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§1. Conformal fill ins by Einstein manifolds

Given a compact manifold pMn, hq, when is it the boundary of a
conformally compact Einstein manifold pX n`1, g`q with
ρ2g`|M “ h, where ρ is a defining function on X? This problem of
finding “conformal fill in” is motivated by:

‚ The AdS/CFT correspondence in quantum gravity (proposed
by Maldacena also Witten, around 1998)

‚ Geometric considerations to study the structure of
non-compact asymptotically hyperbolic manifolds.



Outline of talk

1. Introduction and a brief survey.

2. Set-up of the compactness problem.

3. Compactness results for conformally compact Einstein
manifolds of dimension 3+1.

4. Some existence Results.

5. Components of proofs.



§1. Conformally compact Einstein manifolds, Definition

‚ On a manifold X with boundary M, we call ρ a defining
function on X , if ρ ą 0 on X , ρ “ 0 on M and dρ ‰ 0 on M.

‚ pX n`1, g`q is conformally compact if pX̄ n`1, ρ2g`q is compact.
Denote h “ ρ2g`|M , we call pMn, rhsq the conformal infinity of
pX n`1, g`q, where rhs denotes the conformal class of metrics of h,
i.e. the collection of metrics ϕ2h for some function ϕ on M.

‚ If Ricrg`s “ ´n g`, we call pX n`1,Mn, g`q a conformally
compact (Poincaré) Einstein (CCE) manifold.

‚ We remark on a CCE manifold, special r (called the geodesic
defining function) can be chosen, with |∇pr2g`qr | ” 1 in an nbhd

of M ˆ p0, ϵq for some ϵ ą 0, so that r2g` is with totally geodesic
boundary.



§1. Examples of CCE manifold

‚ Example 1.

On pRn`1
` ,Rn, gHq, where gH “

dx2`dy2

y2 , x P Rn , y ą 0. Choose

r “ y , then pRn`1
` , dx2 ` dy2q is not compact, but conformal to

gH, with conformal infinity pRn, rdx2sq.
‚ Example 2.
On pBn`1, Sn, gHq, where pBn`1, gH “ p 2

1´|y |2
q2|dy |2qq. Choose

r :“ 2
1 ´ |y |

1 ` |y |
,

gH “ g` “ r´2

˜

dr2 ` p1 ´
r2

4
q

2

gc

¸

.

with pSn, rgc sq as conformal infinity.
We remark that r “ e´2t , where tpyq “ distg`p0, yq.



§1. Examples of CCE manifold

‚ Example 3.
On S1pλq ˆ S2 with the product metric, when 0 ă λ ă 1?

3
, there

are at least 3 different ”conformal fill ins”.

(a) One is when X is (S1pλq ˆ B3q with the fill in the hyperbolic
metric g` “ f pyqdt2 ` gH3pyq.

(b) The other two: X is the AdS-Schwarzchild space
pR2 ˆ S2, g`

m q, where

g`
m “ Vdt2 ` V´1dr2 ` r2gc ,

V “ 1 ` r2 ´
2m

r
.

It turns out for λ ă 1?
3
, there are two different choices of m. This

is the famous ”non-unique fill in” example of Hawking-Page ’83.



§1. Some earlier existence results, Scattering theory on
CCE manifolds

‚ “Ambient Metric” of Fefferman-Graham ’85. On any compact
manifold pMn, hq, h real analytic, there is a CCE metric on some
Mn`1 ˆ p0, ϵq of M. Gursky-Székelyhidi ’17, extend to smooth h .

‚ Graham-Lee ’91: Any h in a small smooth neighborhood of hc on
Sn. We remark that the fill in metrics constructed by Graham-Lee
g` for h all exist in a small nbhd of the Hyperbolic metric, it turns
out they are ”unique” by a later result of C-Ge-Qing, ’21.

‚ Gursky-Han ’17 and Gursky-Han-Stolz ’18 constructed many
examples of boundary conformal classes that do not allow
Poincaré-Einstein extensions on specified manifolds X 4k for k ě 2.
Theorem (J, Lee ’95). On CCE manifolds, if Rphq ą 0, then

λ1p´∆g`q ě n2

4 .
Corollary (J.Qing ’03) On CCE manifolds, if Rphq ą 0, then there
exists a compactified metric g with g |M “ h and Rpgq ą 0.



§1. Scattering theory on CCE manifolds

‚ Starting point of all
Theorem (Mazzeo-Melrose,’ 87) On an AH manifolds pX n`1, g`q,

the essential spectrum of the ´∆g` includes rn
2

4 ,8q and may be a

finite points of point spectrum in p0, n
2

4 q.
Theorem (J. Lee ’95). On a CCE manifold, if Rphq is positive,

then λ1p´∆g`q ě n2

4 .
In the proof of Lee, he studied solution of the Poisson equation:

p˚q ´ ∆g`v ` pn ` 1qv “ 0 on X n`1

with asymptotic behavior v “ r´1p1 ` f2r
2 ` ...q, where r denotes

the geodesic defining function for h and when Rphq ą 0, he used
v

n
2 as a testing function to estimate λ1p´∆g`q.

‚ An observation of J. Qing is that in Lee’s proof, Rphq ą 0
implies the scalar curvature of metric v´2g` is positive.



§2. Compactness of CCE manifolds – the set-up

‚ An open question: Does the entire class of metrics pS3, hq with
positive scalar curvature allow CCE fill in B4?
The class is path-connected by a result of F. Marques ’12.
The index argument for non-existence of Gursky-Han,
Gursky-Han-Stolz does not apply.

‚ We propose to study the “compactness” problem, and as an
application some existence result for conformal fill in. More
precisely, we ask the question:

Given a sequence of pMn, rhi sq metrics with positive Yamabe
constants, which are conformal infinity of CCE pXn`1, g`

i q; when
would

trhi su forms a compact family on Mn

ùñ trgi su forms a compact family on X n`1?

where gi is some compactification of tg`
i u with gi |M “ hi .



§2. Compactness of CCE manifolds – an non-local inverse
problem

The difficulty of the problem lies in the existence of an“non-local”
term.
We will illustrate the case on pX 4,M3, g`q CCE manifold with
pM3, hq conformal infinity, recall the asymptotic behavior

g :“ r2g` “ dr2 ` h ` g p2qr2 ` g p3qr3 ` g p4qr4 ` ¨ ¨ ¨¨,

where g p2q “ ´1
2pRich ´ 1

4Rhhq determined by h (a local term),

Trhg
p3q “ 0, while

g
p3q

α,β “ ´
1

3

B

Bn
pRicg qα,β

is a non-local term not determined by h.
We remark that h together with g p3q determines the asymptotic
behavior of g . Fefferman-Graham ’07, Biquard ’08).
We remark that h together with g p3q determines the asymptotic
behavior of g .



§2. Conformal invariants
Yamabe constant
‚ On pMn, hq, compact closed manifold,

Y pM, rhsq “ inf h̃Prhs

ş

M Rrh̃sdvolrh̃s

VolpM,h̃q
pn´2q

n

. We remark Y pM, rhsq

corresponds to the ”isoperimetric constant” of the Sobolev

embedding of W 1,2 into L
2n
n´2 .

‚ On compact manifold with boundary, there are two such
constants. pX n`1,Mn, ḡq

YapX ,M, rḡ sq “ inf
g̃Prḡs

ş

X Rrg̃ sdvolrg̃ s ` cn
ş

M Hrg̃ |M sdσrg̃ |M s

VolpX , g̃q
pn´1q

pn`1q

YbpX ,M, rḡ sq “ inf
g̃Prḡs

ş

X Rrg̃ sdvolrg̃ s ` cn
ş

M Hrg̃ |M sdσrg̃ |M s

VolpM, g̃ |Mq
pn´1q

n

.

Ya and Yb each corresponds to the (isoperimetric) constants in the
Sobolev and Sobolev trace embeddings.



§2. Conformal invariants

‚ As we have mentioned before, it follows from result of J. Lee ’95,
and the observation by J. Qing, that on CCE setting,
Y pM, rhsq ą 0 implies that YapX ,M, rg sq ě 0.

‚ Combining works of Gursky-Han ’17, X. Chen- M. Lai and F.
Wang ’18, Chang-Ge ’21 we established that, there exists some
constant cn, such that

YapX ,M, rg sq ě CnY pM, rhsq
n

n`1 .

Recall X. Chen-M. Lai and F. Wang

YbpX ,M, rg sq ě CnY pM, rhsq
1
2



§2. Conformal invariants
‚ Another conformally invariant quantity is Weyl curvature W.

|W |rg̃ s “ ρ´2|W |rg s, if g̃ “ ρ2g . Thus
ş

X |W |
n`1
2 rg sdvg is a

conformal invariant.
‚ On 4-manifold X , Bach tensor

Bij “ ∇l∇kWkilj `
1

2
RicklWkilj

is a conformally invariant. Bach flat metrics are the critical metric
of the functional g´ ą

ş

X |W |2rg sdvg . Einstein metrics are Bach
flat, hence so are all metrics in the same conformal class of
Einstein metric. Thus in a CCE setting pX ,M, g`q, all
compactified metrics of rg`s are Bach flat.
‚ We remark that it turns out we can re-write Bach flat condition
as a 4th order system of PDE of elliptic type,

∆Rij “ c∇i∇jR ` Rm ˚ Ric ,

which plays an important role in our estimates of the compactified
metrics later. We also remark that for this PDE, the non-local
tensor ´3g p3q “ BRic

Bn |M is a natural matching boundary condition.



§2. Compactness of CCE manifolds – the set-up.
‚ For convenience, we choose h “ hY P rhs, the Yamabe metric on
M. But what is a good choice of the compactified metric g P rg`s?
A first attempt is to choose g “ gY , a Yamabe metric among
compactified metrics of g`. The difficulty of this choice is we do
not know how to control the behavior of gY |M in terms of hY .
‚ Instead, following the work of Lee, Graham-Zworski, ’03 we will
make a choice of a special representative metric , which we call
scalar flat Adapted metrics on X obtained by solving the Poisson
equation p˚qs the boundary metric h with Rphq ą 0 on M.

p˚qs ´ ∆g`v ´ spn ´ sqv “ 0, X n`1,

with Dirichlet data f ” 1. Choose ρ “ v
1

n´s and denote the
adapted metric g˚ “ ρ2g`.
‚ Properties of p˚qs has been studied in Fefferman-Graham ’02,
Chang-Gonzalez ’11, Case-Chang ’16, F. Wang ’21-’22 and S. Lee
’23 and others, Lee’s metric is the adapted metric when
s “ n ` 1. In the statement of the theorems below, we choose
s “ n

2 ` 1, call it the scalar flat adapted metric.



§2. Properties of the adapted metric

On pX ,M, g`q CCE, for a given metric we have the adapted
metric g˚, g˚|M “ h, with the key properties:
(1) Rrg˚s “ 0 on X.
(2) Rrhs ą 0 on M implies the mean curvature H ą 0 on M.
(3) Denote g˚ “ ρ2g`, |∇g˚ρ| ď 1.
(4) Gauss Bonnet formula

8π2χ “

ż

X
p
1

4
|W |2´

1

2
|E |2q `

¿

M

p
4

3
RrhsH´

2

27
H3q.

Hence Hence under the assumption Rrhs ą 0,

ż

X
|E |

2
`

¿

M

H3 ď C p

ż

X
|W |2 `

¿

M

pRrhsq3, q

where E denote the traceless Ricci.



§3. A compactness result on 4-manifold

Compactness Theorem (C and Yuxin Ge)

Let tX ,M “ BX , g`
i u be a family of 4-dimensional CCE manifolds.

gi is a sequence of adapted metrics. Denote hi “ gi |M . Assume

1. The boundary metric pM, hi q is compact in C k,α norm with
k ě 6; and there exists some positive constant C1 ą 0

Y pM, rhi sq ě C1;

2. There exists some positive constant C2 ą 0 such that

ż

|W rgi s|
2 ď C2

3. H2pX ,Zq “ 0 and H1pX ,Zq “ 0.

Then, the sequence gi is compact in C k,α1

norm for any α1 P p0, αq

up to a diffeomorphism fixing the boundary.



§4, An Existence Result

‚ Recall Graham-Lee ’91: Any h in a small smooth neighborhood
of hc on S3 allows a CCE fill in, which are in a small nbhd of the
Hyperbolic metirc on B4, thus has the small L2 norm of its Weyl
tensor.
On the other hand, we also have the following result:

‚ When n “ 3, on a CCE manifold pX 4,M3, g`q if Y pM, rhsq ą 0,
and

p˚q

ż

X
|W |2g`dvg` ď cY 2

a

for some c ď 1
122

, then any metric in some small nbhd of h allows
a (unique) CCE fill in.

The natural question we then ask is can one impose conditions on
the boundary metric h which will ensure p˚q to happen? As an
application of our compactness result, we partially answer the
question above.



§4. Statement of an existence result
Existence Theorem Let pX “ B4,M “ S3q and h P C 6,α be a
metric with the positive scalar curvature on S3. Given the positives
constants C̄4, δ ą 0, such that

1. }h}C4 ď C̄4,

2. Y pM, rh|M sq ě δ;

3. volphq “ 1.

Then there exists some constant C pC̄4, , δq ą 0 and some (small)
positive constant ε so that denote E phq the traceless Ricci of h, if

||E phq||2 ď ε

then for some dimension constant c0, we can find a CCE fill in
metric with the conformal infinity rhs satisfying

c0||W ||2 ď
?
εC pC̄4, δq ď

1

4
Ya.

Moreover, such solution with the above bound is unique.



§5. Some outline of proof of the existence theorem
The strategy of proof is as follows: Denote g “ g˚, and S “ g p3q

the non-local term, under assumptions of the theorem.
‚ Step 1: Apply Bach flat equation to g , control ||W ||2 by the

norm of S and Ê , where Ê “ E phq. More precisely, We apply the
Bach equation to g to obtain

pYa ´ c0p||W ||2 ` ||E ||2qqp||W ||24 ` ||E ||24q ď C

¿

S3

SÊ .

where c0 and C are some dimension constant.
‚ Step 2: Under assumption (**) p 5

18Ya ´ c0p||W ||2 ` ||E ||2q ą 0q,

Yb||S ||3 ď C pC̄4, δq.

(This is the hard step, which we will supplement later.)

Combine step (1) and (2) we have if ||Ê || 3
2

ď ϵ then under p˚˚q ,

we have

c0p||W ||2 ` ||E ||2q ď
1

4
Ya.



§5. Outline of proof of the existence theorem
‚ Step 3 We now run a continuity argument connecting h to hc in
S3. Note for metrics close to hc , the fill in metric always exists and
||W ||2 tends to zero so p˚˚q condition is always satisfied. It turns
out we can find such a path via the Ricci flow due to some recent
work of E. Chen, G. Wei and R. Ye ’24, here we quote a special
case n “ 3 of their work.
Theorem On pS3, hq, assume Rphq ą 0 , there exists a constant
δp3q sufficient small, so that

||Ê phqq|| 3
2

` ||Rphq ´ R̄phq|| 3
2

ď δp3q,

where R̄phq denotes the average of Rphq, then along the
normalized Ricci flow the family hptq converges smoothly to hc .
‚ We remark that under the assumption ||Ê phq||2 small and
volphq “ 1, the condition in the theorem above is satisfied by an
earlier result of Y. Ge and G. Wang ’14.
‚ Combining the three steps, along this path, under the
assumptions of the Existence theorem, (**) is automatic and we
reached the estimate in Step 2 and finished the proof of the
theorem.



§6. More outline of proof of Step 2
‚ Step 2

Estimate of S-tensor: Recall S “ B
Bng

Ricg . To estimate S , we first
recall a fact which was used in the work of S. Bando, A. Kasue, H.
Nakajima [BKN]’89 to derive ALE decay of sequence of Einstein
metrics. In the special case of 4-manifold, if g` is an Einstein
metric, denote W` the Weyl tensor of g`, then there is a Kato
inequality

|∇g`W`|2 ě
5

3
|∇g` |W`||2 (1)

From these, one can derive

´△g` |W`|1{3 ď c |W`|4{3 `
1

6
Rg` |W`|1{3

In work of [BKN], when scalar curvature Rg` “ 0, on a region
ş

A |W`|2g`dvg` is small, [BKN] derive the decay estimate

|W`|1{3pxq À
1

|x |2
´ when x P A and |x | Ñ 8

Our Lemma is an application of (1) in conformal Einstein setting.



§5. More outline of proof of Step 2

Lemma 1 Let g` be CCE, g “ ρ2g` be a compactification, define

U “ Ug :“
´

|W |g
ρ

¯1{3
, then

´ △gU ď c |W |gU `
1

6
RgU (2)

Lemma 2 Denote r̃pxq “ distg px ,Mq, x P X , g “ g˚, then
|W |2g “ e2r̃

2 ` e3r̃
3 ` Opr̃4q, where

e2 “ 8|S |2 ` 4|Ĉ |2, Ĉ is the Cotton tensor on M3,
e3 “ ´4Sαβp∇̂γĈαβγ ` ∇̂γĈβαγq ` 4H|S |2` some other lower
order terms.



§5. More outline of proof of Step 2

Lemma 3

U6
g “

|W |2g

ρ2g
“

|W |2g

r2
r2

ρ2g

where

ρg “ r̃ ´
H

18
r̃2 ` Opr̃3q (3)

U6
g |BX “ e2 (4)

BU6
g

Br
“

1

9
He2 ` e3 (5)



§5. More outline of proof of Step 2
We then use the estimates

Ya

ˆ
ż

X
U12

˙1{2

ď

ż

X
|∇U3|2 (6)

Yb

¨

˝

¿

BX

U9

˛

‚

1{3

ď

ż

X
|∇U3|2 (7)

while

5

9

ż

X
|∇U3|2dvg “ ´

ż

X
p△gUqU5 `

1

6

¿

BX

BU6

Br
(8)

ď c

ż

X
|W |gU

6 `
1

6

¿

BX

BU6

Br
(9)

ď c

ˆ
ż

X
|W |2g

˙1{2 ˆ
ż

X
U12

˙1{2

`
1

6

¿

BX

BU6

Br
(10)



§6. More outline of proof of Step 2

Combine (6) and (7) and estimate in (4) and (5) of U6
g and

BU6
g

Br on
BX , we get

ˆ

5

18
Ya ´ c}W }2

˙ ˆ
ż

X
U12

˙1{2

` Yb}S}23 (11)

À

ż

X

ˇ

ˇ

ˇ
S∇̂Ĉ

ˇ

ˇ

ˇ
` }Ê}23{2 ` }R̂ic}2}∇̂Ĉ}2 ` }R̂ic}24}∇̂Ĉ}24 (12)

Thus under the assumption

p˚˚q
5

18
Ya ´ c}W }2 ą 0 (13)

we get
}S}3 ď C pC̄4, δq

where C̄4 is C 4 norm of h and Y pM, rhsq ě δ ą 0, since Yb Á
?
δ.



Congratulations, Richard,
for your fantastic life long

achievement!
May you have many more productive

years to come!!


