Worksheet 8: Matrix algebra and inverses

1. Given the matrices

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], B=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

compute the following expressions:

$$
B+A B, B+B A, B^{T} B, B B^{T}+2 I_{2}
$$

Here I_{2} is the 2×2 identity matrix. If an expression is undefined, explain why.

Answer: $B+B A$ is undefined since the product $B A$ is undefined (B has 3 columns, while A has only two rows). Next,

$$
\begin{gathered}
B+A B=\left[\begin{array}{lll}
2 & 2 & 4 \\
5 & 3 & 8
\end{array}\right] \\
B^{T} B=\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 2
\end{array}\right], \\
B B^{T}+2 I_{2}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right]+\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right] .
\end{gathered}
$$

2. Can you derive the following facts from the properties of matrix operations (assuming that all operations are well defined)? If so, state clearly which properties you use.
(a) $(A B)^{T}=A^{T} B^{T}$
(b) $\left(A A^{T}\right)^{T}=A A^{T}$
(c) $(A+B)(C+D)=A C+B D+B C+A D$
(d) If $C A=I_{n}$ and $A D=I_{m}$, then $C=D$ (hint: think about the product $C A D)$

Solution: (a) No; in fact, $(A B)^{T}=B^{T} A^{T}$, and A^{T} and B^{T} do not have to commute.
(b) Yes, by properties (15) and (12) (in the matrix operations handout)

$$
\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=A A^{T}
$$

(c) Yes, by properties (9) and (8):
$(A+B)(C+D)=A(C+D)+B(C+D)=A C+A D+B C+B D$.
(d) Yes, by properties (7) and (11):

$$
C(A D)=C I_{m}=C
$$

on the other hand,

$$
C(A D)=(C A) D=I_{n} D=D
$$

3. Lay, 2.1.19. (Hint: use the definition of the matrix product given at the beginning of page 110.)

Solution: See the back of the book.
$4-6$. Use the formula on page 119 to find the inverses of the following matrices or state that they are not invertible:

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]} \\
{\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]} \\
{\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right] .}
\end{gathered}
$$

Answers:

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]^{-1}=\frac{1}{3}\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]} \\
{\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]^{\text {is not invertible }}} \\
{\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right] .}
\end{gathered}
$$

Note that in the last case, the inverse matrix to the matrix of rotation by ϕ degrees counterclockwise is the matrix of rotation by ϕ degrees clockwise.
7. Use the inverse found in exercise 4 to solve the equation

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \vec{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Solution: We have

$$
\vec{x}=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 / 3 \\
1 / 3
\end{array}\right]
$$

8. Use invertibility to prove that the equation

$$
\left[\begin{array}{cc}
100 & 99 \\
101 & 100
\end{array}\right] \vec{x}=\vec{b}
$$

has a unique solution for each \vec{b}. (Hint: you do not need to compute the inverse here.)

Solution: We have

$$
\operatorname{det}\left[\begin{array}{cc}
100 & 99 \\
101 & 100
\end{array}\right]=100^{2}-99 \cdot 101=1 \neq 0
$$

therefore, the matrix in question is invertible (Theorem 4 in 2.2). It follows that the equation in question has a unique solution for each right hand side (Theorem 5 in 2.2).
9. Lay, 2.2.18.

Solution: Multiply both sides of the equation by P^{-1} to the left and by P to the right; we get

$$
P^{-1} A P=P^{-1} P B P^{-1} P=\left(P^{-1} P\right) B\left(P^{-1} P\right)=I_{n} B I_{n}=B .
$$

10. Lay, 2.2.9, (a)-(d).

Answers: (a) True (b) False (c) True (d) True; see the solution guide for details.
11. Lay, 2.2.16.

Solution: Since we do not know that A is invertible, we cannot use the formula $(A B)^{-1}=B^{-1} A^{-1}$. Instead, put $C=A B$; multiplying both sides of this equation by B^{-1} to the right, we get $A=C B^{-1}$. Now, both C and B^{-1} are invertible; therefore, A is invertible and in fact, $A^{-1}=B C^{-1}$.
100.* (The center of the matrix algebra) Find all 2×2 matrices A such that for each 2×2 matrix $B, A B=B A$. (Hint: try taking matrices B that have element 1 at one position and 0 at all other positions.)

Answer: A has to be a multiple of the identity matrix.
101.* (A model of complex numbers) For $a, b \in \mathbb{R}$, define the 2×2 matrix $T(a, b)$ as

$$
T(a, b)=\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]
$$

We associate to this matrix the complex number $a+i b$.
(a) Prove that $T(a, b)+T(c, d)=T(a+c, b+d)$ and relate this to the law of addition of complex numbers.
(b) Prove that (as a matrix product) $T(a, b) T(c, d)=T(c, d) T(a, b)=$ $T(a c-b d, b c+a d)$ and relate this to the law of multiplication of complex numbers.
(c) Prove that $T(a, b)^{T}=T(a,-b)$ and relate this to complex conjugation.
(d) Prove that for $a^{2}+b^{2}>0$, the matrix $T(a, b)$ is invertible and $T(a, b)^{-1}=T(a,-b) /\left(a^{2}+b^{2}\right)$; relate this to inverses of complex numbers.
(e) If $a^{2}+b^{2}>0$, put $r=\sqrt{a^{2}+b^{2}}$ and show that $T(a, b)$ is equal to r times the matrix of a certain rotation. Relate this to the polar decomposition of complex numbers.

