18.156, SPRING 2017, PROBLEM SET 5, SOLUTIONS

We denote by Diff_h the space of all semiclassical differential operators acting on $C^{\infty}(\mathbb{R}^n)$ with smooth coefficients which are polynomial in h, that is operators which have the following form for some N:

$$\sum_{|\alpha| \le N} \sum_{j=0}^{N} h^j a_{\alpha j}(x) (hD_x)^{\alpha} \tag{1}$$

where $a_{\alpha j} \in C^{\infty}(\mathbb{R}^n)$. It is easy to see that the class Diff is closed under compositions and adjoints. We also have the following

Lemma 0.1. 1. If $a \in \operatorname{Poly}_h^k$, then $A := \operatorname{Op}_h(a)$ lies in Diff_h and for all $(x, \eta) \in \mathbb{R}^{2n}$,

$$\left(Ae^{\frac{i}{\hbar}\langle \bullet, \eta \rangle}\right)(x) = e^{\frac{i}{\hbar}\langle x, \eta \rangle} a(x, \eta). \tag{2}$$

2. If $A \in \text{Diff}_h$ and (2) holds for some $a \in \text{Poly}_h^k$, then $A = \text{Op}_h(a)$.

Proof. 1. It suffices to consider the case when $a(x,\xi) = a_{\alpha}(x)\xi^{\alpha}$ for some multiindex α . Then

$$\left(Ae^{\frac{i}{h}\langle \bullet, \eta \rangle}\right)(x) = a_{\alpha}(x)(hD_x)^{\alpha}e^{\frac{i}{h}\langle x, \eta \rangle} = e^{\frac{i}{h}\langle x, \eta \rangle}a_{\alpha}(x)\eta^{\alpha}.$$

2. We write A in the form (1) and compute

$$a(x,\eta) = e^{-\frac{i}{\hbar}\langle x,\eta\rangle} \left(A e^{\frac{i}{\hbar}\langle \bullet,\eta\rangle} \right)(x) = \sum_{|\alpha| < N} \sum_{j=0}^{N} h^{j} a_{\alpha j}(x) \eta^{\alpha}.$$

For x, h fixed, both sides of this equation are polynomials in η . Then $a_{\alpha j}(x)$ are uniquely determined by a and we get $A = \operatorname{Op}_h(a)$.

1. We first note that for each $\eta \in \mathbb{R}^n$,

$$e^{-\frac{i}{\hbar}\langle x,\eta\rangle}\operatorname{Op}_h(a)e^{\frac{i}{\hbar}\langle x,\eta\rangle} = \operatorname{Op}_h(a_\eta), \quad a_\eta \in \operatorname{Poly}_h^k, \quad a_\eta(x,\xi;h) = a(x,\xi+\eta;h).$$

Indeed, it suffices to consider the case $a(x,\xi) = a_{\alpha}(x)\xi^{\alpha}$. This case follows by noting that $a_{\alpha}(x)$ commutes with $e^{\frac{i}{\hbar}\langle x,\eta\rangle}$ (both being multiplication operators) and

$$e^{-\frac{i}{\hbar}\langle x,\eta\rangle}(hD_{x_r})e^{\frac{i}{\hbar}\langle x,\eta\rangle} = hD_{x_r} + \eta_r.$$

Next, we have for $q \in C^{\infty}(\mathbb{R}^n)$

$$\operatorname{Op}_{h}(a)q(x) = \sum_{j=0}^{\infty} h^{j} \sum_{\substack{|\beta|=j\\1}} \frac{1}{\beta!} \partial_{\xi}^{\beta} a(x,0) D_{x}^{\beta} q(x)$$
(3)

where again it suffices to consider the case $a(x,\xi) = a_{\alpha}(x)\xi^{\alpha}$. Applying (3) to the symbol a_{η} , we finish the proof.

2. We compute for each $\eta \in \mathbb{R}^n$, using (2) and Exercise 1,

$$\left(\operatorname{Op}_{h}(a)\operatorname{Op}_{h}(b)e^{\frac{i}{h}\langle \bullet, \eta \rangle}\right)(x) = \left(\operatorname{Op}_{h}(a)\left(e^{\frac{i}{h}\langle \bullet, \eta \rangle}b(\bullet, \eta)\right)\right)(x) = e^{\frac{i}{h}\langle x, \eta \rangle}c(x, \eta),$$

$$c(x, \xi; h) = \sum_{i=0}^{\infty} h^{j}c_{j}(x, \xi), \quad c_{j}(x, \xi; h) = \sum_{i=0}^{\infty} \frac{1}{\alpha!}\partial_{\xi}^{\alpha}a(x, \xi; h) \cdot D_{x}^{\alpha}b(x, \xi; h).$$

We have $c_j(x,\xi;h) \in \operatorname{Poly}_h^{k+\ell-j}$, since $\partial_\xi^\alpha a \in \operatorname{Poly}_h^{k-j}$ and $D_x^\alpha b \in \operatorname{Poly}_h^\ell$. Then $c \in \operatorname{Poly}_h^{k+\ell}$. Now part 2 of Lemma 0.1 gives $\operatorname{Op}_h(a) \operatorname{Op}_h(b) = \operatorname{Op}_h(c)$. The formulas for the principal parts of $\operatorname{Op}_h(a) \operatorname{Op}_h(b)$ and $[\operatorname{Op}_h(a), \operatorname{Op}_h(b)]$ follow immediately from the expansion for c.

3. It suffices to consider the case $a(x,\xi) = a_{\beta}(x)\xi^{\beta}$. Integrating by parts, we have for all $u, v \in C_c^{\infty}(\mathbb{R}^n)$ (recalling that $D = -i\partial$)

$$\int_{\mathbb{R}^n} \overline{v(x)} \cdot (hD_x)^{\beta} u(x) \, dx = \int_{\mathbb{R}^n} u(x) \cdot \overline{(hD_x)^{\beta} v(x)} \, dx,$$

that is $((hD_x)^{\beta})^* = (hD_x)^{\beta}$. Since $a_{\beta}(x)^* = \overline{a_{\beta}(x)}$, we have

$$\operatorname{Op}_h(a)^* = (a_{\beta}(x)(hD_x)^{\beta})^* = (hD_x)^{\beta}\overline{a_{\beta}(x)} = \operatorname{Op}_h(\xi^{\beta})\operatorname{Op}_h(\overline{a_{\beta}(x)})$$

and the latter product is computed by Exercise 2.

4. It suffices to consider the case $a(x,\xi) = a_{\alpha}(x)\xi^{\alpha}$. We have

$$e^{-i\varphi/h}\operatorname{Op}_h(a)e^{i\varphi/h} = a_{\alpha}(x)e^{-i\varphi/h}(hD_{x_1})^{\alpha_1}\cdots(hD_{x_n})^{\alpha_n}e^{i\varphi/h}.$$

Since

$$e^{-i\varphi/h}(hD_{x_r})e^{i\varphi/h} = hD_{x_r} + \varphi'_{x_r} = \operatorname{Op}_h(\xi_r + \varphi'_{x_r})$$

we have

$$e^{-i\varphi/h}\operatorname{Op}_h(a)e^{i\varphi/h} = a_\alpha(x)\operatorname{Op}_h(\xi_1 + \varphi'_{x_1})^{\alpha_1}\cdots\operatorname{Op}_h(\xi_n + \varphi'_{x_n})^{\alpha_n}.$$

By Exercise 2 this is equal to

$$\operatorname{Op}_h\left(a_{\alpha}(x)(\xi_1+\varphi'_{x_1})^{\alpha_1}\cdots(\xi_n+\varphi'_{x_n})^{\alpha_n}+h\operatorname{Poly}_h^{k-1}\right)$$

and it remains to note that

$$a_{\alpha}(x)(\xi_1 + \varphi'_{x_1})^{\alpha_1} \cdots (\xi_n + \varphi'_{x_n})^{\alpha_n} = a(x, \xi + \nabla \varphi(x)).$$

5. It suffices to consider the case when $a(x,\xi) = a_{\alpha}(x)\xi^{\alpha}$. By the Fourier inversion formula and a change of variables, we have

$$u(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\langle x, \eta \rangle} \hat{u}(\eta) \, d\eta = (2\pi h)^{-n} \int_{\mathbb{R}^n} e^{\frac{i}{h}\langle x, \xi \rangle} \hat{u}(\xi/h) \, d\xi.$$

Differentiating under the integral sign, we obtain

$$(hD_x)^{\alpha}u(x) = (2\pi h)^{-n} \int_{\mathbb{R}^n} e^{\frac{i}{h}\langle x,\xi\rangle} \xi^{\alpha} \hat{u}(\xi/h) d\xi.$$

It follows that

$$\operatorname{Op}_h(a)u(x) = a_{\alpha}(x)(hD_x)^{\alpha}u(x) = (2\pi h)^{-n} \int_{\mathbb{R}^n} e^{\frac{i}{h}\langle x,\xi\rangle} a(x,\xi)\hat{u}(\xi/h) d\xi.$$