Worksheet 10: Determinants galore

1. Lay, 3.2.11. (Hint: first, use a row operation to make the element in the fourth row and second column equal to zero. Then, use the cofactor expansion down the second column.)

Solution:

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{cccc}
2 & 5 & -3 & -1 \\
3 & 0 & 1 & -3 \\
-6 & 0 & -4 & 9 \\
4 & 10 & -4 & -1
\end{array}\right] \quad\left(R_{4} \leftarrow R_{4}-2 R_{1}\right) \\
=\operatorname{det}\left[\begin{array}{cccc}
2 & 5 & -3 & -1 \\
3 & 0 & 1 & -3 \\
-6 & 0 & -4 & 9 \\
0 & 0 & 2 & 1
\end{array}\right] \quad(\text { cofactor expansion down column 2) } \\
=-5 \operatorname{det}\left[\begin{array}{ccc}
3 & 1 & -3 \\
-6 & -4 & 9 \\
0 & 2 & 1
\end{array}\right] \quad\left(R_{2} \leftarrow R_{2}+2 R_{1}\right) \\
=-5 \operatorname{det}\left[\begin{array}{ccc}
3 & 1 & -3 \\
0 & -2 & 3 \\
0 & 2 & 1
\end{array}\right] \quad(\operatorname{cofactor} \text { expansion down column } 1) \\
=-15 \operatorname{det}\left[\begin{array}{cc}
-2 & 3 \\
2 & 1
\end{array}\right]=120 .
\end{gathered}
$$

2. Assume that A is a 3×3 matrix with $\operatorname{det} A=5$. Find the determinants of the matrices obtained by:
(a) swapping the second and the third row of A, and then multiplying the first row by 4 ;
(b) adding the second row to the first row, and then subtracting the second row from the first row;
(c) multiplying each row of A by 2 .

Answers: (a) -20 (b) 5 (c) 40
3. Use row operations and cofactor expansions to prove that

$$
\operatorname{det}\left[\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right]=(a-b)(b-c)(c-a)
$$

(Hint: start by subtracting the first row from the other two rows.) When is this matrix invertible?

Solution: Subtract the first row from the second one and the third one and then do the cofactor expansion down the first column:

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{ccc}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}
1 & a & a^{2} \\
0 & b-a & b^{2}-a^{2} \\
0 & c-a & c^{2}-a^{2}
\end{array}\right] \\
=\operatorname{det}\left[\begin{array}{cc}
b-a & (b-a)(b+a) \\
c-a & (c-a)(c+a)
\end{array}\right]=(b-a)(c-a) \operatorname{det}\left[\begin{array}{cc}
1 & b+a \\
1 & c+a
\end{array}\right] \\
=(b-a)(c-a)(c-b) .
\end{gathered}
$$

The matrix is invertible if no two of the numbers a, b, c are equal.
4. Lay, 3.2.31.

Solution: We have $1=\operatorname{det} I=\operatorname{det}\left(A \cdot A^{-1}\right)=\operatorname{det} A \cdot \operatorname{det}\left(A^{-1}\right)$. Therefore, $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det} A$.
5. Lay, 3.2.32.

Solution: To get $r A$ from A, we need to multiply each of the n rows of A by r. Each time we multiply a single row by r, the determinant also gets multiplied by r; therefore, $\operatorname{det}(r A)=r^{n} \operatorname{det} A$.
6. Lay, 3.2.36.

Solution: We have $0=\operatorname{det}\left(A^{4}\right)=(\operatorname{det} A)^{4}$. Since $\operatorname{det} A$ is just a number, this implies that $\operatorname{det} A=0$ and therefore A is not invertible.
7. Define the transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{det}\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

(a) Find a formula for $T\left(x_{1}, x_{2}, x_{3}\right)$. (Hint: use a cofactor expansion.)
(b) Assuming that T is linear, use (a) to find its standard matrix.
(c)* Use the linearity property of the determinant to conclude that T is linear.

Solution: (a) The cofactor expansion along the first row gives

$$
T\left(x_{1}, x_{2}, x_{3}\right)=-x_{1}-x_{2}+x_{3}
$$

(b) The standard matrix of T is

$$
\left[\begin{array}{lll}
-1 & -1 & 1
\end{array}\right]
$$

(c) We have

$$
\begin{gathered}
T(c \vec{x}+d \vec{y})=T\left(c x_{1}+d y_{1}, c x_{2}+d y_{2}, c x_{3}+d y_{3}\right) \\
=\operatorname{det}\left[\begin{array}{ccc}
x_{1}+y_{1} & x_{2}+y_{2} & x_{3}+y_{3} \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \\
=\operatorname{det}\left[\begin{array}{ccc}
c x_{1} & c x_{2} & c x_{3} \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]+\operatorname{det}\left[\begin{array}{ccc}
c y_{1} & c y_{2} & c y_{3} \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \\
=c \operatorname{det}\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]+d \operatorname{det}\left[\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]=c T(\vec{x})+d T(\vec{y}) .
\end{gathered}
$$

8. Lay, 3.3.2. (Use Cramer's Rule!)

Solution: The augmented matrix is

$$
\left[\begin{array}{lll}
4 & 1 & 6 \\
5 & 2 & 7
\end{array}\right]
$$

Cramer's Rule then gives

$$
\begin{gathered}
x_{1}=\frac{\operatorname{det}\left[\begin{array}{ll}
6 & 1 \\
7 & 2
\end{array}\right]}{\operatorname{det}\left[\begin{array}{ll}
4 & 1 \\
5 & 2
\end{array}\right]}=\frac{5}{3} \\
x_{2}=\frac{\operatorname{det}\left[\begin{array}{ll}
4 & 6 \\
5 & 7
\end{array}\right]}{\operatorname{det}\left[\begin{array}{ll}
4 & 1 \\
5 & 2
\end{array}\right]}=-\frac{2}{3} .
\end{gathered}
$$

9. Lay, 3.3.13. To save time, compute only the element in the second row and the second column of both the adjugate and the inverse.

Solution: See the solution guide.
10. Lay, 3.3.19.

Answer: 8. See the solution guide for details.
100.* Find a geometric explanation why for $\vec{u}, \vec{v} \in \mathbb{R}^{2}$, the area of the triangle with vertices $0, \vec{u}, \vec{v}$ is the same as that of the triangle with vertices $0, \vec{u}, \vec{v}+3 \vec{u}$. Relate this to the way determinants change under row operations combined with the identity $\operatorname{det} A^{T}=\operatorname{det} A$. (Hint: represent the area of each triangle as the product of the side between 0 and \vec{u} and the corresponding height.)
101.* Find a geometric explanation why for $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{2}$, the area of the triangle with vertices $0, \vec{u}, \vec{v}+\vec{w}$ is the sum or the difference of the areas of the triangles with vertices $0, \vec{u}, \vec{v}$ and $0, \vec{u}, \vec{w}$. (Hint: represent the area of each triangle as in the last problem. Think when you get the sum and when the difference.)

