
Math 54, final exam information and review

August 10, 2010

1 General information

The final exam will take place on Friday, August 13, from 8–10 AM in room 2
Evans. The exam itself will start at 8:10, but I ask you to come at 8 so that I
could hand out the exams and everybody would start at the same time. There
are no calculators and no materials allowed, except for one two-sided A4 sheet
of hand-written notes. Do not bring your own paper — I will provide extra
sheets if needed. The final exam will cover the entire course, with an emphasis
on the material not covered by the two midterms.

2 Sample computational problems

Note: the final exam may contain computational problems on material cov-
ered by the midterms; samples of these are not included here.

1. Given the vectors

~v1 =


1
1
0
0

 , ~v2 =


0
1
1
0

 , ~v3 =


0
0
1
1

 ,
(a) Use Gram–Schmidt to find an orthogonal basis for the subspace V of R4

spanned by these three vectors.
(b) Find an orthonormal basis for V .
(c) Use the orthogonal basis you found in (a) to find the orthogonal projec-

tion of the vector ~b = (1, 2, 3, 4) onto V .
(d) Let A be the matrix whose columns are ~v1, ~v2, ~v3 and let ~b be the vector

from (c). Find the least-squares solution to the equation A~x = ~b. Find the
least-squares error.

2. Consider the following inner product on P2:

〈f, g〉 = f(0)g(0) +
∫ 1

0

f(t)g(t) dt, f, g ∈ P2,
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and the subspace
V = {f ∈ P2 | f(1) = 0}.

(a) Find a basis for V . To do this, you can write the equations that the
coefficients of an element of V (in other words, its coordinates in the standard
basis {1, t, t2}) have to satisfy, and find a basis for the space of coefficients of
elements of V by representing it as NulA for some matrix A.

(b) Use Gram–Schmidt and the result of (a) to find an orthogonal basis of
V .

3. Find the solution to the initial value problem

y′′(x) + 2y′(x) + 2y(x) = e−x(x+ 2 cosx− 3 cos(2x)), y(0) = 1, y′(0) = 2.

4. (a) Find all possible values of λ ∈ R for which the problem

y′′(x) + λy(x) = 0, 0 < x < 1;
y(0) = 0, y′(1) = 0

has a nonzero solution; for each of these λ, find a basis of the set of solutions to
the problem above.

(b) Find the basic solutions of the following problem that can be obtained
using separation of variables (i.e., have the form X(x)T (t)):

∂2u

∂t2
+
∂u

∂t
=
∂2u

∂x2
, 0 < x < 1, t > 0;

u(0, t) = 0,
∂u

∂x
(1, t) = 0, t > 0.

5. (a) Find the Fourier sine and cosine series of the function f(x) = 1+x, 0 <
x < π. Find the functions to which these series converge and sketch their graphs.

(b) Find the formal solution of the following problem for the heat equation
(note the inhomogeneous boundary conditions):

∂u

∂t
=
∂2u

∂x2
, 0 < x < π, t > 0;

u(0, t) = 1, u(π, t) = 1 + π, t > 0;
u(x, 0) = 0, 0 < x < π.

Find the (pointwise in x) limit of this solution as t→ +∞.
(c) Find the formal solution of the following problem for the wave equation:

∂2u

∂t2
=
∂2u

∂x2
, 0 < x < π, t > 0;

∂u

∂x
(0, t) =

∂u

∂x
(π, t) = 0, t > 0;

u(x, 0) = 0,
∂u

∂t
(x, 0) = 1 + x, 0 < x < π.
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6. Find the full Fourier series of the function f(x) = ex, x ∈ [−π, π]. (Hint:
to compute the integrals, integrate by parts to get a system of linear equations
on the coefficients ak and bk.) Determine the function to which this Fourier
series converges.

7. Find a fundamental system and the general solution of the equation

y′′′ − y = 0.

Find the solution satisfying the initial conditions

y(0) = 0, y′(0) = 1, y′′(0) = 1.

8. Consider the problem

∂u

∂t
(x, t) = (x+ 1)

∂u

∂x
(x, t), x ∈ R, t > 0;

u(x, 0) = x− 1, x ∈ R.

We will look for a solution in the form

u(x, t) = a0(t) + a1(t)x,

where a0 and a1 are some functions.
(a) Verify that in order for u(x, t) to be a solution to the problem above, the

functions a0 and a1 have to solve the initial value problem

a′0(t) = a1(t), a′1(t) = a1(t),
a0(0) = −1, a1(0) = 1.

(Hint: freeze t and regard both sides of the PDE as polynomials in x; make
their coefficients equal.)

(b) Write the system above in normal form and find the solution of this IVP
for a system of ODE; use it to write a solution to the original IVP for the PDE.

9. Let ~u,~v, ~w be vectors in some inner product space, and assume that

‖~u‖ = 1, ‖~v‖ = 2,
〈~u,~v〉 = 0, 〈~u, ~w〉 = 3, 〈~v, ~w〉 = 4.

What is the minimal possible value of ‖~w‖? (Hint: use the orthogonal projection
formula and Pythagorean theorem.)

3 Sample theoretical problems

1. Using Cauchy–Schwarz inequality, prove that for every continuous func-
tion f on the interval [0, 5],∫ 5

0

f(x) dx ≤
√

5
(∫ 5

0

f(x)2 dx
)1/2

.
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2. For each of the following pairs of subspaces V,W of the space of continuous
functions on [−1, 1] with the inner product given by the integral of the product
of the two functions over [−1, 1], prove that each element of V is orthogonal to
each element of W :

(a) V is the space of all odd functions and W is the space of all even functions
(b) V is the space of all functions f such that f(x) = 0 for each x ∈ [0, 1];

W is the space of all functions g such that g(x) = 0 for each x ∈ [−1, 0].
3. Assume that y(x) is a (twice continuously differentiable) function on R

such that
y′′(x) + p(x)y′(x) + q(x)y(x) = 0,

where p and q are continuous functions on R. Let f(x) = y(x)2+(y′(x))2. Using
the existence/uniqueness theorem for ODE, prove that either the function f is
identically zero or the equation f(x) = 0 has no solutions.

4. Assume that A is a 2 × 2 matrix such that A(3,−2) = (−3, 2) and the
rank of A is equal to 1. Is A diagonalizable?

5. Assume that A is an invertible 3 × 3 matrix with integer elements.
Prove that A−1 has integer elements if and only if |detA| = 1. (Hint: recall the
cofactor expansions of the determinant, multiplicativity of determinants, and
the formula for the inverse in Lay, Section 3.3.)

6. Assume that u and v are two solutions to the differential equation
u′′ + p(x)u′ + q(x)u = 0. Let W = uv′ − u′v be the Wronskian of u and v.
Find a (nontrivial) first order linear differential equation satisfied by W . The
coefficients of this equation can contain the functions p and q, but not u or
v. (Hint: differentiate W once, and use the equations satisfied by u and v to
replace u′′ and v′′ with some expressions featuring only u, v, u′, v′, p, q.)

7. Let V be the space of all solutions to the equation y′′′ − y = 0.
(a) Prove that if y ∈ V , then y′ ∈ V . (Hint: differentiate the differential

equation.)
(b) Let T : V → V be the linear transformation defined by the formula

T (y) = y′. Prove that T 3 is the identity transformation.
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4 Answers to computational problems

1. (a) {(1, 1, 0, 0), (−1/2, 1/2, 1, 0), (1/3,−1/3, 1/3, 1)}
(b) {(1, 1, 0, 0)/

√
2, (−1, 1, 2, 0)/

√
6, (1,−1, 1, 3)/2

√
3}

(c) (3/2, 3/2, 7/2, 7/2).
(d) The normal system is2 1 0

1 2 1
0 1 2

x1

x2

x3

 =

3
5
7

 ;

the least-squares solution is (3/2, 0, 7/2) and the least-squares error is 1.
2. (a) A polynomial a0 + a1t + a2t

2 lies in V if and only if the coefficient
vector ~a = (a0, a1, a2) solves the equation

a0 + a1 + a2 = 0.

Thus, ~a lies in NulA forA =
[
1 1 1

]
; a basis for this space is {(1,−1, 0), (1, 0,−1)}.

Therefore, a basis for V is {1− t, 1− t2}.
(b) We find ‖1 − t‖2 = 4/3, 〈1 − t, 1 − t2〉 = 17/12; the orthogonal basis is

{1− t,− 1
16 + 17

16 t− t
2}.

3. The trial solution is

y(x) = (A0+A1x)e−x+xe−x(B1 cosx+B2 sinx)+e−x(C1 cos(2x)+C2 sin(2x));

we get

y′′ + 2y′ + 2y = (A0 +A1x)e−x + 2xe−x(B2 cosx−B1 sinx)

−3e−x(C1 cos(2x) + C2 sin(2x));

therefore,

A0 = 0, A1 = 1, B1 = 0, B2 = 1, C1 = 1, C2 = 0;

the general solution to the inhomogeneous equation is

y = e−x(x+ x sinx+ cos(2x) + c1 cosx+ c2 sinx);

the initial conditions give

1 = y(0) = 1 + c1, 2 = y′(0) = c2 − c1;

therefore, the solution is

y = e−x(x+ x sinx+ cos(2x) + 2 sinx).

4. (a) λ = (π(k+ 1/2))2, where k ∈ Z, k ≥ 0. The corresponding eigenfunc-
tion is sin(π(k + 1/2)x).
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(b) The basic solutions are

uk(x, t) = e−t/2 cos(νkt) sin(π(k + 1/2)x),

vk(x, t) = e−t/2 sin(νkt) sin(π(k + 1/2)x),

where

νk =

√
π2
(
k +

1
2

)2

− 1
4

; k ∈ Z, k ≥ 0.

5. (a)

1 + x ∼ 4
π

∞∑
j=1

sin((2j − 1)x)
2j − 1

+ 2
∞∑
k=1

(−1)k+1 sin(kx)
k

;

1 + x ∼ 1 +
π

2
− 4
π

∞∑
j=1

cos((2j − 1)x)
(2j − 1)2

.

(b)

u(x, t) = 1 + x− 4
π

∞∑
j=1

e−(2j−1)2t sin((2j − 1)x)
2j − 1

− 2
∞∑
k=1

(−1)k+1e−k
2t sin(kx)

k
.

We have limt→+∞ u(x, t) = 1 + x.
(c)

u(x, t) =
(

1 +
π

2

)
t− 4

π

∞∑
j=1

sin((2j − 1)t) cos((2j − 1)x)
(2j − 1)3

.

6. We have a0 = (eπ − e−π)/π. Now, fix k > 0; integration by parts gives

ak = −bk
k
, bk =

(−1)k+1

πk
(eπ − e−π) +

ak
k
.

Solving this as a system of linear equations on ak and bk, we find

ak =
(−1)k(eπ − e−π)

π(k2 + 1)
, bk =

(−1)k+1(eπ − e−π)k
π(k2 + 1)

;

therefore,

ex ∼ eπ − e−π

π

(
1
2

+
∞∑
k=1

(−1)k

k2 + 1
(cos(kx)− k sin(kx))

)
.

The Fourier series converges to the 2π-periodic continuation of the function
equal to ex on (−π, π) and to (eπ + e−π)/2 at ±π.

7. The fundamental system is {ex, e−x/2 cos(
√

3x/2), e−x/2 sin(
√

3x/2)}; the
general solution is c1ex+c2e

−x/2 cos(
√

3x/2)+c3e
−x/2 sin(

√
3x/2); the solution

with the given initial conditions is 2
3e
x − 2

3e
−x/2 cos(

√
3x/2).
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8. (a) We have for u = a0(t) + a1(t)x,

∂u

∂t
= a′0(t) + a′1(t)x, (x+ 1)

∂u

∂x
= a1(t) + a1(t)x.

(b) For ~a(t) = (a0(t), a1(t)), ~a′(t) = A~a(t), where

A =
[
0 1
0 1

]
.

The general solution is c1(1, 0)+ c2e
t(1, 1); the solution to the IVP is −2(1, 0)+

et(1, 1). The corresponding solution of the PDE is u(x, t) = et − 2 + etx.
9. The orthogonal projection of ~w onto the space spanned by ~u and ~v is

3~u + ~v. Then ~w = 3~u + ~v + ~a, where ~a is an arbitrary vector orthogonal to ~u
and ~v. The length of ~w is minimized when ~a = 0 and in this case it is equal to√

7.

5 Hints and answers for theoretical problems

1. Use the space of continuous functions on [0, 5] with the inner product

〈f, g〉 =
∫ 5

0

f(x)g(x) dx

and apply Cauchy–Schwarz to the functions f and 1.
2. (a) If f ∈ V and g ∈ W , then the product f(x)g(x) is an odd function

(b) If f ∈ V and g ∈W , then f(x)g(x) = 0 for all x.
3. Assume that the equation f(x) = 0 has a solution x = x0; we will prove

that f is identically zero. Since f(x0) = 0, the function y solves the IVP

y′′ + p(x)y′ + q(x)y = 0, y(x0) = y′(x0) = 0.

On the other hand, the zero function also solves this IVP. By the uniqueness part
of the existence/uniqueness theorem for linear ODE, y ≡ 0; therefore, f ≡ 0.

4. The vector (3,−2) is an eigenvector of A with eigenvalue -1. Since the
rank of A is equal to 1, it is not invertible; this, 0 is an eigenvalue of A. Since
A has two distinct eigenvalues and it is a 2× 2 matrix, it is diagonalizable.

5. The cofactor expansions show that if A is a matrix with integer entries,
then detA is an integer number. If A−1 has integer entries, then 1 = detA ·
detA−1, where both factors on the right-hand side are integer; thus, detA = ±1.
On the other hand, if detA = ±1, then 1/ detA is integer; the adjugate of A is
integer because it consists of ±1 times determinants of matrices of integers; by
the formula for the inverse matrix, A−1 has integer entries.

6. We have W ′ = uv′′ − u′′v = u(−p(x)v′ − q(x)v)− v(−p(x)u′ − q(x)u) =
−p(x)W ; therefore, W solves the equation W ′(x) + p(x)W (x) = 0.
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