mathbb{R}}(I(\Gamma))=\infty$
（b）FOR ANy ARithmetic Progression I in \mathbb{R} $|I(\Gamma) \cap P| \leq B=B(N)$.

TRANSCENDENCE OF THE SPECTRUM
A SIMPLE CONSEQUENCE OF WEIESTRASS' EXTENSION OF LINDEMANN'S THEOREM:
(IF z_{1}, \ldots, z_{N} ARE ALGEBRAIC AND LINEARLY) INDEPENDENT OVER Q THEN

$$
\operatorname{TR} \cdot A N S D E G_{Q}\left\{z_{1} l, \mathbb{R}_{\infty} e e^{z_{1}}, e^{z_{N}}\right\}=N
$$

15:
Proposition: IF Γ_{l} is a metric graph WITH ALGEBRAIC (R-LINEARLY INDEPENDENT) LENGFITS THEN EVERY NOW ZERO MEMBER OF SPEC(Γ) is Transendental.

SCHANUEL'S CONJECTURE
IF $Z_{1}, \ldots, z_{N} \in \phi$ ARE LINEARLY INDEPENDENT OVER Q THEN

$$
\operatorname{TRANSDEG} \underset{\mathbb{R}}{ }\left\{z_{1}, \ldots, z_{N}, e_{1}, \ldots, e^{z_{N}}\right\} \geqslant N
$$

\qquad

12
COROLLARY 2 ($K-S$) ALGEBRAIC INDEPENDENCE OVER assume schanvel's conjecture, then if the lengths of a metric graph Γ are ALGEbRAIC AND LINEARLY INDEREDENT OVER \mathbb{Q}, FOR k_{i}, \ldots, k_{T} DISTINCT POSiTIVE MEMBERS OF $I(\Gamma)$

$$
\operatorname{TR}_{R} A N D E G_{Q}\left\{k_{1}, \ldots, k_{p}\right\} \geqslant \frac{\log r}{D E G(l) \cdot C(N)}
$$

WHITRE DEG (l) is THE DEGREE OF THE EXTENSION $K=Q\left[l_{1}, \ldots, l_{N}\right]$.

COROLLARY 3. UNDER THE SAME ASSUHPTIONS

$$
\operatorname{TRANSDEG}_{\mathbb{R}}(I(\Gamma))=\infty
$$

- HOW to compute the spectrum? barbra and gaspard's secular variety:

$$
T=T^{N}=\left(\Phi^{*}\right)^{N} \quad \text { COMPLEX } N \text {-TORUS }
$$

Tesecular polynomial $P=P_{G}$
LET $U\left(z_{1}, \ldots, z_{N}\right)$ BE THE ONES 2 DIAGONAL MATRIX ON THE ORDERED EDGES

$$
U\left(z_{1}, \ldots, z_{N}\right)_{f g}=z_{f} \delta_{f g} \quad f, g{\underset{c}{\text { CRDERRD }}}_{\text {EDGES }}
$$

SET

$$
P\left(z_{1}, \ldots, z_{N}\right):=\operatorname{DE}_{2 N \times 2 N}\left(I-U\left(z_{1}, \ldots, z_{N}\right) \mathbb{S}\right)
$$

KEy properties:
(a) $P_{G}(z)$ IS OF DEGREE $2 N$ AND DEGREE TWO IN EACH Z_{j}.
(b) THE PAIR $P\left(z_{1}, \ldots, z_{N}\right)$ AND $P^{L}\left(z_{1}, \ldots, z_{N}\right)$ $=P\left(/ / z_{1}, \ldots, 1 / z_{N}\right)$ ARE BOTH STABLE, THAT is
 Follows from the unitarity of S !

144
THE CONNECTION TO SPEC(Γ) is
$\operatorname{SPEC}(\Gamma)=\{$ zeros with multrucetirs $\}$ of

$$
k \longmapsto P_{G}\left(e^{i k l_{1}}, e^{i k l_{2}}, \ldots, e^{i k l_{N}}\right)
$$

(it has real roots only)
The algebraic secular variety.

$$
\begin{aligned}
& \text { LGEBRAIC SECULAR VARIETY } \\
& Z_{G}=\left\{z \in T^{N}: P_{G}(z)=0\right\} \subset T^{N} .
\end{aligned}
$$

plays a central role.

- the 'real n-1 dimensional torus

$$
\sum=Z_{G} \cap(U(1))^{N} \quad U(1)=\{|z|=1\}
$$

AND ITS DIFFERENTIAL GEOMETRY PLAYS A rOLE in THE study of the eiganfunctions:
(A) barra-gaspard use it and the equidistribution of irrational linear flows on U(1) to study the consecutive spacing statistics in spec(Γ).
14^{1}
(B) COLIN-DE-VERDIERIE USES THE GAUSS MAP ON \sum TO STUDY ALL POSSIBLE QUANTUM LIMITS ON Γ.
(C) ALON-BAND-BERKOLAIKO IDENDIFY FURTHER CODIMENSION ONE (REAL) ALGEBRAIC SUBSETS OF \sum that GOKERN the nOdal COUNTS.

FOR US IT IS THE DICAHANTINE/ALGEBRALC GEOMETRY OF Z_{G} THAT 15 CRITICAL.
THEOREM 2 (KURASOV-S)
(a) $P_{G}(z)=Q_{G}(z) \prod_{\text {eA LOOP }}\left(z_{e}-1\right)$, WITH
$Q_{G}(z)$ absolutely irreducible.
(b) Z_{Q} DOES NOT cONTAIN A TRANSLATE OF AN $(N-1)$ dimensional subtorus.
(*) (N) WAS CONJECTURED BY COLIN-DE-VERDIRRE (x (x). THERE EXCRPTIONS TO THEOREM 2 ; THE FIGURE 8 OD; AND

FIG. 1. Zero set for $L(x, y)$.
distance between the intersection points and the origin measured along the line. It is clear that $L(-x,-y)=-L(x, y)$ [which also follows from (15) and the fact that $F=G$ in the current example], implying that the zeroes are symmetric with respect to the origin.

The summation formula (27) takes the form

$$
\begin{align*}
\sum_{\gamma_{j}} \hat{h}\left(\gamma_{j}\right)= & \left(\xi_{1}+2 \xi_{2}\right) h(0)-\sum_{\mathbf{n}=\left(n_{1}, n_{2}\right) \in \mathbb{Z}_{+}^{2}} c\left(n_{1}, 2 n_{2}\right)\left(n_{1} \xi_{1}+2 n_{2} b_{2}\right)\left(h\left(n_{1} \xi_{1}+2 n_{2} \xi_{2}\right)\right. \tag{44}\\
& \left.+h\left(-\left(n_{1} \xi_{1}+2 n_{2} \xi_{2}\right)\right)\right),
\end{align*}
$$

where

- γ_{j} are solutions to the secular Eq. (43),
- $c\left(n_{1}, 2 n_{2}\right)$ are given by (42), and
- $h \in C_{0}^{\infty}(\mathbb{R})$ is an arbitrary test function.

The difference between formula (44) and the general formula (27) is due to the fact that the stable polynomials just depend on z_{2}^{2}.
Both series on the left- and right-hand sides are infinite, but they have different properties depending on whether ξ_{1} and ξ_{2} are rationally dependent or not. This is related to the number of intersection points on the torus. The number of zeroes $i \gamma_{j}$ is also always infinite, and the number of intersection points on the torus may be finite. Indeed, if $\frac{\xi_{1}}{\xi_{2}} \in \mathbb{Q}$, then the line is periodic on the torus, implying that there are finitely many intersection points (on the torus). The points γ_{j} form a periodic sequence, implying that the obtained summation formula is just a finite sum of Poisson summation formulas with the same period and μ is a generalized Dirac comb.

Next, we assume that ξ_{1} and ξ_{2} are rationally independent,

$$
\begin{equation*}
\frac{\xi_{1}}{\xi_{2}} \notin \mathbb{Q} . \tag{45}
\end{equation*}
$$

By Kronecker's theorem, the line covers the torus densely, and therefore, the intersection points ($\gamma_{j} \xi_{1}, \gamma_{j} \xi_{2}$) cover densely the zero curve of L as well. We are interested in the rational dependence of $\gamma_{j}, j \in \mathbb{Z}$. In particular, we shall need the following:

Lemma 1. If ξ_{1} and ξ_{2} are rationally independent, then the secular Eq. (43),

15
\Rightarrow IF G CONTAINS NO LOOPS THEN ACCORDING TO THEOREM $1 \quad \operatorname{SPEC}(\Gamma)=I(\Gamma)$ CONTAIN'S nO ARITAMETIC PROGRESSIONS OF LENGT册 MORE THAN A FIXED NUMBER AND THIS SET IS VERY FAR FROM BEING A DIRAC COMB.

- With the trace formula these provide exotic positive fourier quasi-crystals.
- in fact one can use any pair of stable "LEE-yang" polynomials. $P^{\prime}=Q$ TO carry OUT SUCH CONSTALCTíons ($K-S$).
- remarkably one can show the converse: OLESSKII - ULANOVSKII (2021) LIORALONcynthia vinzant-alex coleen (2023):
every positive fourier quasi-crysital μ WITH INTEGER COEFFICIENTS ARISES FROM SUCH A constitution with lee-yang polynomials.
- this classification demonstrates the CENTRALTTY OF SEVERAL VARIABLE HyPERBOLLCITY IN FOUWIER QUHSICRYSTALS (DySON'S QUESTION)

OUTLINE OF PROOFS

- theorem 2 is purely combinatorial InVOLVING an arbitrary G and its secular polynomial P_{G}.
- the proof is by reduction of the size of G.
variations on the operation of edge contraction

reduce G to G with $P_{G^{\prime}}$ obtained FROM P_{G} by specialization of the corizioumena variable. THis allows one to compare the irreduability of $P_{G^{n}}$ to $P_{G^{\prime}}$.

ONE AIMS TO NAVIGATE IN THIS Way down to a fixed small list OF G^{\prime} WHOSE $P^{\prime} S$ ARE IRREDUCIBLE.

THIS STRATEGY DOES NOT QUITE WORK BUT A MODIFICATION WHICH ALLOWS SOME LIMITED EXTENSION OPERATIONS DOES. these pick up along the way the watermellon graphs

FOR WHICH THE THEOREM FAILS bUT a simple modification is true.

181

- the proof of theorem 1 makes use of advanced diophantine theorems FOR TORI; SPECIFICALLY QUANTITATIVE VERSIONS OF "LANG'S "G" CONJECTURES WHOSE RESOLUTION DEPEND ONWSCHMIDT'S subspace theorem, the latter is A far reaching several variable Extension of the theorems of thue-siegel-roth la diophantine APPROXMATION.

Let Wc tin be a subvariety AND $\sim A$ FINITELY GENERATED subgRoup OF T^{N}.

THE DIVISION GROUP $\bar{\Lambda}$ OF Λ is

$$
\bar{\Lambda}=\left\{\beta \in T^{N}: \beta^{\nu} \in \Lambda \text { For some } \begin{array}{l}
\mathcal{V} \geqslant 1 \\
\mathcal{V} A N \\
\mathcal{N} \mid E G E N
\end{array}\right\}
$$

WE ARE CONCERNED WITH Λ AW. "LANE'S G_{m} " asserts that This intersection is LIMITED TO A FINITE NUMBER OF TrAnslates of subtcri contained in W. the ultimate uniform version is due TO EVERTSE-SCHLICKEWEI - SCHMIDT.

THEOREM: THERE is $C(W)<\infty$ (EFFECTIVE!) SUCH THAT IF \perp is As ABOVE, THEN THERE t TRANSLATES OF SUBTORI B_{1}, \ldots, B_{t} TART $\mathbb{N} W$ SUCH THAT:

$$
\begin{aligned}
& \text { SUCH THAT: } \bar{\Lambda} \cap W=\bar{\Lambda} \cap\left(B_{1} \cup B_{2} \ldots \cup B_{A}\right) \\
& t \leqslant C(W)^{R A N K\left(\Omega_{N}\right)+1}
\end{aligned}
$$

AND

THE THEOREM SHOWS THAT THE INTERSECTION IS CONTROLLED BY LINEAR STRUCTURE!
in our main application

$$
W=Z_{Q_{G}}
$$

IF $\quad k_{1}, k_{2}, \ldots, k_{T} \in I(\Gamma)$ SET

$$
\rho\left(k_{j}\right)=\left(e^{i k_{j} l_{1}}, \ldots, e^{i k_{j} l_{p}}\right) \in W
$$

The following lemmas are key and quillon ONE TO COMbINE THE DIOPHANTINE THEOREM With theorem 2 and give lower bounds for DIMENSION OF THE Q SPAN OF k_{1}, \ldots, k_{r}.

LEMMA 1 THERE IS A SUBGROUP Λ OF RANK AT MOST DIM $\left.\operatorname{MR}_{R}\left(k_{1}\right), k_{r}\right)$ FOR WHICH $\bar{\Lambda}$ CONTAINS $\rho\left(k_{1}\right), \ldots, \rho\left(k_{r}\right)$.

LEMMA 2 IF $l_{1}, l_{2}, \ldots, l_{N}$ ARE LINEARLY INDEPENDENT OVER Q AND B is A thandsate of a subtorus of T^{N} OF DIMENSION AT MOST $N-2$ THEN.

$$
|\{k \in \mathbb{R}: \rho(k) \in B\}| \leqslant 1
$$

REFERENCES
T. GOWERS "QUASI RANDOM GROUPS" CPC (2008) 17,363-387. P. KURASOV AND P. SARNAK "THE ARITHMETC STRUCTURE OF THE SPECTRUM OF THE LAPLACIAN ON A METRIC GRAPH" IN PREPARATION. A。Kollar and p. Sarnak "GAp seis for sprctra of cubk graphs" P. Kurasor and P. Sarnak. "Stable polynomials and crystatline measoress" J. math pleys. 61 (2020) 8,093501
P. KURASOV
J.H.EVERTSE
"spectral beombtry of GRAPHS" BIRKHAUSER: 2023
"Points on subvarieties
OF TORI" A PANORAMA OF number theory from the virw OF BAKERS GARDEN"

$$
\begin{aligned}
& \text { BARERS GARDEN: } 214-230 \\
& \text { CUP } 202 ;
\end{aligned}
$$

A. OLEVSKII AND A.ULANOVSKII

Fourier quasicrystals witit unlt masses CRM 358(11-12) 1207-1211 (2020)
L.ALON, A. COHEN, C, VINZANT "EVERY REAL-ROOTED EXPONENTIAL POLYNOMIAL IS THE RESTRICTION OF A LEE-yANG POLynOmiAL' ARXIV 2303.03201

