
chapter 8

Stratonovich’s Theory

From an abstract mathematical standpoint, Itô’s theory of stochastic in-
tegration has as a serious flaw: it behaves dreadfully under changes of coor-
dinates (cf. Remark 3.3.6). In fact, Itô’s formula itself is the most dramatic
manifestation of this problem.

The origin of the problems Itô’s theory has with coordinate changes can
be traced back to its connection with independent increment processes. In-
deed, the very notion of an independent increment process is inextricably
tied to the linear structure of Euclidean space, and anything but a linear
change of coordinates will wreak havoc to that structure. Generalizations
of Itô’s theory like the one of Kunita and Watanabe do not really cure this
problem, they only make it slightly less painful.

To make Itô’s theory more amenable to coordinate changes, we will de-
velop an idea which was introduced by R.L. Stratonovich. Stratonovich was
motivated by applications to engineering, and his own treatment [34] had
some mathematically awkward aspects. In fact, it is ironic, if not surprising,
that Itô [12] was the one who figured out how to put Stratonovich’s ideas on
a firm mathematical foundation.

8.1 Semimartingales & Stratonovich Integrals

From a technical perspective, the coordinate change problem alluded to
above is a consequence of the fact that non-linear functions destroy the
martingale property. Thus, our first step will be to replace martingales with
a class of processes which is invariant under composition with non-linear
functions. Throughout, (Ω,F ,P) will be a complete probability space which
comes equipped with a non-decreasing family {Ft : t ≥ 0} of P-complete
σ-algebras.

8.1.1. Semimartingales. We will say that Z : [0,∞) × Ω −→ R is a
continuous semimartingale1 and will write Z ∈ S(P; R) if Z is can written
in the form Z(t, ω) = M(t, ω) + B(t, ω), where

(
M(t),Ft,P

)
is a continu-

1 It is unfortunate that Doob originally adopted this term for the class of processes which
are now called submartingales. However, the confusion caused by this terminological

accident recedes along with the generation of probabilists for whom it was a problem.
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222 8 Stratonovich’s Theory

ous local martingale and B is a progressively measurable function with the
property that B( · , ω) is a continuous function of locally bounded variation
for P-almost every ω.

Notice that when we insist that M(0) ≡ 0 the decomposition a semi-
martingale Z into to martingale part M and its bounded variation part B
is almost surely unique. This is just an application of the first statement
in Corollary 7.1.2. In addition, Itô’s formula (cf. Theorem 7.2.9) shows that
the class of continuous semimartingales is invariant under composition with
twice continuously differentiable functions f . In fact, his formula says that if
Z(t) =

(
M1(t)+B1(t), . . . , Zn(t)+Bn(t)

)
is an Rn-valued, continuous semi-

martingale and F ∈ C2(Rn; R), then the martingale and bounded variation
parts of F ◦ Z are, respectively,

n∑
i=1

∫ t

0

∂iF
(
Z(τ)

)
dMi(τ) and

F
(
Z(0)

)
+

1
2

n∑
i,j=1

∫ t

0

∂i∂jF
(
Z(τ)

)
〈Mi,Mj〉(dτ) +

n∑
i=1

∫ t

0

∂iF
(
Z(τ)

)
Bi(dτ),

where, of course, the integrals in the first line are taken in the sense of Itô and
the ones in the second are (or Riemann) Lebesgue integrals.

In various circumstances it is useful to have defined the integral

∫ t

0

θ(τ) dZ(t) =
∫ t

0

θ(τ) dM(τ) +
∫ t

0

θ(τ)B(dτ)

for Z = M +B and θ ∈ Θ2
loc(〈M〉,P; R),

where the dM(τ)-integral is taken in the sense of Itô and the B(dτ) integral
is a taken a la Lebesgue. Also, we take

(8.1.1) 〈Z1, Z2〉(t) ≡ 〈M1,M2〉(t) if Zi = Mi +Bi for i ∈ {1, 2}.

Indeed, with this notation, Itô’s formula 7.2.9 becomes

(8.1.2)

F
(
Z(t)

)
− F

(
Z(0)

)
=

n∑
i=1

∫ t

0

∂iF
(
Z(t)

)
dZi(t)

+
1
2

n∑
i,j=1

∫ t

0

∂i∂jF
(
Z(τ)

)
〈Zi, Zj〉(dτ).

The notational advantage of (8.1.2) should be obvious. On the other hand,
the disadvantage is that it mixes the martingale and bounded variation parts
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of the right hand side, and this mixing has to be disentangled before expec-
tation values are taken.

Finally, it should be noticed that the extension of the bracket given in
(8.1.1) is more than a notational device and has intrinsic meaning. Namely,
by Exercise 7.2.13 and the easily checked fact that, as N →∞,

2N t∑
m=0

∣∣∣∣(Z1

(
(m+ 1)2−N

)
− Z1

(
m2−N

))(
Z2

(
(m+ 1)2−N

)
− Z2

(
m2−N

))
−
(
M1

(
(m+ 1)2−N

)
−M1

(
m2−N

))(
M2

(
(m+ 1)2−N

)
−M2

(
m2−N

))∣∣∣∣,
tends to 0 P-almost surely uniformly for t in compacts, we know that

(8.1.3)

∞∑
m=0

(
Z1

(
t ∧ (m+ 1)2−N

)
− Z1

(
t ∧m2−N

))
×
(
Z2

(
t ∧ (m+ 1)2−N

)
− Z2

(
t ∧m2−N

))
−→ 〈Z1, Z2〉(t)

in P-probability uniformly for t in compacts.
8.1.2. Stratonovich’s Integral. Keeping in mind that Stratonovich’s
purpose was to make stochastic integrals better adapted to changes in vari-
able, it may be best to introduce his integral by showing that it is integral
at which one arrives if one adopts a somewhat naive approach, one which re-
veals its connection to the Riemann integral. Namely, given elements X and
Y of S(P; R), we want to define the Stratonovich integral2

∫ t

0
Y (τ) ◦ dX(τ)

of Y with respect to X as the limit of the Riemann integrals

lim
N→∞

∫ t

0

Y N (τ) dXN (τ),

where, for α : [0,∞) −→ R, we use αN to denote the polygonal approxi-
mation of α obtained by linear interpolation on each interval [m2−N , (m +
1)2−N ]. That is,

αN (t) = α(m2−N ) + 2N (t−m2−N )∆N
mα

where ∆N
mα ≡ α

(
(m+ 1)2−N

)
− α

(
m2−N

)
for all m, N ∈ N and t ∈

[
m2−N , (m+ 1)2−N

]
.

2 This notation is only one of many which are used to indicate it is Stratonovich’s, as

opposed to Itô’s , sense in which an integral is being taken. Others include the use of
δX(τ) in place of ◦dX(τ). The lack of agreement about the choice of notation reflects the

inadequateness of all the variants.
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Of course, before we can adopt this definition, we are obliged to check
that the this limit exists. For this purpose, write∫ t

0

Y N (τ) dXN (τ) =
∫ t

0

Y ([τ ]N ) dX(τ) +
∫ t

0

(
Y N (τ)− Y ([τ ]N )

)
dXN (τ),

where the dX-integral on the right can be interpreted either as an Itô or a
Riemann integral. By using Corollary 7.2.3, one can easily check that∥∥∥∥∫ t

0

Y ([τ ]N ) dX(τ)−
∫ t

0

Y (τ) dX(τ)
∥∥∥∥

[0,T ]

−→ 0 in P-probability.

At the same time, by (8.1.3),∫ t

0

(
Y N (τ)− Y ([τ ]N )

)
dXN (τ)

= 4N
∑

m≤2N t

(
∆N

mX
)(

∆N
mY
) ∫ t∧(m+1)2−N

m2−N

(τ −m2−N ) dτ −→ 1
2
〈X,Y 〉(t)

in P-probability uniformly for t in compacts. Hence, for computational pur-
poses, it is best to present the Stratonovich integral as

(8.1.4)
∫ t

0

Y (τ) ◦ dX(τ) =
∫ t

0

Y (τ) dX(τ) +
1
2
〈X,Y 〉(t),

where integral on the right is taken in the sense of Itô .
So far as I know, the formula in (8.1.4) was first given by Itô in [12]. In par-

ticular, Itô seems to have been the one who realized that the problems posed
by Stratonovich’s theory could be overcome by insisting that the integrands
be semimartingales, in which case, as (8.1.4) makes obvious, the Stratonovich
integral of Y with respect to X is again a continuous semimartingale. In fact,
if X = M + B is the decomposition of X into its martingale and bounded
variation parts, then∫ t

0

Y (τ) dM(τ) and
∫ t

0

Y (τ) dB(τ) +
1
2
〈Y,M〉(t)

are the martingale and bounded variation parts of I(t) ≡
∫ t

0
Y (τ) ◦ dX(τ),

and so 〈Z, I〉(dt) = Y (t)〈Z,X〉(dt) for all Z ∈ S(P; R).
To appreciate how clever Itô’s observation is, notice that Stratonovich’s

integral is not really an integral at all. Indeed, in order to deserve being
called an integral, an operation should result in a quantity which can be
estimated in terms of zeroth order properties of the integrand. On the other
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hand, as (8.1.4) shows, no such estimate is possible. To see this, take Y (t) =
f
(
Z(t)

)
, where Z ∈ S(P; R) and f ∈ C2(R; R). Then, because 〈X,Y 〉(dt) =

f ′
(
Z(t)

)
〈X,Z〉(dt),∫ t

0

Y (τ) ◦ dX(τ) =
∫ t

0

f
(
Z(τ)

)
dX(τ) +

1
2

∫ t

0

f ′
(
Z(τ)

)
〈X,Z〉(dτ),

which demonstrates that there is, in general, no estimate of the Stratonovich
integral in terms of the zeroth order properties of the integrand.

Another important application of (8.1.4) is to the behavior of Stratonovich
integrals under iteration. That is, suppose that X, Y ∈ S(P; R), and set
I(t) =

∫ t

0
Y (τ) ◦ dX(τ). Then 〈Z, I〉(dt) = Y (t)〈Z,X〉(dt) for all Z ∈

S(P; R), and so∫ t

0

Z(τ) ◦ dI(τ) =
∫ t

0

Z(τ) dI(τ) +
1
2

∫ t

0

Y (τ) 〈Z,X〉(dτ)

=
∫ t

0

Z(τ)Y (τ) dX(τ) +
1
2

∫ t

0

(
Z(τ)〈Y,X〉(dτ) + Y (τ)〈Z,X〉(dτ)

)
=
∫ t

0

Z(τ)Y (τ) dX(τ) +
1
2
〈ZY,X〉(t) =

∫ t

0

ZY (τ) ◦ dX(τ),

since, by Itô’s formula,

ZY (t)− ZY (0) =
∫ t

0

Z(τ) dY (τ) +
∫ t

0

Y (τ) dZ(τ) +
1
2
〈Z, Y 〉(t),

and therefore 〈ZY,X〉(dt) = Z(t)〈Y,X〉(dt) + Y (t)〈Z,X〉(dt). In other
words, we have now proved that

(8.1.5)
∫ t

0

Z(τ) ◦ d
(∫ τ

0

Y (σ) ◦X(σ)
)

=
∫ t

0

Z(τ)Y (τ) ◦ dX(τ).

8.1.3. Ito’s Formula & Stratonovich Integration. Because the origin
of Stratonovich’s integral is in Riemann’s theory, it should come as no sur-
prise that Itô’s formula looks deceptively like the fundamental theorem of cal-
culus when Stratonovich’s integral is used. Namely, let Z = (Z1, . . . , Zn) ∈
S(P; R)n and f ∈ C3(Rn; R) be given, and set Yi = ∂if ◦ Z for 1 ≤ i ≤ n.
Then Yi ∈ S(P; R) and, by Itô’s formula applied to ∂if , the local martingale
part of Yi is given by the sum over 1 ≤ j ≤ n of the Itô stochastic integrals
of ∂i∂jf ◦ Z with respect the local martingale part of Zj . Hence,

〈Yi, Zi〉(dt) =
n∑

j=1

∂i∂jf ◦ Z(τ)〈Zi, Zj〉(dt).
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But, by Itô’s formula applied to f , this means that

df
(
Z(t)

)
=

n∑
i=1

(
Yi(τ) dZi(τ) +

1
2
〈Yi, Zi〉(dt)

)
,

and so we have now shown that, in terms of Stratonovich integrals, Itô’s for-
mula does look like the “the fundamental theorem of calculus”

(8.1.6) f
(
Z(t)

)
− f

(
Z(0)

)
=

n∑
i=1

∫ t

0

∂if
(
Z(τ)

)
◦ dZi(τ).

As I warned above, (8.1.6) is deceptive. For one thing, as its derivation
makes clear, it, in spite of its attractive form, is really just Itô’s formula
(8.1.2) in disguise. In fact, if, as we will, one adopts Itô’s approach to
Stratonovich’s integral, then it is not even that. Indeed, one cannot write
(8.1.6) unless one knows that ∂if ◦Z is a semi-martingale. Thus, in general,
(8.1.6) requires us to assume that f is three times continuously differentiable,
not just twice, as in the case with (8.1.2). Ironically, we have arrived at a
first order fundamental theorem of calculus which applies only to functions
with three derivatives. In view of these remarks, it is significant that, at least
in the case of Brownian motion, Itô found a way (cf. [13] or Exercise 8.1.8
below) to make (8.1.6) closer to a true Fundamental Theorem of Calculus,
at least in the sense that it applies to all f ∈ C1(Rn; R).

Remark 8.1.7. Putting (8.1.6) together with our earlier footnote about the
notation for Stratonovich integrals, one might be inclined to think the right
notation should be

∫ t

0
Y (τ)Ẋ(τ) dτ . For one thing, this notation recognizes

that the Stratonovich integral is closely related to the notion of generalized
derivatives a la Schwartz’s distribution theory. Secondly, (8.1.6) can be
summarized in differential form by the expression

df
(
Z(t)

)
=

n∑
i=1

∂if
(
Z(t)

)
◦ dZi(t),

which would take the appealing form

d

dt
f
(
Z(t)

)
=

n∑
i=1

∂if
(
Z(t)

)
Ż(t).

Of course, the preceding discussion should also make one cautious about
being too credulous about all this.
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8.1.4. Exercises.

Exercise 8.1.8. In this exercise we will describe Itô’s approach to extend-
ing the validity of (8.1.6).

(i) The first step is to give another description of Stratonovich integrals.
Namely, given X, Y ∈ S(P; R), show that the Stratonovich integral of Y
with respect to X over the interval [0, T ] is almost surely equal to

(*) lim
N→∞

2N−1∑
m=0

Y
(

(m+1)T
2N

)
+ Y

(
mT
2N

)
2

(
X

(
(m+ 1)T

2N

)
−X

(
mT

2N

))
.

Thus, even if Y is not a semimartingale, we will say that Y : [0, T ]× Ω −→
R is Stratonvich integrable on [0, T ] with respect to X if the limit in (*)
exists in P-measure, in which case we will use

∫ T

0
Y (t)◦dX(t) to denote this

limit. It must be emphasized that the definition here is “T by T” and not
simultaneous for all T ’s in an interval.

(ii) Given an X ∈ S(P; R) and a T > 0, set X̌T (t) = X
(
(T − t)+

)
, and

suppose that
(
X̌T (t), F̌T

t ,P
)

is a semimartingale relative to some filtration
{F̌T

t : t ≥ 0}. Given a Y : [0, T ] × Ω −→ R with the properties that
Y ( · , ω) ∈ C

(
[0, T ]; R

)
for P-almost every ω and that ω  Y (t, ω) is Ft∩F̌T

t

for each t ∈ [0, T ], show that Y is Stratonovich integrable on [0, T ] with
respect to X. In fact, show that∫ T

0

Y (t) ◦ dX(t) =
1
2

∫ T

0

Y (t) dX(t)− 1
2

∫ T

0

Y (t) dX̌T (t),

where each of the integrals on the right is the taken in the sense of Itô .
(iii) Let

(
β(t),Ft,P

)
be an Rn-valued Brownian motion. Given T ∈

(0,∞), set β̌T (t) = β
(
(T − t)+

)
, F̌T

t = σ
(
{β̌T (τ) : τ ∈ [0, t]}

)
, and

show that, for each ξ ∈ Rn,
(
(ξ, β̌T (t))Rn , F̌T

t ,P
)

is a semimartingale with

〈β̌T , β̌T 〉(t) = t ∧ T and bounded variation part t  −
∫ t

0
β̌T

τ

T−τ dτ . In par-
ticular, show that, for each ξ ∈ Rn and g ∈ C(Rn; R), t  g

(
β(t)

)
is

Stratonovich integrable on [0, T ] with respect to t 
(
ξ, β(t)

)
Rn . Further, if

{gn}∞1 ⊆ C(Rn; R) and gn −→ g uniformly on compacts, show that∫ T

0

gn

(
β(t)

)
◦ d
(
ξ, β(t)

)
Rn −→

∫ T

0

g
(
β(t)

)
◦ d
(
ξ, β(t)

)
Rn

in P-measure.
(iv) Continuing with the notation in (iii), show that

f
(
β(T )

)
− f(0)) =

n∑
i=1

∫ T

0

∂if
(
β(t)

)
◦ dβi(t)
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for every f ∈ C1(Rn; R). In keeping with the comment at the end of (i), it
is important to recognize that although this form of Itô ’s formula holds for
all continuously differentiable functions, it is, in many ways less useful than
forms which we obtained previously. In particular, when f is no better than
once differentiable, the right hand side is defined only up to a P-null set for
each T and not for all T ’s simultaneously.

(v) Let
(
β(t),Ft,P

)
be an R-valued Brownian motion, show that, for each

T ∈ (0,∞), t  sgn
(
β(t)

)
is Stratonovich integrable on [0, T ] with respect

to β, and arrive at

∣∣β(T )
∣∣ = ∫ T

0

sgn
(
β(t)

)
◦ dβ(t).

After comparing this with the result in (6.1.7), conclude that the local time
`(T, 0) of β at 0 satisfies

∫ T

0

|β(t)|
t

dt− `(T, 0)−
∣∣β(T )

∣∣ = ∫ T

0

sgn
(
β(T − t)

)
dM̌T (t),

where M̌T is the martingale part of β̌T . In particular, the expression on the
left hand side is a centered Gaussian random variable with variance T .

Exercise 8.1.9. Itô’s formula proves that f ◦ Z ∈ S(P; R) whenever Z =
(Z1, . . . , Zn) ∈ S(P; R)n and f ∈ C2(Rn; R). On the other hand, as Tanaka’s
treatment (cf. §6.1) of local time makes clear, it is not always necessary
to know that f has two continuous derivatives. Indeed, both (6.1.3) and
(6.1.7) provide examples in which the composition of a martingale with a
continuous function leads to a continuous semimartingale even though the
derivative of the function is discontinuous. More generally, as a corollary
of the Doob-Meyer Decomposition Theorem (alluded to at the beginning of
§ 7.1) one can show that f ◦Z will be a continuous semimartingale whenever
Z ∈ Mloc(P; Rn) and f is a continuous, convex function. Here is a more
pedestrian approach to this result.

(i) Following Tanaka’s procedure, prove that f ◦ Z ∈ S(P; R) whenever
Z ∈ S(P; R)n and f ∈ C1(Rn; R) is convex. That is, if Mi denotes the
martingale part of Zi, show that

f
(
Z(t)

)
−

n∑
i=1

∫ t

0

∂if
(
Z(τ)

)
dMi(τ)

is the bounded variation part of f ◦ Z.
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Hint: Begin by showing that whenA(t) ≡
((
〈Zi, Zj〉(t)

))
1≤i,j≤n

, A(t)−A(s)
is P-almost surely non-negative definite for all 0 ≤ s ≤ t, and conclude that
if f ∈ C2(Rn; R) is convex then

t 
n∑

i,j=1

∫ t

0

∂i∂jf
(
Z(τ)

)
〈Zi, Zj〉(dτ)

is P-almost surely non-decreasing.

(ii) By taking advantage of more refined properties of convex functions,
see if you can prove that f ◦ Z ∈ S(P; R) when f is a continuous, convex
function.

Exercise 8.1.10. If one goes back to the original way in which we described
Stratonovich in terms of Riemann integration, it becomes clear that the only
reason why we needed Y to be a semimartingale is that we needed to know
that ∑

m≤2N t

(
∆N

mY
)(

∆N
mX

)
converges in P-probability to a continuous function of locally bounded vari-
ation uniformly for t in compacts.

(i) Let Z =
(
Z1, . . . , Zn

)
∈ S(P; R)n, and set Y = f ◦ Z, where f ∈

C1(Rn; R). Show that, for any X ∈ S(P; R),

∑
m≤2N t

(
∆N

mY
)(

∆N
mX

)
−→

n∑
i=1

∫ t

0

∂if
(
Z(τ)

)
〈Zi, X〉(dτ)

in P-probability uniformly for t compacts.

(ii) Continuing with the notation in (i), show that

∫ t

0

Y (τ) ◦ dX(τ) ≡ lim
N→∞

∫ t

0

Y N (τ) dXN (τ)

=
∫ t

0

Y (τ) dX(τ) +
1
2

n∑
i=1

∫ t

0

∂if
(
Z(τ)

)
〈Zi, X〉(dτ),

where the convergence is in P-probability uniformly for t in compacts.

(iii) Show that (8.1.6) continues to hold for f ∈ C2(Rn; R) when the inte-
gral on the right hand side is interpreted using the extension of Stratonovich
integration developed in (ii).



230 8 Stratonovich’s Theory

Exercise 8.1.11. Let X,Y ∈ S(P; R). In connection with Remark 8.1.7,
it is interesting to examine whether it is sufficient to mollify only X when
defining the Stratonovich integral of Y with respect to X.

(i) Show
∫ 1

0
Y ([τ ]N ) dXN (τ) tends in P-probability to

∫ 1

0
Y (τ) dX(τ).

(ii) Define ψN (t) = 1 − 2N (t − [t]N ), set ZN (t) =
∫ t

0
ψN (τ) dY (τ), and

show that∫ 1

0

Y (τ) dXN (τ)−
∫ 1

0

Y ([τ ]N ) dXN (τ) =
2N−1∑
m=0

(
∆N

mX
)(

∆N
mZN

)
.

(iii) Show that

2N−1∑
m=0

(
∆N

mX
)(

∆N
mZN

)
−
∫ 1

0

ψN (t)〈X,Y 〉(dt) −→ 0 in P-probability.

(iv) Show that for any Lebesgue integrable function α : [0, 1] −→ R,∫ 1

0
ψN (τ)α(τ) dτ tends to 1

2

∫ 1

0
α(τ) dτ .

(v) Under the condition that 〈X,Y 〉(dt) = β(t) dt, where β : [0,∞) ×
Ω −→ [0,∞) is a progressively measurable function, use the preceding to see
that

∫ 1

0
Y (τ) dXN (τ) tends in P-probability to

∫ 1

0
Y (τ) ◦ dX(τ).

Exercise 8.1.12. One place where Stratonovich’s theory really comes into
its own is when it comes to computing the determinant of the solution
to a linear stochastic differential equation. Namely, suppose that A =
((Aij))1≤i,j≤n ∈ S

(
P; Hom(Rn; Rn)

)
(i.e., Aij ∈ S(P; R) for each 1 ≤ i, j ≤

n), and assume that X ∈ S
(
P; Hom(Rn; Rn)

)
satisfies dX(t) = X(t) ◦ dA(t)

in sense that

dXij(t) =
n∑

k=1

Xik(t) ◦ dAkj(t) for all 1 ≤ i, j ≤ n.

Show that
det
(
X(t)

)
= det

(
X(0)

)
eTrace

(
A(t)−A(0)

)
.

8.2 Stratonovich Stochastic Differential Equations
Seeing as every Stratonovich integral can be converted into an Itô inte-

gral, it might seem unnecessary to develop a separate theory of Stratonovich
stochastic differential equations. On the other hand, the replacement of a
Stratonovich equation by the equivalent Itô equation removes the advan-
tages, especially the coordinate invariance, of Stratonovich’s theory. With
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this in mind, we devote the present section to a non-Itô analysis of Stratono-
vich stochastic differential equations.

Let P0 denote the standard Wiener measure for r-dimensional paths p =
(p1, . . . , pr) ∈ C([0,∞); Rr). In order to emphasize the coordinate invariance
of the theory, we will write our Stratonovich stochastic differential equations
in the form

(8.2.1)
dX(t, x, p) = V0

(
X(t, x, p)

)
dt+

r∑
k=1

Vk

(
X(t, x, p)

)
◦ dpk(t)

with X(0, x, p) = x,

where, for each 0 ≤ k ≤ r, Vk : Rn −→ Rn is a smooth function. To see
what the equivalent Itô equation is, notice that〈

(Vk)i

(
X( · , x, p)

)
, pk

〉
(dt) =

n∑
j=1

∂j(Vk)i

(
X(t, x, p)

)
〈Xj( · , x, p), pk〉(dt)

=
n∑

j=1

r∑
`=1

(V`)j∂j(Vk)i

(
X(t, x, p)

)
〈p`, pk〉(dt) = DVk

(Vk)i

(
X(t, x, p)

)
dt,

where DVk
=
∑n

i=1(Vk)j∂j denotes the directional derivative operator de-
termined by Vk. Hence, if we think of each Vk, and therefore X(t, x, p), as a
column vector, then the Itô equivalent to (8.2.1) is

(8.2.2)
dX(t, x, p) = σ

(
X(t, x, p)

)
dp(t) + b

(
X(t, x, p)

)
dt

with X(0, x, p) = x,

where σ(x) =
(
V1(x), . . . , Vr(x)

)
is the n × r-matrix whose kth column is

Vk(x) and b = V0 + 1
2

∑r
1DVk

Vk. In particular, if

L =
1
2

n∑
i,j=1

aij∂i∂j +
n∑

i=1

bi∂i, where a = σσ>,

then L is the operator associated with (8.2.1) in the sense that for any
f ∈ C1,2

(
[0, T ]× Rn

)
,(

f
(
t ∧ T,X(t, x, p)

)
−
∫ t∧T

0

(
∂τf + Lf

)(
X(τ, x, p)

)
dτ,Bt,P0

)
is a local martingale. However, a better way to write this operator is directly
in terms of the directional derivative operators DVk

. Namely,

(8.2.3) L = DV0 +
1
2

r∑
k=1

(DVk
)2.
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Hörmander’s famous paper [10] was the first to demonstrate the advantage
of writing a second order elliptic operator in the form given in (8.2.3), and, for
this reason, (8.2.3) is often said to be the Hörmander form expression for L.
The most obvious advantage is the same as the advantage that Stratonovich’s
theory has over Itô’s: it behaves well under change of variables. To wit, if
F : Rn −→ Rn is a diffeomorphism, then

(Lϕ) ◦ F = DF∗V0ϕ+
1
2

r∑
k=1

(
DF∗Vk

)2
ϕ,

where (
F∗Vk

)
i
= DVk

Fi, 1 ≤ i ≤ n,

is the “pushforward” under F of Vk. That is, DF∗Vk
ϕ = DVk

(ϕ ◦ F ).
8.2.1. Commuting Vector Fields. Until further notice, we will be deal-
ing with vector fields V0, . . . , Vr which have two uniformly bounded, contin-
uous derivatives. In particular, these assumptions are more than enough to
assure that the equation (8.2.2), and therefore (8.2.1), admits a P0-almost
surely unique solution. In addition, by Corollary 4.2.6 or Corollary 7.3.6, the
P0-distribution of the solution is the unique solution PL

x to the martingale
for L starting from x.

In this section we will take the first in a sequence of steps leading to an
alternative (especially, non-Itô ) way of thinking about solutions to (8.2.1).

Given ξ = (ξ0, . . . , ξr) ∈ Rr+1, set Vξ =
∑r

k=0 ξkVk, and determine E(ξ, x)
for x ∈ Rn so that E(0, x) = x and

d

dt
E(tξ, x) = Vξ

(
E(tξ, x)

)
.

From elementary facts (cf. §4 of Chapter 2 in [4]) about ordinary differential
equations, we know that (ξ, x) ∈ Rr+1 × Rn 7−→ E(ξ, x) ∈ Rn is a twice
continuously differentiable function which satisfies estimates of the form

(8.2.4)

∣∣E(ξ, x)− x
∣∣ ≤ C|ξ|,

∣∣∂ξk
E(ξ, x)

∣∣ ∨ ∣∣∂xiE(ξ, x)
∣∣ ≤ Ceν|ξ|∣∣∂ξk

∂ξ`
E(ξ, x)

∣∣ ∨ ∣∣∂ξk
∂xi

E(ξ, x)
∣∣ ∨ ∣∣∂xi

∂xj
E(ξ, x)

∣∣ ≤ Ceν|ξ|,

for some C <∞ and ν ∈ [0,∞). Finally, define

(8.2.5) Vk(ξ, x) = ∂ξk
E(ξ, x) for 0 ≤ k ≤ r and (ξ, x) ∈ Rr+1 × Rn.

For continuously differentiable, Rn-valued functions V and W on Rn,
we will use the notation [V,W ] to denote the Rn-valued function which
is determined so that D[V,W ] is equal to the commutator,

[
DV , DW

]
=

DV ◦DW −DW ◦DV , of DV and DW . That is, [V,W ] = DV W −DWV .
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8.2.6 Lemma. Vk(ξ, x) = Vk

(
E(ξ, x)

)
for all 0 ≤ k ≤ r and (ξ, x) ∈

Rr+1 × Rn if and only if [Vk, V`] ≡ 0 for all 0 ≤ k, ` ≤ r.

Proof: First assume that Vk(ξ, x) = Vk

(
E(ξ, x)

)
for all k and (ξ, x). Then,

if e` is the element of Rr+1 whose `th coordinate is 1 and whose other
coordinates are 0, we see that

d

dt
E(ξ + te`, x) = V`(ξ + te`, x) = V`

(
E(ξ + te`, x)

)
,

and so, by uniqueness, E(ξ + te`, x) = E
(
te`, E(ξ, x)

)
. In particular, this

leads first to

E
(
te`, E(sek, x)

)
= E(te` + sek, x) = E

(
sek, E(te`, x)

)
,

and thence to

DVk
V`(x) =

∂2

∂s∂t
E
(
te`, E(sek, x)

)∣∣∣
s=t=0

=
∂2

∂t∂s
E
(
sek, E(te`, x)

)∣∣∣
s=t=0

= DV`
Vk(x).

To go the other direction, first observe that Vk(ξ, x) = Vk

(
E(ξ, x)

)
is

implied by E(ξ + tek, x) = E
(
tek, E(ξ, x)

)
. Thus, it suffices to show that

E(ξ + η, x) = E
(
η,E(ξ, x)

)
follows from [Vξ, Vη] ≡ 0. Second, observe that

E(ξ + η, x) = E
(
η,E(ξ, x)

)
is implied by E

(
ξ, E(η, x)

)
= E

(
η,E(ξ, x)

)
. In-

deed, if the second of these holds and F (t) ≡ E
(
tξ, E(tη, x)

)
, then Ḟ (t) =

(Vξ + Vη)
(
F (t)

)
, and so, by uniqueness, F (t) = E

(
t(ξ + η), x

)
. In other

words, all that remains is to show that E
(
ξ, E(η, x)

)
= E

(
η,E(ξ, x)

)
fol-

lows from [Vξ, Vη] ≡ 0. To this end, set F (t) = E
(
ξ, E(tη, x)

)
, and note

that Ḟ (t) = E(ξ, · )∗Vη

(
E(tη, x)

)
. Hence, by uniqueness, we will know that

E
(
ξ, E(tη, x)

)
= F (t) = E

(
tη, E(ξ, x)

)
once we show that E(ξ, · )∗Vη =

Vη

(
E(ξ, · )

)
. But

d

ds
E(sξ, · )−1

∗ Vη

(
E(sξ, · )

)
= [Vξ, Vη]

(
E(sξ, · )

)
,

and so we are done. �

8.2.7 Theorem. Assume that the vector fields Vk commute. Then the

one and only solution to (8.2.1) is (t, p) X(t, x, p) ≡ E
((
t, p(t)

)
, x
)
.

Proof: Let X( · , x, p) be given as in the statement. By Itô’s formula,

dX(t, x, p) = V0

((
t, p(t)

)
, X(t, x, p)

)
dt+

r∑
k=1

Vk

((
t, p(t)

)
, X(t, x, p)

)
◦dpk(t),

and so, by Lemma 8.2.6, X( · , x, p) is a solution. As for uniqueness, simply
re-write (8.2.1) in its Itô equivalent form, and conclude, from Theorem 5.2.2,
that there can be at most one solution to (8.2.1). �
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Remark 8.2.8. A significant consequence of Theorem 8.2.7 is that the so-
lution to (8.2.1) is a smooth function of p when the Vk’s commute. In fact,
for such vector fields, p  X( · , x, p) is the unique continuous extention to
C
(
[0,∞); Rr

)
of the solution to the ordinary differential equation

Ẋ(t, x, p) = V0

(
X(t, x, p)

)
+

r∑
k=1

Vk

(
X(t, x, p)

)
ṗk(t)

for p ∈ C1
(
[0,∞); Rr

)
. This fact should be compared to the examples given

in § 3.3.

8.2.2. General Vector Fields. Obviously, the preceding is simply not
going to work when the vector fields do not commute. On the other, it indi-
cates how to proceed. Namely, the commuting case plays in Stratonovich’s
theory the role that the constant coefficient case plays in Itô’s . In other
words, we should suspect that the commuting case is correct locally and
that the general case should be handled by perturbation. We continue with
the assumption that the Vk’s are smooth and have two bounded continuous
derivatives.

With the preceding in mind, for each N ≥ 0, set XN (0, x, p) = x and

(8.2.9)
XN (t, x, p) = E

(
∆N (t, p), XN ([t]N , x, p)

)
where ∆N (t, p) ≡

(
t− [t]N , p(t)− p([t]N )

)
.

Equivalently (cf. (8.2.5)):

dXN (t, x, p) = V0

(
∆N (t, p), XN ([t]N , x, p)

)
dt

+
r∑

k=1

Vk

(
∆N (t, p), XN ([t]N , x, p)

)
◦ dpk(t);

Note that, by Lemma 8.2.6, XN (t, x, p) = E
(
(t, p(t)), x

)
for each N ≥ 0

when the Vk’s commute. In order to prove that {XN ( · , x, p) : N ≥ 0}
is P0-almost surely convergent even when the Vk’s do not commute, we
proceed as follows. Set DN (t, x, p) ≡ X(t, x, p)−XN (t, x, p) and Wk(ξ, x) ≡
Vk

(
E(ξ, x)

)
− Vk(ξ, x), and note that DN (0, x, p) = 0 and

dDN (t, x, p) =
(
V0

(
X(t, x, p)

)
− V0

(
XN (t, x, p)

))
dt

+
r∑

k=1

(
Vk

(
X(t, x, p)

)
− Vk

(
XN (t, x, p)

))
◦ dpk(t)

+W0

(
∆N (t, p), XN ([t]N , x, p)

)
dt(8.2.10)

+
r∑

k=1

Wk

(
∆N (t, p), XN ([t]N , x, p)

)
◦ dpk(t).
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8.2.11 Lemma. There exists a C <∞ and ν > 0 such that∣∣Vk(η,E(ξ, x)
)
− Vk(ξ + η, x)− 1

2

[
Vξ, Vk

]
(x)
∣∣ ≤ C

(
|ξ|+ |η|

)2
eν(|ξ|+|ν|)

for all ξ, η ∈ Rr+1, x ∈ Rn, and 0 ≤ k ≤ r. In particular, if

W̃k(ξ, x) ≡Wk(ξ, x)−
∑
` 6=k

ξ`
[
V`, Vk

]
(x),

then W̃k(0, x) = 0 and
∣∣∂ξW̃k(ξ, x)

∣∣ ≤ C|ξ|eν|ξ| for all (ξ, x) ∈ Rr+1 × Rn

and some C <∞ and ν > 0.

Proof: In view of the estimates in (8.2.4), it suffices for us to check the
first statement. To this end, observe that

E
(
η,E(ξ, x)

)
= E(ξ, x) + Vη

(
E(ξ, x)

)
+ 1

2DVη
Vη

(
E(ξ, x)

)
+R1(ξ, η, x),

where R1(ξ, η, x) is the remainder term in the second order Taylor’s expan-
sion of η  E

(
· , E(ξ, x)

)
around 0 and is therefore (cf. (8.2.4)) dominated

by constant C1 <∞ times |η|3eν|η|. Similarly,

E(ξ, x) = x+ Vξ(x) + 1
2DVξ

Vξ(x) +R2(ξ, x)

Vη

(
E(ξ, x)

)
= Vη(x) +DξVη(x) +R3(ξ, η, x)

DVη
Vη

(
E(ξ, x)

)
= DVη

Vη(x) +R4(ξ, η, x)

E(ξ + η, x) = x+DVξ+η
Vξ+η(x) + 1

2D
2
Vξ+η

Vξ+η(x) +R2(ξ + η, x),

where

|R2(ξ, x)| ≤ C2|ξ|3eν|ξ|, |R3(ξ, η, x)| ≤ C3|ξ|2|η|eν|ξ|,

|R4(ξ, η, x)| ≤ C4|ξ||η|2eν|ξ|.

Hence

E
(
η,E(ξ, x)

)
− E(ξ + η, x) = 1

2

[
Vξ, Vη

]
(x) +R5(ξ, η, x),

where |R5(ξ, η, x)| ≤ C5

(
|ξ|+ |η|

)3
eν(|ξ|+|η|),

and so the required estimate follows. �
Returning to (8.2.10), we now write

dDN (t, x, p) = W0

(
∆N (t, p), XN ([t]N , x, p)

)
dt

+
1
2

∑
1≤k 6=`≤r

[
V`, Vk

](
XN ([t]N , x, p)

)
∆N

` (t, p) dpk(t)

+
r∑

k=1

W̃k

(
∆N (t, p), XN ([t]N , x, p)

)
◦ dpk(t)

+
(
V0

(
X(t, x, p)

)
− V0

(
XN (t, x, p)

))
dt

+
r∑

k=1

(
Vk

(
X(t, x, p)

)
− Vk

(
XN (t, x, p)

))
◦ dpk(t),
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where, for 1 ≤ ` ≤ r, we have used ∆N
` (t, p) = p`(t)− p`([t]N ) to denote the

kth coordinate of ∆N (t, p). Also, it is important to observe that, because
〈pk, p`〉 ≡ 0 for ` 6= k, we were able to replace the Stratonovich stochastic
integral ∆N

` (t, p) ◦ dpk(t) by the Itô stochastic integral ∆N
` (t, p) dpk(t). In

fact, it is this replacement which makes what follows possible.
To proceed, first use an obvious Gaussian computation to see that there

exists for each q ∈ [1,∞) a Aq <∞ such that

EP0
[∣∣∆N (t, p)

∣∣2q
e2qν|∆N (t,p)|

] 1
q ≤ Aq

(
t− [t]N

)
.

Hence, there exist constants Cq <∞ such that

EP0

[∥∥∥∥∫ ·

0

W0

(
∆N (t, p), XN ([t]N , x, p)

)
dt

∥∥∥∥2q

[0,T ]

] 1
q

≤ CqT
22−N

EP0

[∥∥∥∥∫ ·

0

[
Vk, V`

](
XN ([t]N , x, p)

)
∆N

` (t, p) dpk(t)
∥∥∥∥2q

[0,T ]

] 1
q

≤ CqT2−N

EP0

[∥∥∥∥∫ ·

0

W̃k

(
∆N (t, p), XN (t, x, p)

)
◦ dpk(t)

∥∥∥∥2q

[0,T ]

] 1
q

≤ Cq

(
T + T 2

)
2−N .

In the derivation of the last two of these, we have used Burkholder’s Inequal-
ity (cf. Exercises 5.1.27 or 7.2.15). Of course, in the case of the last, we had
to first convert the Stratonovich integral to its Itô equivalent and then had
to also apply the final part of Lemma 8.2.11. Similarly, we obtain

EP0

[∥∥∥∥∫ ·

0

(
Vk

(
X(t, x, p)

)
− Vk

(
XN (t, x, p)

))
◦ dpk(t)

∥∥∥∥2q

[0,T ]

] 1
q

≤ Cq(1 + T )
∫ T

0

EP0
[∥∥X( · , x, p)−XN ( · , x, p)

∥∥2q

[0,T ]

] 1
q

dt.

After combining the preceding with Gronwall’s inequality, we arrive at the
goal toward which we have been working.

8.2.12 Theorem. For each T > 0 and q ∈ [1,∞) there exists a C(T, q) <
∞ such that

EP0
[∥∥X( · , x, p)−XN ( · , x, p)

∥∥2q

[0,t]

] 1
q ≤ C(T, q)t2−N if t ∈ [0, T ].

8.2.3. Another Interpretation. In order to exploit the result in Theo-
rem 8.2.12, it is best to first derive a simple corollary of it, a corollary which
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contains an important result which was proved, in a somewhat different
form and by entirely different methods, originally by Wong and Zakai [42].
Namely, when p is a locally absolutely continuous element of C

(
[0,∞); Rn

)
,

then it is easy to check that, for each T > 0,

lim
N→∞

∥∥XN ( · , x, p)−X( · , x, p)
∥∥

[0,T ]
= 0,

where here X( · , x, p) is the unique locally absolutely continuous function
such that

(8.2.13) X(t, x, p) = x+
∫ t

0

(
V0

(
X(τ, x, p)

)
+

r∑
k=1

Vk

(
X(τ, x, p)

)
ṗk(τ)

)
dτ.

8.2.14 Theorem. For each N ≥ 0 and p ∈ C
(
[0,∞); Rr

)
, let pN ∈

C
(
[0,∞); Rr

)
be determined so that

pN (m2−N ) = p(m2−N ) and p � Im,N ≡ [m2−N , (m+ 1)2−N ] is linear

for each m ≥ 0. Then, for all T > 0 and ε > 0,

lim
N→∞

P0
(∥∥X( · , x, p)−X( · , x, pN )

∥∥
[0,T ]

≥ ε
)

= 0

where X( · , x, pN ) is the unique, absolutely continuous solution to (8.2.13).

Proof: The key to this result is the observation is that XN (m2−N , x, p) =
X(m2−N , x, pN ) for all m ≥ 0. Indeed, for each m ≥ 0, both the maps
t ∈ (m2−N , (m+ 1)2−N ) 7−→ X(t, x, pN ) and

t ∈
(
m2−N , (m+ 1)2−N

)
−→ E

(
t
(
2−N , p

(
(m+ 1)2−N

)
− p(m2−N )

)
, X(m2−N , x, p)

)
∈ Rn

are solutions to the same ordinary differential equation. Thus, by induction
on m ≥ 0, the asserted equality follows from the standard uniqueness theory
for the solutions to such equations.

In view of the preceding and the result in Theorem 8.2.12, it remains only
to prove that

lim
N→∞

P0

(
sup

t∈[0,T ]

∣∣X(t, x, pN )−X([t]N , x, pN )
∣∣

∨
∣∣XN (t, x, p)−XN ([t]N , x, p)

∣∣ ≥ ε

)
= 0

for all T ∈ (0,∞) and ε > 0. But∣∣X(t, x, pN )−X([t]N , x, pN )
∣∣ ≤ C2−N ∨

∣∣p([t]N + 2−N )− p([t]N )
∣∣ and∣∣XN (t, x, p)−XN ([t]N , x, p)

∣∣ ≤ Ceν‖p‖[0,T ]2−N ∨
∣∣p(t)− p([t]N )

∣∣,
and so there is nothing more to do. �
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An important dividend of preceding is best expressed in terms of the
support in C

(
[0,∞); Rn

)
of the solution PL

x to the martingale problem for
L (cf. (8.2.3)) starting from x. Namely, take (cf. Exercise 8.2.16 below for
more information)

S(x;V0, . . . , Vr) =
{
X( · , x, p) : p ∈ C1

(
[0,∞); Rr

)}
.

8.2.15 Corollary. Let L be the operator described by (8.2.3), and (cf.
Corollary 4.2.6) let PL

x be the unique solution to the martingale problem for
L starting at x. Then the support of PL

x in C
(
[0,∞); Rn

)
is contained in the

closure there of the set S(x;V0, . . . , Vr).

Proof: First observe that PL
x is the P0-distribution of p  X( · , x, p).

Thus, by Theorem 8.2.14, we know that

PL
x

(
S(x;V0, . . . , Vr)

)
≥ lim

N→∞
P0
(
{p : X( · , x, pN ) ∈ S(x;V0, . . . , Vr)}

)
.

But, for each n ∈ N and p ∈ C
(
[0,∞); Rr

)
, it is easy to construct {pN

ε : ε >
0} ⊆ C∞

(
[0,∞); Rr

)
so that pN

ε (0) = p(0) and

lim
ε↘0

∫ T

0

∣∣ṗN
ε (t)− ṗN (t)

∣∣2 dt = 0

and to show that limε↘0 ‖X( · , x, pN
ε )−X( · , x, pN )‖[0,T ] = 0 for all T > 0.

Hence,X( · , x, pN ) ∈ S(x;V0, . . . , Vr) for all n ∈ N and p ∈ C
(
[0,∞); Rn)

)
. �

8.2.4. Exercises.

Exercise 8.2.16. Except when span
(
{V1(x), . . . , Vr(x)}

)
= Rn for all x ∈

Rn, in which case S(x;V0, . . . , Vr) is the set of p ∈ C
(
[0,∞); Rn

)
with p(0) =

x, it is a little difficult to get a feeling for what paths are and what paths
are not contained in S(x;V0, . . . , Vr). In this exercise we hope to give at
least some insight into this question. For this purpose, it will be helpful to
introduce the space V(V0, . . . , Vr) of bounded V ∈ C1

(
[0,∞); Rn

)
with the

property that for all α ∈ R and x ∈ Rn the integral curve of V0+αV starting
at x is an element of S(x;V0, . . . , Vr). Obviously, Vk ∈ V(V0, . . . , Vr) for each
1 ≤ k ≤ r.

(i) Given V,W ∈ V(V0, . . . , Vr) and (T, x) ∈ (0,∞)× Rn, determine X ∈
C
(
[0,∞); Rn

)
so that

X(t) =

{
x+

∫ t

0
V
(
X(τ)

)
dτ if t ∈ [0, T ]

X(T ) +
∫ t

T
W
(
X(τ)

)
dτ if t > T,

and show that X ∈ S(x;V0, . . . , Vr).
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(ii) Show that if V,W ∈ V(V0, . . . , Vr) and ϕ,ψ ∈ C1
b(Rn; R), then ϕV +

ψW ∈ V(V0, . . . , Vr).
Hint: Define X : R3 × Rn −→ Rn so that X

(
(0, 0, 0), x) = x and

d

dt
X
(
t(α, β, γ), x

)
= (αV0 + βV + γW )

(
X
(
t(α, β, γ), x).

Given N ∈ N, define YN : [0,∞)× Rn −→ Rn so that YN (t, x) equals
X
(
t(1, 2ϕ(x), 0), x

)
for 0 ≤ t ≤ 2−N−1

X
(
(t− 2−N−1)(1, 0, 2ψ(x)), YN (2−N−1

)
for 2−N−1 ≤ t ≤ 2−N

YN

(
t− [t]N , YM ([t]N , x)

)
for t ≥ 2−N .

Show that YN ( · , x) −→ Y ( · , x) in C
(
[0,∞); Rn

)
, where Y ( · , x) is the inte-

gral curve of V0 + ϕV + ψW starting at x.

(iii) If V,W ∈ V(V0, . . . , Vr) have two bounded continuous derivatives,
show that [V,W ] ∈ V(V0, . . . , Vr).
Hint: Use the notation in the preceding. For N ∈ N, define YN : [0,∞) ×
Rn −→ Rn so that YN (t, x) is equal to

X
(
(t, 2

N
2 +2t, 0), x

)
X
(
(t− 2−N−2, 0, 2

N
2 +2(t− 2N−2), YN (2−N−2, x)

)
X
(
(t− 2−N−1,−2

N
2 +2(t− 2−N−1), 0), YN (2−N−1, x)

)
X
(
(t− 32−N−2, 0,−2

N
2 +2(t− 32N−2)), YN (32−N−2, x)

)
YN

(
t− [t]N , YN ([t]N , x)

)
according to whether 0 ≤ t ≤ 2−N−2, 2−N−2 ≤ t ≤ 2N−1, 2−N−1 ≤ t ≤
32−N−2, 32−N−2 ≤ t ≤ 2−N , or t ≥ 2−N . Show that YN ( · , x) −→ Y ( · , x)
in C

(
[0,∞); Rn

)
, where Y ( · , x) is the integral curve of V0 + [V,W ] starting

at x.

(iv) Suppose that M is a closed submanifold of Rn and that, for each x ∈
M , {V0(x), . . . , Vr(x)} is a subset of the tangent space TxM to M at x. Show
that, for each x ∈ M , S(x;V0, . . . , Vr) ⊆ C

(
[0,∞);M

)
and therefore that

PL
x

(
∀t ∈ [0,∞) p(t) ∈M

)
= 1. Moreover, if {V1, . . . , Vr} ⊆ C∞(Rn; Rn) and

Lie(V1, . . . , Vr) is the smallest Lie algebra of vectors fields on Rn containing
{V1, . . . , Vr}, show that

S(x;V0, . . . , Vr) =
{
p ∈ C

(
[0,∞);M

)
: p(0) = x

}
if M 3 x is a submanifold of Rn with the property that

V0(y) ∈ TyM =
{
V (y) : V ∈ Lie(V1, . . . , Vr)

}
for all y ∈M.
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8.3 The Support Theorem

Corollary 8.2.15 is the easier half the following result which characterizes
the support of the measure PL

x . In its statement, and elsewhere, we use
the notation (cf. Theorem 8.2.14) ‖q‖M,I ≡ ‖q̇M‖L2(I;Rr) for M ∈ N, q ∈
C1
(
[0,∞); Rr

)
), and closed intervals I ⊆ [0,∞).

8.3.1 Theorem. The support of PL
x in C([0,∞); Rn) is the closure there

of (cf. Corollary 8.2.15) S(x;V0, . . . , Vr). In fact, if for each smooth g ∈
C1
(
[0,∞); Rn

)
X( · , x, g) is the solution to (8.2.13) with p = g, then

(8.3.2)
lim

M→∞
lim
δ↘0

P0
(∥∥X( · , x, p)−X( · ,x, g)

∥∥
[0,T ]

< ε∣∣∣‖p− g‖M,[0,T ] ≤ δ
)

= 1

for all T ∈ (0,∞) and ε > 0.3

Notice that, because we already know supp(PL
x ) ⊆ S(x;V0, . . . , Vr), the

first assertion will follow as soon as we prove (8.3.2). Indeed, since

p(0) = 0 =⇒
∥∥p− g

∥∥2

M,[0,T ]
≤ 2M+1

[2M T ]+1∑
m=1

∣∣p(m2−M )− g(m2−M )
∣∣2

and, for any ` ∈ Z+, the P0-distribution of

p ∈ C
(
[0,∞); Rn

)
7−→

(
p(2−M ), . . . , p(`2−M )

)
∈ (Rn)`

has a smooth, strictly positive density, we know that

(8.3.3) P0
(∥∥p− g

∥∥
M,[0,T ]

≤ δ
)
> 0 for all δ > 0.

Hence, (8.3.2) is much more than is needed to conclude that

P0
(∥∥X( · , x, p)−X( · , x, g)

∥∥
[0,T ]

< ε
)
> 0

for all ε > 0.

3 This sort of statement was proved for the first time in [39]. However, the conditioning

there was somewhat different. Namely, the condition was that max1≤i≤n ‖pi − gi‖[0,T ] <

δ. Ikeda and Watanabe [16] follow the same basic strategy in their treatment, although

they introduce an observation which not only greatly simplifies the most unpleasant part of
the argument in [39] but also allows them to use the more natural condition ‖p−g‖[0,T ] <

δ. The strategy of the proof followed below was worked out in [38]. Finally, if all that one
cares about is the support characterization, [40] shows that one need not assume that the

operator L can be expressed in Hörmander’s form.
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To begin the proof of (8.3.2), first observe that, by Theorem 8.2.12 and
(8.3.3),

P0
(∥∥X( · , x, p)−X( · , x, g)

∥∥
[0,T ]

> ε
∣∣∣‖p− g‖M,[0,T ] ≤ δ

)
≤ lim

N→∞
P0
(∥∥XN ( · , x, p)−X( · , x, g)

∥∥
[0,T ]

> ε
∣∣∣‖p− g‖M,[0,T ] ≤ δ

)
≤ sup

N>M
P0
(∥∥XN ( · , x, p)−XM ( · , x, g)

∥∥
[0,T ]

> ε
2

∣∣∣‖p− g‖M,[0,T ] ≤ δ
)

+ P0
(∥∥XM ( · , x, p)−X( · , x, g)

∥∥
[0,T ]

> ε
2

∣∣∣‖p− g‖M,[0,T ] ≤ δ
)
.

Hence, since∥∥XM ( · , x, p)−X( · , x, g)
∥∥

[0,T ]

≤
∥∥XM ( · , x, p)−X( · , x, pM )

∥∥
[0,T ]

+
∥∥X( · , x, pM )−X( · , x, gM )

∥∥
[0,T ]

+
∥∥X( · , x, gM )−X( · , x, g)

∥∥
[0,T ]

≤ C

(
2−M + eν‖p‖[0,T ] sup

0≤s<t≤T

t−s≤2−M

∣∣p(t)− p(s)
∣∣

+ ‖p− g‖M,[0,T ] + 2−
M
2 ‖g‖M,[0,T ]

)
,

it follows that we need only show that, for each ε > 0,

(8.3.4) lim
M→∞

sup
δ∈(0,1]

P0

 sup
0≤s<t≤T

t−s≤2−M

∣∣p(t)− p(s)
∣∣ ≥ ε

∣∣∣∣∣ ‖p− g‖M,[0,T ] ≤ δ

 = 0

and that

(8.3.5)

lim
M→∞

sup
N>M
δ∈(0,1]

P0
(∥∥XN ( · , x, p)−XM ( · ,x, g)

∥∥
[0,T ]

≥ ε

∣∣∣‖p− g‖M,[0,T ] ≤ δ
)

= 0.

8.3.1. The Support Theorem, Part I. The key to our proof of both
(8.3.4) and (8.3.5) is the following lemma about Wiener measure. As the as-
tute reader will recognize, this lemma is a manifestation of the same property
of Gaussian measures on which (6.2.5) is based.

8.3.6 Lemma. For M ∈ N and p ∈ C
(
[0,∞); Rn

)
, set p̃M = p−pM . Then

σ
(
{p̃M (t) : t ≥ 0}

)
is P0-independent of BM ≡ σ

(
{p(m2−M ) : m ∈ N}

)
.

Hence, if, for some Borel measurable F : C
(
[0,∞); Rn

)
−→ [0,∞),

F̃M (q) ≡
∫
F
(
p̃M + qM

)
P0(dp), q ∈ C

(
[0,∞); Rr

)
,
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then F̃M = EP0
[F |BM ] P0-almost surely. In particular,

EP0[
F (p)

∣∣ ‖p− h‖M,[0,T ] ≤ δ
]

=
EP0[

F̃M (p), ‖p− h‖M,[0,T ] ≤ δ)
]

P 0(‖p− h‖M,[0,T ] ≤ δ)
.

Proof: Clearly, the second part of this lemma is an immediate consequence
of the first part. Thus (cf. part (i) in Exercise 4.2.39 in [36]) because all
elements of span

(
{p(t) : t ≥ 0}

)
are centered Gaussian random variables, it

suffices to prove that EP0[
p̃M (s)p(m2−M )

]
= 0 for all s ∈ [0,∞) and m ∈ N.

Equivalently, what we need to show is that

EP0[
p(s)pM (m2−M )

]
= EP0[

pM (s)pM (m2−M )
]

for all s ∈ [0,∞) & m ∈ N.

But, after choosing ` ∈ N so that `2−M ≤ s ≤ (`+1)2−M and using the fact
that EP0[

p(u)p(v)
]

= u ∧ v, this becomes an elementary computation. �
Knowing Lemma 8.3.6, one gets (8.3.4) is easily. Namely, given M ∈ N

and (p, h) ∈ C
(
[0,∞); Rr

)
, set

p̃M
h (t) ≡ p̃M (t) + hM (t).

Then, we will have proved (8.3.4) once we show that

sup
‖h−g‖M,[0,T ]≤1

EP0
[

sup
0≤s<t≤T

|p̃M
h (t)− p̃M

h (s)|
(t− s)

1
4

]
<∞.

But, |hM (t)− hM (s)| ≤ |t− s| 12 ‖h‖M,[0,T ],

sup
0≤s<t≤T

|p̃M (t)− p̃M (s)|
(t− s)

1
4

≤ 4 sup
0≤s<t≤T+1

|p(t)− p(s)|
(t− s)

1
4

,

and so the required estimate follows immediately from part (ii) of Exercise
2.4.16.
8.3.2. The Support Theorem, Part II. Unfortunately, the proof of
(8.3.5) requires much more effort. To get started, fix x ∈ Rn and set
DM,N (t, x, p) = XN (t, x, p) − XM (t, x, p) for N > M . Then, in view of
Lemma 8.3.6, (8.3.5) will follow once we show that

(8.3.7) lim
M→∞

sup
N>M

‖h−g‖M,[0,T ]≤1

EP0
[∥∥DM,N ( · , x, p̃M

h )
∥∥2

[0,T ]

]
= 0

Because

XN (t, x, p) = XN
(
t− [t]M , XN ([t]M , x, p), δ[t]M p

)
and XM (t, x, p) = XM

(
t− [t]M , XM ([t]M , x, p), δ[t]M p

)
,
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where, for each s ≥ 0, δs : C
(
[0,∞); Rr

)
−→ C

(
[0,∞); Rr

)
is defined so that

δsp(t) = p(s+ t)− p(s), we have that DM,N (t, x, p) can be decomposed into

DM,N
(
t− [t]M , XN ([t]M , x, p), δ[t]M p

)
+ E

(
∆M (t, p), XN ([t]M , x, p)

)
− E

(
∆M (t, p), XM ([t]M , x, p)

)
= DM,N ([t]M , x, p) +DM,N

(
t− [t]M , XN ([t]M , x, p), δ[t]M p

)
+ Ē

(
∆M (t, p), XN ([t]M , x, p)

)
− Ē

(
∆M (t, p), XM ([t]M , x, p)

)
,

where Ē(ξ, x) ≡ E(ξ, x)− x. Hence, we can write

DM,N (t, x, p) =
∫ t

0

WM,N
0 (τ, x, p) dτ +

r∑
k=1

∫ t

0

WM,N
k (τ, x, p) ◦ dpk(τ)

+ D̃M,N (t, x, p),
(8.3.8)

where WM,N
k (t, x, p) is used to denote

Vk

(
∆M (t, p), XN ([t]M , x, p)

)
− Vk

(
∆M (t, p), XM ([t]M , x, p)

)
and D̃M,N (t, x, p) is given by

[2M t]∑
m=0

DM,N
(
(t−m2−M ) ∧ 2−M , XN (m2−M , x, p), δm2−M p

)
.

The terms involving the WM,N
k ’s are relatively easy to handle. Namely,

because (cf. (5.1.25) and use Brownian scaling) for any λ ≥ 0 and T ∈ (0,∞)

(8.3.9) EP0[
eλT−

1
2 ‖p‖[0,T ]

]
= EP0[

eλ‖p‖[0,1]
]
≡ K(λ) <∞,

and, for any (m,M) ∈ N2, (cf. the notation in Theorem 8.2.14)∥∥∆M ( · , p̃M
h )‖Im,M

≤ 2
∥∥∆M ( · , p)

∥∥
Im,M

+ 2−
M
2 ‖h‖M,Im,M

,

we have that

(8.3.10) EP0
[
eλ2

M
2 ‖∆M ( · ,p̃M

h )‖Im,M

∣∣∣Bm2−M

]
≤ K(2λ)eλ‖h‖M,Im,M .

Hence, since (cf. (8.2.4))∥∥∥∥∫ ·

0

WM,N
0 (τ, x, p) dτ

∥∥∥∥2

[0,T ]

≤ T

∫ T

0

∣∣WM,N
0 (τ, x, p)

∣∣2 dτ
≤ CT

∫ T

0

e2ν|∆M (τ,p)|∣∣DM,N ([τ ]M , x, p)
∣∣2 dτ,
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it is clear that there are finite constants K and K ′ such that

EP0

[∥∥∥∥∫ ·

0

WM,N
0 (τ, x, p̃M

h ) dτ
∥∥∥∥2

[0,T ]

]

≤ KT

∫ T

0

EP0
[
e2ν|∆M (τ,p̃M

h )|∣∣DM,N ([τ ]M , x, p̃M
h )
∣∣2] dτ

≤ K ′Te2ν‖h‖M,[0,T ]

∫ T

0

EP0
[∣∣DM,N ([τ ]M , x, p̃M

h )
∣∣2] dτ.

Next, suppose that 1 ≤ k ≤ r. Then, after converting Stratonovich integrals
to their Itô equivalents, we have

∫ t

0

WM,N
k (τ, x, p̃M

h ) ◦ d(p̃M
h )k(τ)

=
∫ t

0

WM,N
k (τ, x, p̃M

h ) dpk(τ) +
1
2

∫ t

0

WM,N
k,k (τ, x, p̃M

h ) dτ

−
∫ t

0

WM,N
k (τ, x, p̃M

h )ṗM
k (τ) dτ +

∫ t

0

WM,N
k (τ, x, p̃M

h )ḣM
k (τ) dτ,

where WM,N
k,k (t, x, p) denotes

Vk,k

(
∆M (t, p), XN ([t]M , x, p)

)
− Vk,k

(
∆M (t, p), XM ([t]M , x, p)

)
when Vk,k(ξ, x) ≡

[
∂kVk( · , x)

]
(ξ). The second and fourth terms on the right

are handled in precisely the same way as the one involving WM,N
0 and satisfy

estimates of the form

EP0

[∥∥∥∥∫ ·

0

WM,N
k,k (τ, x, p̃M

h ) dτ
∥∥∥∥2

[0,T ]

]

≤ KTe2ν‖h‖M,[0,T ]

∫ T

0

EP0
[∣∣DM,N ([τ ]M , x, p̃M

h )
∣∣2] dτ

and

EP0

[∥∥∥∥∫ ·

0

WM,N
k (τ, x, p̃M

h )ḣM
k (τ) dτ

∥∥∥∥2

[0,T ]

]

≤ K‖h‖2M,[0,T ]e
2ν‖h‖M,[0,T ]

∫ T

0

EP0
[∣∣DM,N ([τ ]M , x, p̃M

h )
∣∣2] dτ.
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In addition, because the first term is an Itô integral, we can apply Doob’s
inequality followed by the above reasoning to obtain the estimate

EP0

[∥∥∥∥∫ ·

0

WM,N
k (τ, x, p̃M

h ) dpk(τ)
∥∥∥∥2

[0,T ]

]

≤ Ke2ν‖h‖M,[0,T ]

∫ T

0

EP0
[∣∣DM,N ([τ ]M , x, p̃M

h )
∣∣2] dτ.

As for the third term on the right, it is best to first decompose it into∫ t

0

WM,N
k ([τ ]M , x, p̃M

h ) dpk(τ)

+
∫ t

0

(
WM,N

k (τ, x, p)−WM,N
k ([τ ]M , x, p)

)
ṗM

k (τ) dτ.

Since the first of these is an Itô integral, it presents no new problem. To
deal with the second, observe that (cf. (8.2.4))∥∥∥∥∫ ·

0

(
WM,N

k (τ, x, p)−WM,N
k ([τ ]M , x, p)

)
ṗM

k (τ) dτ
∥∥∥∥2

[0,T ]

≤ C24MT

[2M T ]∑
m=0

(
pk

(
(m+ 1)2−M

)
− pk(m2−M )

)2
×
∫

Im,M

e2ν|∆M (τ,p̃M
h )||∆M (τ, p̃M

h )|2 dτ
∣∣DM,N (m2−M , x, p̃M

h )
∣∣2,

and pass from this to the same sort of estimate at which we arrived for the
other terms. Hence, by combining these, we can now replace (8.3.8) by

(8.3.11)

EP0
[∥∥DM,N ( · , x, p̃M

h )
∥∥2

[0,T ]

]
≤ C

(
T, ‖h‖M,[0,T ]

) ∫ T

0

EP0
[∥∥DM,N ( · , x, p̃M

h )
∥∥2

[0,t]

]
dt

+ 2EP0[
‖D̃M,N ( · , x, p̃M

h )‖2[0,T ]

]
,

where (s, t) ∈ [0,∞) 7−→ C(s, t) ∈ (0,∞) is non-decreasing in each variable
separately.
8.3.3. The Support Theorem, Part III. After applying Gronwall’s
inequality to (8.3.11), we know that, there is a (s, t) ∈ [0,∞)2 7−→ K(s, t) ∈
(0,∞), which is non-decreasing in each variable separately, such that

sup
‖h−g‖M,[0,T ]≤1

EP0
[∥∥DM,N ( · , x, p̃M

h )
∥∥2

[0,T ]

]
≤ K(T, g) sup

‖h−g‖M,[0,T ]≤1

EP0
[∥∥D̃M,N ( · , x, p̃M

h )
∥∥2

[0,T ]

]
.
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Hence, what remains is to show that

(8.3.12) lim
M→∞

sup
N>M

‖h−g‖M,[0,T ]≤1

EP0
[∥∥D̃M,N ( · , x, p̃M

h )
∥∥2

[0,T ]

]
= 0,

and this turns out to be quite delicate.
To get started on the proof of (8.3.12), we again break the computation

into parts. Namely, because

XN
(
t− [τ ]M , XN ([τ ]M , x, p), δ[τ ]M p

)
= XN

(
t− [τ ]N , XN ([τ ]N , x, p), δ[τ ]N p

)
,

D̃M,N
(
t, x, p̃M

h

)
can be written as∫ t

0

W̃M,N
0

(
τ, x, p̃M

h

)
dτ

+
r∑

k=1

∫ t

0

W̃M,N
k

(
τ, x, p̃M

h

)
dpk(τ) +

1
2

r∑
k=1

∫ t

0

W̃M,N
k,k

(
τ, x, p̃M

h

)
dτ

−
r∑

k=1

∫ t

0

W̃M,N
k

(
τ, x, p̃M

h

)
ṗM

k (τ) dτ +
r∑

k=1

∫ t

0

W̃M,N
k

(
τ, x, p̃M

h

)
ḣM

k (τ),

where W̃M,N
k (t, x, p) denotes

Vk

(
∆N (t, p), XN ([t]N , x, p)

)
− Vk

(
∆M (t, p), XN ([t]M , x, p)

)
and W̃M,N

k,k (t, x, p) is equal to

Vk,k

(
∆N (t, p), XN ([t]N , x, p)

)
− Vk,k

(
∆M (t, p), XN ([t]M , x, p)

)
.

With the exception of those involving ṗM
k (τ), none of these terms is very

difficult to estimate. Indeed,

EP0

[∥∥∥∥∫ ·

0

W̃M,N
0

(
τ, x, p̃M

h

)
dτ

∥∥∥∥2

[0,T ]

]
≤ T

∫ T

0

EP0
[∣∣W̃M,N

0

(
τ, x, p̃M

h

)∣∣2] dτ,
EP0

[∥∥∥∥∫ ·

0

W̃M,N
k

(
τ, x, p̃M

h

)
dpk(τ)

∥∥∥∥2

[0,T ]

]
≤ 4

∫ T

0

EP0
[∣∣W̃M,N

k

(
τ, x, p̃M

h

)∣∣2] dτ,
EP0

[∥∥∥∥∫ ·

0

W̃M,N
k,k

(
τ, x, p̃M

h

)
dτ

∥∥∥∥2

[0,T ]

]
≤ T

∫ T

0

EP0
[∣∣W̃M,N

k,k

(
τ, x, p̃M

h

)∣∣2] dτ,
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and

EP0

[∥∥∥∥∫ ·

0

W̃M,N
k

(
τ, x, p̃M

h

)
ḣM

k (τ)
∥∥∥∥2

[0,T ]

]

≤ ‖h‖2M,[0,T ]

∫ T

0

EP0
[∣∣W̃M,N

k

(
τ, x, p̃M

h

)∣∣2] dτ.
At the same time, by (8.2.4), W̃M,N

k (t, x, p̃M
h ) is dominated by a constant

times(∣∣p̃M
h ([τ ]N )− p̃M

h ([τ ]M )
∣∣

+
∣∣XN

(
[τ ]N , x, p̃M

h

)
−XN

(
[τ ]M , x, p̃M

h

)∣∣)eν‖∆M ( · ,p̃M
h )‖Im,M ,

and so, in view of (8.3.9) and (8.3.10), all the above terms will have been
handled once we check that, for each q ∈ [1,∞), there exists a Cq <∞ such
that

(8.3.13)
EP0
[∥∥XN ( · , x, p̃M

h )−XN (m2−M , x, p̃M
h )
∥∥q

Im,M

] 1
q

≤ Cq

(
1 + ‖h‖M,Im,M

)
2−

M
2

for all x ∈ Rn, (m,M) ∈ N2, and N ≥ M . To this end, first note that,
becauseXN ( ·+m2−M , x, p) = XN

(
· , XN (m2−M , x, p), δm2−M p

)
, it suffices

to treat the case when m = 0. Second, write XN (t, x, p̃M
h )− x as∫ t

0

V0

(
∆N (τ, p̃M

h ), x, p̃M
h

)
dτ

+
r∑

k=1

(∫ t

0

Vk

(
∆N (τ, p̃M

h ), x, p̃M
h

)
dpk(τ) +

1
2

∫ t

0

Vk,k

(
∆N (τ, p̃M

h ), x, p̃M
h

)
dτ

)

−
r∑

k=1

∫ t

0

(
Vk

(
∆N (τ, p̃M

h ), x, p̃M
h

)
ṗM

k (τ)− Vk

(
∆N (τ, p̃M

h ), x, p̃M
h

)
ḣM

k (τ)
)
dτ,

and apply (8.2.4) and standard estimates to conclude from this that

EP0[∥∥XN ( · , x, p̃M
h )− x

∥∥q

I0,M

] 1
q

is dominated by an expression of the form on the right hand side of (8.3.13).
8.3.4. The Support Theorem, Part IV. The considerations in § 8.3.3
reduce the proof of (8.3.12) to showing that, for each T ∈ [0,∞),

(8.3.14) lim
M→∞

sup
N>M

‖h−g‖M,[0,T ]≤1

EP0

[∥∥∥∥∫ ·

0

W̃M,N
k

(
τ, x, p̃M

h

)
ṗM

k (τ) dτ
∥∥∥∥2

0,T ]

]
= 0,
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and for this purpose it is best to begin with yet another small reduction.
Namely, dominate

∥∥∥∫ ·0 W̃M,N
k

(
τ, x, p̃M

h

)
ṗM

k (τ) dτ
∥∥∥

[0,T ]
by

max
0≤m≤2M T

∫
Im,M

∣∣W̃M,N
k

(
τ, x, p̃M

h

)∣∣|ṗM
k (τ)| dτ

+ max
0≤m≤2M T

∣∣∣∣∣
∫ m2−M

0

W̃M,N
k

(
τ, x, p̃M

h

)
ṗM

k (τ) dτ

∣∣∣∣∣ .
Again, the first of these is easy, since, by lines of reasoning which should be
familiar by now:

EP0

 max
0≤m≤[2M T ]

(∫
Im,M

∣∣W̃M,N
k

(
τ, x, p̃M

h

)∣∣|ṗM
k (τ)| dτ

)2


≤ CEP0

[2M T ]−1∑
m=0

e4ν‖∆M p̃M
h ‖Im,M

∣∣∣pk

(
(m+ 1)2−M

)
− pk(m2−M )

∣∣∣4


1
2

≤ C ′T
1
2 e2

1−M
2 ν‖h‖2M,[0,T ]2−

M
2

for appropriate, finite constants C and C ′. Hence, the proof of (8.3.14), and
therefore (8.3.12), is reduced to showing that

(8.3.15) lim
M→∞

sup
N>M

EP0

[
max

m≤2M T

∣∣∣∣∫ m2−M

0

W̃M,N
k

(
τ, x, p̃M

h

)
ṗM

k (τ) dτ
∣∣∣∣2
]

= 0

uniformly with respect to h with ‖h− g‖M,[0,T ] ≤ 1.
To carry out the proof of (8.3.15), we decompose W̃M,N

k (τ, x, p) into the
sum

N∑
L=M+1

(
V̂ M,L

k

(
τ,XN ([τ ]M , x, p), p

)
+ ŴM,L

k

(
τ,XN ([τ ]M , x, p), p

))
,

where

V̂ M,L
k (τ, x, p) ≡ Vk

(
∆L(τ, p), XL([τ ]L − [τ ]M , x, δ[τ ]M p)

)
− Vk

(
∆L(τ, p), XL−1([τ ]L − [τ ]M , x, δ[τ ]M p)

)
.

and

ŴM,L
k (τ, x, p) ≡ Vk

(
∆L(τ, p), XL−1([τ ]L − [τ ]M , x, δ[τ ]M p)

)
− Vk

(
∆L−1(τ, p), XL−1([τ ]L−1 − [τ ]M , x, δ[τ ]M p)

)
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After making this decomposition, it is clear that (8.3.15) will be proved once
we show that

(8.3.16)
lim

M→∞
sup

N>M
‖h−g‖M,[0,T ]≤1

EP0

[([2M T ]−1∑
m=0

∣∣pk

(
(m+ 1)2−M

)
− pk(m2−M )

∣∣
× FM,N

k

(
m,x, p̃M

h

))2
]

= 0,

where FM,N
k (m,x, p) is given by

N∑
L=M+1

2M

∫
Im,M

∣∣V̂ M,L
k

(
τ,XN (m2−M , x, p), p

)∣∣ dτ,
and that

(8.3.17) lim
M→∞

sup
N>M

‖h−g‖M,[0,T ]≤1

EP0
[

max
m<[2M T ]

∣∣JM,N
k

(
m,x, (p, h)

)∣∣2] = 0,

where JM,N
k

(
m,x, (p, h)

)
is equal to

m∑
m′=0

N∑
L=M+1

∫
Im′,M

ŴM,L
k

(
τ,XN (m′2−M , x, p̃M

h ), p̃M
h

)
ṗk(τ) dτ.

By Schwarz’s inequality, the expectation value in (8.3.16) is dominated by

2MT

[2M T ]−1∑
m=0

EP0
[(
pk

(
(m+ 1)2−M

)
− pk(m2−M )

)2

FM,N
k (m,x, p̃M

h )2
]

≤ 2T
[2M T ]−1∑

m=0

EP0[
FM,N

k (m,x, p̃M
h )2

]
.

In addition, by Minkowski’s and Jensen’s inequalities,

EP0[
FM,N

k (m,x, p̃M
h )2

] 1
2

≤
N∑

L=M+1

sup
x∈Rn

EP0

(2M

∫
Im,M

∣∣V̂ M,L(τ, x, p̃M
h )
∣∣ dτ)2

 1
2

≤ 2
M
2

N∑
L=M+1

(
sup

x∈Rn

∫
Im,M

EP0
[∣∣V̂ M,L(τ, x, p̃M

h )
∣∣2] dτ) 1

2

.
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Thus, (8.3.16) will be proved once we show that

(8.3.18) EP0
[∫

Im,M

∣∣V̂ M,L
k

(
τ, x, p̃M

h

)∣∣2 dτ] ≤ C
(
‖h‖M,[0,T ]

)
2−L− 3M

2

for some non-decreasing r ∈ [0,∞) 7−→ C(r) ∈ [0,∞) and all x ∈ Rn and
0 ≤ m < [2MT ]. To this end, first observe that the left hand side of (8.3.18)
is dominated by

C
(
‖h‖M,[0,T ]

)
sup

x∈Rn

∫
I0,M

EP0
[∣∣DL−1,L([τ ]L, x, δm2−M p̃M

h )
∣∣2] dτ.

With the help of the following lemma, we will be able to use Theorem 8.2.12
to control this last expression.

8.3.19 Lemma. Given 0 ≤ τ < 2−M and a Bτ -measurable, continuous
Ψ : C

(
[0,∞); Rr

)
−→ [0,∞),

EP0[
Ψ
(
δm2−M p̃M

h

)]
≤
(

2M

1− 2Mτ

) n
2q

e
‖h‖2

M,Im,M
2q ‖Ψ‖Lq(P 0)

for every q ∈ [1,∞].

Proof: First observe that (cf. Lemma 8.3.6)

EP0[
Ψ
(
δm2−M p̃M

h

)]
= EP0[

Ψ
(
p̃M

δm2−M h

)]
= EP0[

Ψ
(
p̃M + hM

m

)]
= Ψ̃M (hM

m ),

where hM
m (t) = (1 ∧ 2M t)

(
h((m + 1)2M ) − h(m2M )

)
. Indeed, the first of

these is just the time shift-invariance of Brownian increments, the second
comes from the fact that δm2−MhM coincides with hM

m on [0, 2−M ], and the
last is the definition of Ψ̃M in Lemma 8.3.6.

The next step is to show that another expression for Ψ̃M (hM
m ) is(

2M

1− 2Mτ

)n
2

e2
M−1|hM

m (2−M )|2EP0
[
Ψ(p) exp

(
−2M |p(τ)− hM

m (2−M )|2

2(1− 2Mτ)

)]
,

and, while doing this, we may and will assume that Ψ is not only continuous
and non-negative but also bounded. But, by Lemma 8.3.6, we know that,
for any bounded continuous f : Rr −→ R,

EP0[
Ψ̃M (p)f

(
p(2−M )

)]
= EP0[

Ψ(p)f
(
p(2−M )

)]
.

Further, if y ∈ Rr 7−→ `My ∈ C
(
[0,∞); Rr

)
is given by `My (t) = (t ∧ 2−M )y,

then
EP0[

Ψ̃M (p)f
(
p(2−M )

)]
=
∫

Rr

Ψ̃M (`My )f(y)γ2−M (y) dy
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while

EP0[
Ψ(p)f

(
p(2−M )

)]
=
∫

Rr

EP0
[
Ψ(p)γ2−M−τ

(
y − p(τ)

)]
f(y) dy,

where γt(y) = (2πt)−
r
2 exp

(
− |y|2

2t

)
. Hence, because Ψ, and therefore also

Ψ̃M , is bounded and continuous, the asserted equality follows by choosing
a sequence of f ’s which form an approximate identity at h((m + 1)2−M ) −
h(m2−M ).

Given the preceding, there are two ways in which the proof can be com-
pleted. One is to note that, trivially,

EP0[
Ψ
(
p̃M + hM

m

)]
≤ ‖Ψ‖L∞(P0),

whereas, by the preceding,

EP0[
Ψ
(
p̃M + hM

m

)]
≤ ‖Ψ‖L1(P0)

(
2M

1− 2Mτ

)n
2

e2
M−1|hM

m (2−M )|2 .

Hence interpolation provides the desired estimate. Alternatively, one can
apply Hölder’s inequality to get

EP0
[
Ψ(p) exp

(
−2M |p(τ)− hM

m (2−M )|2

2(1− 2Mτ)

)]
≤ ‖Ψ‖Lq(P0)

(∫
Rr

exp
(
−q

′2M |y − hM
m (2−M )|2

2(1− 2Mτ)

)
γτ (y) dy

) 1
q′

,

perform an elementary Gaussian integration, and arrive at the desired result
after making some simple estimates. �

If we now apply Lemma 8.3.19 with

Ψ(p) =
∣∣XL([τ ]L, x, p)−XL−1([τ ]L, x, p)

∣∣2
and q = n, we see from Theorem 8.2.12 that

EP0
[∣∣XL([τ ]L, x, p̃M

h )−XL−1([τ ]L, x, p̃M
h )
∣∣2]

≤ C
(
‖h‖M,Im,M

)
(2−Lτ)

(
2M

1− 2Mτ

) 1
2

,

for an appropriate choice of non-decreasing r  C(r). In view of the discus-
sion prior to Lemma 8.3.19, (8.3.18), and therefore (8.3.16), is now an easy
step.
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8.3.5. The Support Theorem, Part V. What remains is to check
(8.3.17). For this purpose, we have to begin by rewriting ŴM,L

k (τ, x, p)
as

Vk

(
∆L(τ, p), E

(
ξL(τ, p), XL−1([τ ]L−1 − [τ ]M , x, δ[τ ]M p)

))
− Vk

(
∆L(τ, p) + ξL(τ, p), XL−1([τ ]L−1 − [τ ]M , x, δ[τ ]M p

))
,

where ξL(τ, p) ≡
(
[τ ]L − [τ ]L−1, p([τ ]L) − p([τ ]L−1

)
. Having done so, one

sees that Lemma 8.2.11 applies and shows ŴM,L
k (τ, x, p) can be written as

1
2

∑
` 6=k

[V`, Vk]
(
XL−1([τ ]L−1 − [τ ]M , x, δ[τ ]M p)

)
ξL
` (τ, p) +RM,L

k,` (τ, x, p),

where∣∣RM,L
k,` (τ, x, p)

∣∣ ≤ Ce2ν‖∆L−1( · ,p)‖Im,M ‖∆L−1( · , p)‖2Im,M
for τ ∈ Im,M .

Thus, since

EP0

[([2M T ]−1∑
m=0

∣∣pk((m+ 1)2−M )− pk(m2−M )
∣∣

×
N∑

L=M+1

e2ν‖∆L−1( · ,p̃M
h )‖Im,M ‖∆L−1( · , p̃M

h )‖2Im,M

)2
]

≤ 2MT

[2M T ]−1∑
m=0

(
N∑

L=M+1

EP0
[∣∣pk((m+ 1)2−M )− pk(m2−M )

∣∣2
× e4ν‖∆L−1( · ,p̃M

h )‖Im,M ‖∆L−1( · , p̃M
h )‖4Im,M

] 1
2

)2

≤ 2MT 2C

(
N∑

L=M+1

EP0
[
e8ν‖∆L−1( · ,p̃M

h )‖I0,M ‖∆L−1( · , p̃M
h )‖8I0,M

] 1
4

)2

≤ C(‖h‖M,[0,T ])T 22−M ,

we are left with showing that for each 1 ≤ k ≤ r and ` 6= k,

(8.3.20) lim
M→∞

sup
N>M

‖h−g‖M,[0,T ]≤1

EP0

 max
m<[2M T ]

∣∣∣∣∣
m∑

m′=0

HM,N
k,`

(
m′, x, (p, h)

)∣∣∣∣∣
2
 = 0,
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where HM,N
k,`

(
m,x, (p, h)

)
equals

2M
(
pk

(
(m+ 1)2−M

)
− pk(m2−M )

)
×
∫

Im,M

N∑
L=M+1

αM,L,N
k,` ([τ ]L−1, x, p̃

M
h )ξL

` (τ, p̃M
h ) dτ

with

αM,L,N
k,` (τ, x, p) ≡ [V`, Vk]

(
XL−1

(
τ − [τ ]M , XN ([τ ]M , x, p), δ[τ ]M p

))
.

Since∣∣HM,N
k,0

(
m,x, (p, h)

)∣∣ ≤ C2−M
∣∣pk

(
(m+ 1)2−M

)
− pk(m2−M )

∣∣,
the case when ` = 0 is easy. Thus, we will restrict our attention to 1 ≤ k 6=
` ≤ r, in which case we decompose HM,N

k,`

(
m,x, (p, h)

)
into the sum(

pk

(
(m+ 1)2−M

)
− pk(m2−M )

)
AM,N

k,`

(
m,x, (p, h)

)
+
(
pk

(
(m+ 1)2−M

)
− pk(m2−M )

)
×
(
(h− p)`

(
(m+ 1)2−M

)
− (h− p)`(m2−M )

)
BM,N

k,`

(
m,x, (p, h)

)
+
(
pk

(
(m+ 1)2−M

)
− pk(m2−M )

)
×
(
(h− p)`

(
(m+ 1)2−M

)
− (h− p)`(m2−M )

)
CM,N

k,`

(
m,x, (p, h)

)
,

where AM,N
k,`

(
m,x, (p, h)

)
equals

2M

∫
Im,M

N∑
L=M+1

αM,L,N
k,`

(
[τ ]L−1, x, p̃

M
h

)(
p`([τ ]L)− p`([τ ]L−1)

)
dτ,

BM,N
k,`

(
m,x, (p, h)

)
equals

4M

∫
Im,M

N∑
L=M+1

αM,L,N
k,`

(
m2−M , x, p̃M

h

)(
[τ ]L − [τ ]L−1

)
dτ,

and CM,N
k,`

(
m,x, (p, h)

)
equals

4M

∫
Im,M

N∑
L=M+1

(
αM,L,N

k,`

(
[τ ]L−1, x, p̃

M
h

)
− αM,L,N

k,`

(
m2−M , x, p̃M

h

))(
[τL]− [τ ]L−1

)
dτ



254 8 Stratonovich’s Theory

Because
∣∣CM,N

k,`

(
m,x, (p, h)

)∣∣ is dominated by a constant times∥∥XL−1
(
· , XN (m2−M , x, p̃M

h ), δm2−M p̃M
h

)
−XN (m2−M , x, p̃M

h )
∥∥

I0,M
,

a simple application of (8.3.13) leads to

EP0

[
max

m<[2M T ]

∣∣∣∣ m∑
m′=0

(
pk

(
(m′ + 1)2−M

)
− pk(m′2−M )

)
×
(
(h− p)`

(
(m′ + 1)2−M

)
− (h− p)`(m′2−M )

)
CM,N

k,`

(
m′, x, (p, h)

)∣∣∣∣2
]

≤ 2MTC sup
x

EP0

[
[2M T ]−1∑

m=0

∣∣∣∣(pk

(
(m+ 1)2−M

)
− pk(m2−M )

)
×
(
(h− p)`

(
(m+ 1)2−M

)
− (h− p)`(m2−M )

)
×
∥∥XL−1

(
· , XN (m2−Mx, p̃M

h ), δm2−M p̃M
h

)
−XN (m2−M , x, p̃M

h )
∥∥

I0,M

∣∣∣∣2
]

≤
(
1 + ‖h‖2M,[0,T ]

)
CT 2 sup

x∈Rn

N≥M

EP0[
‖XN ( · , x, p̃M

hM
m

)− x‖4I0,M

] 1
2

≤ C
(
‖h‖M,[0,T ]

)
T 22−M .

The key to handling the other terms is the observation that, because ` 6= k,

EP0
[(
pk

(
(m+ 1)2−M

)
− pk(m2−M )

)
AM,N

k,`

(
m,x, (p, h)

)∣∣∣Bm2−M

]
= 0

and

EP0
[(
pk

(
(m+ 1)2−M

)
− pk(m2−M )

)
×
(
(h− p)`

(
(m+ 1)2−M

)
− (h− p)`(m2−M )

) ∣∣∣Bm2−M

]
= 0.

Thus, since BM,N
k,`

(
m,x, (p, h)

)
is Bm2−M , both

m−1∑
m′=0

(
pk

(
(m′ + 1)2−M

)
− pk(m′2−M )

)
AM,N

k,`

(
m′, x, (p, h)

)
and

m−1∑
m′=0

(
pk

(
(m+ 1)2−M

)
− pk(m2−M )

)
×
(
(h− p)`

(
(m+ 1)2−M

)
− (h− p)`(m2−M )

)
BM,N

k,`

(
m,x, (p, h)

)
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are P0-martingales relative to {Bm2−M : m ≥ 0}. In particular, by Doob’s
Inequality, the P0-expected square of the maximums over m < [2MT ] of
these are dominated by the sum from m = 0 to [2MT ]− 1 of, respectively,

EP0
[(
pk

(
(m+ 1)2−M

)
− pk(m2−M )

)2∣∣AM,N
k,`

(
m,x, (p, h)

)∣∣2]
≤ C2−MEP0

[∣∣AM,N
k,`

(
m,x, (p, h)

)∣∣4] 1
2

and

EP0
[(
pk

(
(m+ 1)2−M

)
− pk(m2−M )

)2

×
(
(h− p)`

(
(m+ 1)2−M

)
− (h− p)`(m2−M )

)2∣∣BM,N
k,`

(
m,x, (p, h)

)∣∣2]
≤ C4−M

(
1 + ‖h‖2M,[0,T ]

)
EP0
[∣∣BM,N

k,`

(
m,x, (p, h)

)∣∣2]
Because

∣∣BM,N
k,`

(
m,x, (p, h)

)∣∣ is uniformly bounded, we will be done if we
can show that

EP0
[∣∣AM,N

k,`

(
m,x, (p, h)

)∣∣4] 1
2 ≤ C2−M .

To this end, note that∣∣∣∣∣
∫

Im,M

N∑
L=M+1

αM,L,N
k,`

(
[τ ]L−1, x, p̃

M
h

)(
p`([τ ]L)− p`([τ ]L−1)

)
dτ

∣∣∣∣∣
4

≤ 8−M

∫
Im,M

∣∣∣∣∣
N∑

L=M+1

αM,L,N
k,`

(
[τ ]L−1, x, p̃

M
h

)(
p`([τ ]L)− p`([τ ]L−1)

)∣∣∣∣∣
4

dτ.

Thus

EP0
[∣∣AM,N

k,`

(
m,x, (p, h)

)∣∣4] ≤ 2M

∫
Im,M

EP0
[∣∣GM,N

k,`

(
τ, x, (p, h)

)∣∣4] dτ,
where

GM,N
k,`

(
τ, x, (p, h)

)
≡

N∑
L=M+1

αM,L,N
k,`

(
[τ ]L−1, x, p̃

M
h

)(
p`([τ ]L)− p`([τ ]L−1)

)
=
∫ [τ ]N

[τ ]M

α̂M,N
k,` (σ, τ, x, p̃M

h ) dp`(σ)

when α̂M,N
k,` (σ, τ, x, p) = αM,N

k,` ([τ ]L−1, x, p) for [τ ]L−1 ≤ σ < [τ ]L. Finally,
by Burkholder’s Inequality,

EP0
[∣∣GM,N

k,`

(
τ, x, (p, h)

)∣∣4] ≤ CEP0

(∫ [τ ]N

[τ ]M

∣∣α̂M,N
k,` (σ, τ, x, p̃M

h )
∣∣2 dσ)2

 ,
which is dominated by a constant times 4−M . Hence, we have at last com-
pleted the proof of Theorem 8.3.1.
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8.3.6. Exercises.

Exercise 8.3.21. It should be pointed out that the characterization of
supp(PL

x ) is much easier when L is strictly elliptic in the sense that {V1(x),
. . . , Vr(x)} spans Rn at each x ∈ Rn. Of course, in this case, the statement
is that supp(PL

x ) is the space of all continuous, Rn-valued paths which start
at x. What follows is an outline giving steps for a simple proof of this
statement.

For the considerations here, Itô’s theory is preferable to Stratonovich’s.
Thus, we will consider the solution p  X( · , x, p) to the Itô stochastic
integral equation (8.2.2). Our ellipticity assumption becomes the assumption
that the matrix a(x) = σ(x)σ>(x) is strictly positive definite for each x ∈ Rn.

(i) If
(
M(t),Ft,P

)
is an Rn-valued continuous martingale with M(0) = 0

satisfying
n∑

j=1

〈Mj〉(dt) ≤ Kdt

for some K <∞, show that

P
(
‖M‖[0,T ] < R

)
≥ e−

KT
R2

for all T ∈ [0,∞) and R ∈ (0,∞).
Hint: Set

uR(t, x) = e
Kt
R2

(
1− |x|2

R2

)
,

and show that
(
u(t,M(t)),Ft,P

)
is a submartingale. In particular, by

Doob’s Stopping Time Theorem, conclude that

e
KT
R2 P(ζR > T ) ≥ EP

[
u
(
T ∧ ζR,M(t ∧ ζR)

)]
≥ 1

where ζR = inf{t ≥ 0 : |M(t)| ≥ R}.
(ii) Given h ∈ C1

(
[0,∞); Rn

)
with h(0) = x, set ρ = ‖h − x‖[0,T ], and

choose a bounded, measurable W : [0,∞)× Rn −→ Rn so that

σ(y)W (t, y) = b(y)− ḣ(t) for (t, y) ∈ [0,∞)×BRn(x, ρ+ 1).

Next, take θ(t, p) = −W
(
t,X(t, x, p)

)
and ζ(p) = inf{t ≥ 0 : |X(t, x, p) −

x| ≥ ρ}, set

Eθ(t, p) = exp
(∫ t

0

(
θ(τ, p), dp(τ)

)
Rn −

1
2

∫ t

0

|θ(τ, p)|2 dτ
)
,

determine (cf. Theorem 6.2.1) the probability measure Q so that dQ � Bt =
Eθ(t)dP0 � Bt for t ≥ 0 , and apply Corollary 6.2.2 together with Doob’s
Stopping Time Theorem to see that

(
X(t ∧ ζρ, x, p) − h(t ∧ ζρ),Bt,Q

)
is

an Rn-valued martingale which satisfies the conditions in (i) with K =
sup|y−x|≤ρ Trace

(
σσ>(y)

)
.
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(iii) By combining (i) with (ii), show that P0
(
‖X( · , x, p)−h‖[0,T ] < ε

)
>

0 for all ε > 0.

Exercise 8.3.22. Without much more effort, it is possible to refine (8.3.2)
a little. Namely, given α ∈ (0, 1

2 ) and T ∈ (0,∞), set

‖p‖(α)
[0,T ] = sup

0≤s<t≤T

|p(t)− p(s)|
(t− s)α

for p ∈ C
(
[0,∞); Rn

)
.

The purpose of this exercise is to show that (8.3.2) can be replaced by the
statement that

lim
M→∞

lim
δ↘0

P0
(∥∥X( · , x, p)−X( · , x, g)

∥∥(α)

[0,T ]
< ε

∣∣∣ ‖p− g‖M,[0,T ] ≤ δ
)

= 1

for all g ∈ C1
(
[0,∞); Rr

)
with g(0) = 0 and T > 0.

(i) Begin by showing that for each q ∈ [1,∞) and T > 0 there is a non-
decreasing r  Kq(T, r) such that

EP0
[∣∣XN (t, x, p̃M

h )−XN (s, x, p̃M
h )
∣∣2q
] 1

2q ≤ Kq

(
T, ‖h‖M,[0,T ]

)
(t− s)

1
2

for all 0 ≤ s < t ≤ T , N ≥M , x ∈ Rn, and h ∈ C
(
[0,∞); Rn

)
.

(ii) Using the preceding, Lemma 8.3.6, and Exercise 2.4.17, show that for
each α ∈ (0, 1

2 ), q ∈ [1,∞), and T ∈ [0,∞),

sup
x∈Rn

δ∈(0,1]

EP0
[(∥∥X( · , x, p)

∥∥(α)

[0,T ]

)q ∣∣∣ ‖p− g‖ ≤ δ
]
<∞.

(iii) Given 0 < α < β, show that

‖p‖(α)
[0,T ] ≤

(
2‖p‖[0,T ]

)1−α
β
(
‖p‖(β)

[0,T ]

)α
β ;

and use this, part (ii) above, and (8.3.2) to complete the program.

Exercise 8.3.23. Perhaps the single most important application of Theo-
rem 8.3.1 is to the strong minimum principle for degenerate elliptic opera-
tors. Namely, let G is an open subset of R×Rn, and, given (s, x) ∈ G, define
GL(s, x) to be the set of

(
t,X(t− s)

)
where t ≥ s and X ∈ S(x;V0, . . . , Vr)

with
(
τ,X(τ − s)

)
∈ G for τ ∈ [s, t]. The minimum principle for L is the

statement that if u ∈ C1,2(G; R) is a (cf. (8.2.3)) (∂t + L)-supersolution in
GL(s, x) (i.e., (∂t + L)u ≤ 0 on GL(s, x)), then

u � GL(s, x) ≥ u(s, x) =⇒ u � GL(s, x) = u(s, x).

Here are some steps which lead to this conclusion.
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(i) Suppose that (t, y) ∈ GL(s, x) and that u(t, y) > u(s, x). Choose
X ∈ S(x;V0, . . . , Vr) so that X � [0, t − s] ⊆ G and y = X(t − s). Next,
choose ρ > 0 so that{

(τ, z) : τ ∈ [s, t] and |z −X(τ − s)| ≤ ρ} ⊆ G

and there exists an ε > 0 such that u(t, z) ≥ u(s, x) + ε when |z − y| ≤ ρ.
Set

ζ(p) = inf
{
τ ≥ 0 : |p(τ)−X(τ)| ≥ ρ

}
∧ (t− s),

and show that
(
u
(
s + τ ∧ ζ(p), p

(
τ ∧ ζ

)
,Bτ ,PL

x

)
is a supermartingale. In

particular, conclude that

u(s, x) ≥ EPL
x

[
u
(
s+ ζ(p), p

(
ζ)
)]
.

(ii) Show that α ≡ PL
x (ζ = t−s

)
> 0, and combine this with the conclusion

reached in (i) to arrive at the contradiction u(s, x) ≥ u(s, x) + εα > u(s, x).


